1
|
Gautier MK, Kelley CM, Lee SH, Alldred MJ, McDaid J, Mufson EJ, Stutzmann GE, Ginsberg SD. Maternal choline supplementation protects against age-associated cholinergic and GABAergic basal forebrain neuron degeneration in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Dis 2023; 188:106332. [PMID: 37890559 PMCID: PMC10752300 DOI: 10.1016/j.nbd.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Sommer JB, Bach A, Malá H, Strømgaard K, Mogensen J, Pickering DS. Effects of the dimeric PSD-95 inhibitor UCCB01-144 on functional recovery after fimbria-fornix transection in rats. Pharmacol Biochem Behav 2017; 161:62-67. [PMID: 28943199 DOI: 10.1016/j.pbb.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/22/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023]
Abstract
Pharmacological inhibition of PSD-95 is a promising therapeutic strategy in the treatment of stroke, and positive effects of monomeric and dimeric PSD-95 inhibitors have been reported in numerous studies. However, whether therapeutic effects will generalize to other types of acute brain injury such as traumatic brain injury (TBI), which has pathophysiological mechanisms in common with stroke, is currently uncertain. We have previously found a lack of neuroprotective effects of dimeric PSD-95 inhibitors in the controlled cortical impact model of TBI in rats. However, as no single animal model is currently able to mimic the complex and heterogeneous pathophysiology of TBI, it is necessary to assess treatment effects across a range of models. In this preliminary study we investigated the neuroprotective abilities of the dimeric PSD-95 inhibitor UCCB01-144 after fimbria-fornix (FF) transection in rats. UCCB01-144 or saline was injected into the lateral tail vein of rats immediately after sham surgery or FF-transection, and effects on spatial delayed alternation in a T-maze were assessed over a 28-day period. Task acquisition was significantly impaired in FF-transected animals, but there were no significant effects of UCCB01-144 on spatial delayed alternation after FF-transection or sham surgery, although decelerated learning curves were seen after treatment with UCCB01-144 in FF-transected animals. The results of the present study are consistent with previous research showing a lack of neuroprotective effects of PSD-95 inhibition in experimental models of TBI.
Collapse
Affiliation(s)
- Jens Bak Sommer
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark; The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| | - Hana Malá
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Wogensen E, Marschner L, Gram MG, Mehlsen S, Uhre VHB, Bülow P, Mogensen J, Malá H. Effects of different delayed exercise regimens on cognitive performance in fimbria-fornix transected rats. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Gram MG, Wogensen E, Moseholm K, Mogensen J, Malá H. Exercise-induced improvement in cognitive performance after fimbria-fornix transection depends on the timing of exercise administration. Brain Res Bull 2016; 125:117-26. [DOI: 10.1016/j.brainresbull.2016.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 01/29/2023]
|
5
|
Gajhede Gram M, Gade L, Wogensen E, Mogensen J, Malá H. Equal effects of typical environmental and specific social enrichment on posttraumatic cognitive functioning after fimbria-fornix transection in rats. Brain Res 2015; 1629:182-95. [PMID: 26499260 DOI: 10.1016/j.brainres.2015.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022]
Abstract
Enriched environment (EE) has been shown to have beneficial effects on cognitive recovery after brain injury. Typical EE comprises three components: (i) enlarged living area providing physical activation, (ii) sensory stimulation, and (iii) social stimulation. The present study assessed the specific contribution of the social stimulation. Animals were randomly divided into groups of (1) a typical EE, (2) pure social enrichment (SE), or (3) standard housing (SH) and subjected to either a sham operation or transection of the fimbria-fornix (FF). The effect of these conditions on acquisition of a delayed alternation task in a T-maze was assessed. The sham control groups were not affected by housing conditions. In the lesioned groups, both typical EE and SE improved the task acquisition, compared to SH. A baseline one-hour activity measurement confirmed an equal level of physical activity in the EE and SE groups. After delayed alternation testing, pharmacological challenges (muscarinergic antagonist scopolamine and dopaminergic antagonist SKF-83566) were used to assess cholinergic and dopaminergic contributions to task solution. Scopolamine led to a marked impairment in all groups. SKF-83566 significantly enhanced the performance of the lesioned group subjected to SE. The results demonstrate that housing in a typical as well as atypical EE can enhance cognitive recovery after mechanical injury to the hippocampus. The scopolamine challenge revealed a cholinergic dependency during task performance in all groups, regardless of lesion and housing conditions. The dopaminergic challenge revealed a difference in the neural substrates mediating recovery in the lesioned groups exposed to different types of housing.
Collapse
Affiliation(s)
- Marie Gajhede Gram
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, DK-1353 Copenhagen K, Denmark.
| | - Louise Gade
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, DK-1353 Copenhagen K, Denmark.
| | - Elise Wogensen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, DK-1353 Copenhagen K, Denmark.
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, DK-1353 Copenhagen K, Denmark.
| | - Hana Malá
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, DK-1353 Copenhagen K, Denmark.
| |
Collapse
|
6
|
Kipp M, Wagenknecht N, Beyer C, Samer S, Wuerfel J, Nikoubashman O. Thalamus pathology in multiple sclerosis: from biology to clinical application. Cell Mol Life Sci 2015; 72:1127-47. [PMID: 25417212 PMCID: PMC11113280 DOI: 10.1007/s00018-014-1787-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/29/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
There is a broad consensus that MS represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, i.e. damage to axons, synapses and nerve cell bodies. While the clinician is equipped with appropriate tools to dampen peripheral cell recruitment and, thus, is able to prevent immune-cell driven relapses, effective therapeutic options to prevent the simultaneously progressing neurodegeneration are still missing. Furthermore, while several sophisticated paraclinical methods exist to monitor the inflammatory-driven aspects of the disease, techniques to monitor progression of early neurodegeneration are still in their infancy and have not been convincingly validated. In this review article, we aim to elaborate why the thalamus with its multiple reciprocal connections is sensitive to pathological processes occurring in different brain regions, thus acting as a "barometer" for diffuse brain parenchymal damage in MS. The thalamus might be, thus, an ideal region of interest to test the effectiveness of new neuroprotective MS drugs. Especially, we will address underlying pathological mechanisms operant during thalamus degeneration in MS, such as trans-neuronal or Wallerian degeneration. Furthermore, we aim at giving an overview about different paraclinical methods used to estimate the extent of thalamic pathology in MS patients, and we discuss their limitations. Finally, thalamus involvement in different MS animal models will be described, and their relevance for the design of preclinical trials elaborated.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany,
| | | | | | | | | | | |
Collapse
|
7
|
Only repeated administration of the serotonergic agonist 8-OH-DPAT improves place learning of rats subjected to fimbria-fornix transection. Pharmacol Biochem Behav 2013; 109:50-8. [PMID: 23680575 DOI: 10.1016/j.pbb.2013.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 04/27/2013] [Accepted: 05/04/2013] [Indexed: 01/19/2023]
Abstract
Serotonergic agonists may act neuroprotectively against brain injury. This study addressed the therapeutic potential of 8-hydroxy-2-di-n-propylamino-tetralin (8-OH-DPAT), a selective 5-HT1A/7 receptor agonist, after mechanical brain injury, and evaluated its effects in terms of acquisition of an allocentric place learning task in a water maze. Rats were divided into 6 experimental groups, three of which were subjected to bilateral transection of fimbria-fornix (FF), while three groups were given control surgery (Sham). After surgery, within both the lesioned, and sham-operated animals, respectively, one group was administered a single dose of saline, one group was given a single dose (0.5 mg/kg/b.w.) of 8-OH-DPAT, and one group was treated with daily administration of 8-OH-DPAT (0.5 mg/kg/b.w.) for eight days. The acquisition of the water maze based place learning task started on the 8th day post-surgery and continued for 20 days. The results show that the lesioned group subjected to repeated administration of 8-OH-DPAT demonstrated a significantly improved acquisition of the place learning task compared to the vehicle injected lesion group. In contrast, the lesioned group treated with a single administration displayed impaired performance compared to the baseline lesion group. There were no significant effects of the 8-OH-DPAT administration in the sham control groups. We conclude that only the repeated stimulation of the 5-HT1A/7 system was associated with beneficial, recovery enhancing effects.
Collapse
|
8
|
Malá H, Rodríguez Castro M, Pearce H, Kingod SC, Nedergaard SK, Scharff Z, Zandersen M, Mogensen J. Delayed intensive acquisition training alleviates the lesion-induced place learning deficits after fimbria-fornix transection in the rat. Brain Res 2012; 1445:40-51. [PMID: 22322151 DOI: 10.1016/j.brainres.2012.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/03/2012] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
This study evaluates the effects of two learning paradigms, intensive vs. baseline, on the posttraumatic acquisition of a water maze based place learning task. Rats were subjected either to a control operation (Sham) or to a fimbria-fornix (FF) transection, which renders the hippocampus dysfunctional and disrupts the acquisition of allocentric place learning. All animals were administered 30 post-lesion acquisition sessions, which spanned either 10 or 30days. The acquisition period was followed by a 7day pause after which a retention probe was administered. The lesioned animals were divided into 3 groups: i) Baseline Acquisition Paradigm (BAP) once daily for 30days starting 1week post-surgery; ii) Early Intensive Acquisition Paradigm (EIAP) 3 times daily for 10days starting 1week post-surgery; and iii) Late Intensive Acquisition Paradigm (LIAP) 3 times daily for 10days starting 3weeks post-surgery. Within the control animals, one group followed the schedule of BAP, and one group followed the schedule of Intensive Acquisition Paradigm (IAP). All lesioned animals showed an impaired task acquisition. LIAP was beneficial in FF animals, in that it led to a better acquisition of the place learning task than the two other acquisition paradigms. The FF/EIAP group did not show improved acquisition compared to the FF/BAP group. The control animals were not differentially affected by the two learning schedules. The findings have implications for cognitive rehabilitation after brain injury and support the assumption that intensive treatment can lead to an improved learning, even when the neural structures underlying such a process are compromised. However, the timing of intensive treatment needs to be considered further.
Collapse
Affiliation(s)
- Hana Malá
- The Unit for Cognitive Neuroscience, Department of Psychology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Biology of mitochondria in neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:355-415. [PMID: 22482456 DOI: 10.1016/b978-0-12-385883-2.00005-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal degeneration in these familial diseases, and in the more common idiopathic (sporadic) diseases, are unresolved. Genetic, biochemical, and morphological analyses of human AD, PD, and ALS, as well as their cell and animal models, reveal that mitochondria could have roles in this neurodegeneration. The varied functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and the overlying genetic variations. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial programmed cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This chapter reviews several aspects of mitochondrial biology and how mitochondrial pathobiology might contribute to the mechanisms of neurodegeneration in AD, PD, and ALS.
Collapse
|
10
|
Collombet JM. Nerve agent intoxication: Recent neuropathophysiological findings and subsequent impact on medical management prospects. Toxicol Appl Pharmacol 2011; 255:229-41. [DOI: 10.1016/j.taap.2011.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/14/2023]
|
11
|
Counts SE, Che S, Ginsberg SD, Mufson EJ. Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer's disease. J Chem Neuroanat 2011; 42:111-7. [PMID: 21397006 DOI: 10.1016/j.jchemneu.2011.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/28/2011] [Indexed: 12/11/2022]
Abstract
The higher incidence rate of Alzheimer's disease (AD) in elderly women indicates that gender plays a role in AD pathogenesis. Evidence from clinical and pharmacologic studies, neuropathological examinations, and models of hormone replacement therapy suggest that cholinergic basal forebrain (CBF) cortical projection neurons within the nucleus basalis (NB), which mediate memory and attention and degenerate in AD, may be preferentially vulnerable in elderly women compared to men. CBF neurons depend on nerve growth factor (NGF) and their cognate receptors (trkA and p75(NTR)) for their survival and maintenance. We recently demonstrated a shift in the balance of NGF and its receptors toward cell death mechanisms during the progression of AD. To address whether gender affects NGF signaling system expression within the CBF, we used single cell RNA amplification and custom microarray technologies to compare gene expression profiles of single cholinergic NB neurons in tissue specimens from male and female members of the Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild/moderate AD. p75(NTR) expression within male cholinergic NB neurons was unchanged across clinical diagnosis, whereas p75(NTR) mRNA levels in female NB neurons exhibited a ∼40% reduction in AD compared to NCI. Male AD subjects displayed a ∼45% reduction in trkA mRNA levels within NB neurons compared to NCI and MCI. In contrast, NB neuronal trkA expression in females was reduced ∼50% in both MCI and AD compared to NCI. Reduced trkA mRNA levels were associated with poorer global cognitive performance and higher Braak scores in the female subjects. In addition, we found a female-selective reduction in GluR2 AMPA glutamate receptor subunit expression in NB neurons in AD. These data suggest that cholinergic NB neurons in females may be at greater risk for degeneration during the progression of AD and support the concept of gender-specific therapeutic interventions during the preclinical stages of the disease.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
12
|
Ginsberg SD. Alterations in discrete glutamate receptor subunits in adult mouse dentate gyrus granule cells following perforant path transection. Anal Bioanal Chem 2010; 397:3349-58. [PMID: 20577723 DOI: 10.1007/s00216-010-3826-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/27/2010] [Accepted: 05/04/2010] [Indexed: 01/25/2023]
Abstract
Custom-designed microarray analysis was utilized to evaluate expression levels of glutamate receptors (GluRs) and GluR-interacting protein genes within isolated dentate gyrus granule cells following axotomy of the principal input, the perforant path (PP). Dentate gyrus granule cells were evaluated by microdissection via laser capture microdissection, terminal continuation RNA amplification, and microarray analysis following unilateral PP transections at seven time points. Expression profiles garnered from granule cells on the side ipsilateral to PP transections were compared and contrasted with naive subjects and mice subjected to unilateral occipital cortex lesions. Selected microarray observations were validated by real-time quantitative PCR analysis. Postlesion time-dependent alterations in specific alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, kainate receptors, N-methyl-D-aspartate (NMDA) receptors, and GluR-interacting protein genes were found across the time course of the study, suggesting a neuroplasticity response associated with the transsynaptic granule cell alterations following axotomy of incoming PP terminals.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Department of Psychiatry, Center for Dementia Research, Nathan Kline Institute, New York University Langone Medical Center, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| |
Collapse
|
13
|
Rodríguez MJ, Prats A, Malpesa Y, Andrés N, Pugliese M, Batlle M, Mahy N. Pattern of Injury with a Graded Excitotoxic Insult and Ensuing Chronic Medial Septal Damage in the Rat Brain. J Neurotrauma 2009; 26:1823-34. [DOI: 10.1089/neu.2008.0553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Manuel J. Rodríguez
- Unitat de Bioquímica, Ginecologia, Pedriatria, Radiologia i Medicina Funcional, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina. Universitat de Barcelona, Barcelona, Spain
| | - Alberto Prats
- Departament d'Obstetrícia, Ginecologia, Pedriatria, Radiologia i Medicina Funcional, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina. Universitat de Barcelona, Barcelona, Spain
| | - Yolanda Malpesa
- Unitat de Bioquímica, Ginecologia, Pedriatria, Radiologia i Medicina Funcional, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina. Universitat de Barcelona, Barcelona, Spain
| | - Noemí Andrés
- Unitat de Bioquímica, Ginecologia, Pedriatria, Radiologia i Medicina Funcional, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina. Universitat de Barcelona, Barcelona, Spain
| | - Marco Pugliese
- Unitat de Bioquímica, Ginecologia, Pedriatria, Radiologia i Medicina Funcional, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina. Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Batlle
- Unitat de Bioquímica, Ginecologia, Pedriatria, Radiologia i Medicina Funcional, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina. Universitat de Barcelona, Barcelona, Spain
| | - Nicole Mahy
- Unitat de Bioquímica, Ginecologia, Pedriatria, Radiologia i Medicina Funcional, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina. Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Brisch R, Bernstein HG, Stauch R, Dobrowolny H, Krell D, Truebner K, Meyer-Lotz G, Bielau H, Steiner J, Kropf S, Gos T, Danos P, Bogerts B. The volumes of the fornix in schizophrenia and affective disorders: a post-mortem study. Psychiatry Res 2008; 164:265-73. [PMID: 19022630 DOI: 10.1016/j.pscychresns.2007.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 09/22/2007] [Accepted: 12/22/2007] [Indexed: 11/19/2022]
Abstract
Structural and functional pathology of limbic structures including the hippocampus are frequently replicated in schizophrenia. Although the fornix is the main afferent system of the hippocampus to the septal nuclei and the hypothalamus (especially the mammillary bodies), relatively few studies have investigated structural changes of the fornix in schizophrenia. We measured the volume of the fornix in post-mortem brains in 19 patients with schizophrenia, 9 patients with bipolar disorder, 7 patients with unipolar depression, and 14 control subjects by planimetry of serial sections. The volumes, the mean cross-sectional areas, and the anterior to posterior distances of the fornix did not differ among patients with schizophrenia, bipolar disorder, unipolar depression, and control subjects. No lateralization existed between the right and the left fornices in among patients in the diagnostic groups and the control subjects. The fornix does not show morphometrical abnormalities in patients with schizophrenia, bipolar disorder and unipolar depression compared with control subjects, which might indicate that the fornix is not a primary focus of structural changes in these diseases.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Collombet JM, Piérard C, Béracochéa D, Coubard S, Burckhart MF, Four E, Masqueliez C, Baubichon D, Lallement G. Long-term consequences of soman poisoning in mice. Behav Brain Res 2008; 191:88-94. [DOI: 10.1016/j.bbr.2008.02.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
|
16
|
Fukushima K, Mizuno Y, Takatama M, Okamoto K. Increased neuronal expression of alpha B-crystallin in human olivary hypertrophy. Neuropathology 2006; 26:196-200. [PMID: 16771174 DOI: 10.1111/j.1440-1789.2006.00682.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied morphologic changes in olivary hypertrophy from dentato-olivary tract lesions by immunohistologic methods with antialpha B-crystallin and antiheat shock protein 27 (HSP 27). The majority of central chromatolysis-like enlarged neurons, which are frequently seen in the early stages of olivary hypertrophy on ipsilateral lesions, showed a marked expression of alpha B-crystallin; however, HSP 27 did not show increased expression in those neurons. In the later stages of olivary hypertrophy, increased expressions of alpha B-crystallin varied in the remaining neurons and the expression of HSP 27 increased in hypertrophied astrocytes, although the expression of alpha B-crystallin in hypertrophic astrocytes was not prominent. The accumulation of alpha B-crystallin and HSP 27 may represent responses to pathologic conditions.
Collapse
Affiliation(s)
- Kazuko Fukushima
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | |
Collapse
|
17
|
Benkovic SA, O'Callaghan JP, Miller DB. Regional neuropathology following kainic acid intoxication in adult and aged C57BL/6J mice. Brain Res 2006; 1070:215-31. [PMID: 16403473 DOI: 10.1016/j.brainres.2005.11.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 11/03/2005] [Accepted: 11/06/2005] [Indexed: 01/05/2023]
Abstract
We evaluated regional neuropathological changes in adult and aged male mice treated systemically with kainic acid (KA) in a strain reported to be resistant to excitotoxic neuronal damage, C57BL/6. KA was administered in a single intraperitoneal injection. Adult animals were dosed with 35 mg/kg KA, while aged animals received a dose of 20 mg/kg in order to prevent excessive mortality. At time-points ranging from 12 h to 7 days post-treatment, animals were sacrificed and prepared for histological evaluation utilizing the cupric-silver neurodegeneration stain, immunohistochemistry for GFAP and IgG, and lectin staining. In animals of both ages, KA produced argyrophilia in neurons throughout cortex, hippocampus, thalamus, and amygdala. Semi-quantitative analysis of neuropathology revealed a similar magnitude of damage in animals of both ages, even though aged animals received less toxicant. Additional animals were evaluated for KA-induced reactive gliosis, assayed by an ELISA for GFAP, which revealed a 2-fold elevation in protein levels in adult mice, and a 2.5-fold elevation in aged animals. Histochemical evaluation of GFAP and lectin staining revealed activation of astrocytes and microglia in regions with corresponding argyrophilia. IgG immunostaining revealed a KA-induced breach of the blood-brain barrier in animals of both ages. Our data indicate widespread neurotoxicity following kainic acid treatment in C57BL/6J mice, and reveal increased sensitivity to this excitotoxicant in aged animals.
Collapse
Affiliation(s)
- Stanley Anthony Benkovic
- Toxicology and Molecular Biology Branch, Centers for Disease Control and Prevention-National Institute for Occupational, Safety and Health, Mailstop 3014, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | | | | |
Collapse
|
18
|
Darman J, Backovic S, Dike S, Maragakis NJ, Krishnan C, Rothstein JD, Irani DN, Kerr DA. Viral-induced spinal motor neuron death is non-cell-autonomous and involves glutamate excitotoxicity. J Neurosci 2004; 24:7566-75. [PMID: 15329404 PMCID: PMC6729638 DOI: 10.1523/jneurosci.2002-04.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/15/2004] [Accepted: 07/16/2004] [Indexed: 11/21/2022] Open
Abstract
Neuroadapted Sindbis virus (NSV) is a neurotropic virus capable of inducing the death of spinal motor neurons in mice and rats. In this study we investigated the mechanisms that underlie NSV-induced motor neuron death. We found that many degenerating spinal motor neurons were not infected directly with NSV, suggesting that bystander cell death occurs. An excitotoxic mechanism was confirmed when blockade of calcium-permeable AMPA receptors attenuated motor neuron death both in vitro and in vivo. Blockade of astroglial glutamate reuptake potentiated NSV-induced motor neuron loss in vivo, suggesting that astrocyte-mediated removal of perisynaptic glutamate is important in limiting NSV-induced excitotoxic injury. Astroglial glutamate transport was reduced markedly in the spinal cord during NSV infection, in advance of motor neuron injury in susceptible mice. In contrast, we found 5.6-fold elevated glutamate uptake in the spinal cords of mice resistant to NSV-induced paralysis. Likewise, minocycline markedly increased spinal cord glutamate transport and protected mice from NSV-induced motor neuron death. These studies suggest that NSV infection triggers a cascade of events in the spinal cord resulting in impaired astrocytic glutamate transport and excitotoxic injury of motor neurons mediated via calcium-permeable AMPA receptors. Similar changes may occur in other motor neuron disorders such as amyotrophic lateral sclerosis or West Nile Virus-induced poliomyelitis, suggesting a common tissue injury pathway.
Collapse
Affiliation(s)
- Jessica Darman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ginsberg SD, Che S. Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus. J Transl Med 2004; 84:952-62. [PMID: 15107803 DOI: 10.1038/labinvest.3700110] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The use of five histochemical stains (cresyl violet, thionin, hematoxylin & eosin, silver stain, and acridine orange) was evaluated in combination with an expression profiling paradigm that included regional and single cell analyses within the hippocampus of post-mortem human brains and adult mice. Adjacent serial sections of human and mouse hippocampus were labeled by histochemistry or neurofilament immunocytochemistry. These tissue sections were used as starting material for regional and single cell microdissection followed by a newly developed RNA amplification procedure (terminal continuation (TC) RNA amplification) and subsequent hybridization to custom-designed cDNA arrays. Results indicated equivalent levels of global hybridization signal intensity and relative expression levels for individual genes for hippocampi stained by cresyl violet, thionin, and hematoxylin & eosin, and neurofilament immunocytochemistry. Moreover, no significant differences existed between the Nissl stains and neurofilament immunocytochemistry for individual CA1 neurons obtained via laser capture microdissection. In contrast, a marked decrement was observed in adjacent hippocampal sections stained for silver stain and acridine orange, both at the level of the regional dissection and at the CA1 neuron population level. Observations made on the cDNA array platform were validated by real-time qPCR using primers directed against beta-actin and glyceraldehyde-3 phosphate dehydrogenase. Thus, this report demonstrated the utility of using specific Nissl stains, but not stains that bind RNA species directly, in both human and mouse brain tissues at the regional and cellular level for state-of-the-art molecular fingerprinting studies.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, New York University School of Medicine, Orangeburg, NY, USA.
| | | |
Collapse
|
20
|
Degroot A, Treit D. Anxiety is functionally segregated within the septo-hippocampal system. Brain Res 2004; 1001:60-71. [PMID: 14972654 DOI: 10.1016/j.brainres.2003.10.065] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2003] [Indexed: 11/24/2022]
Abstract
Previous lesion studies have suggested that the septal-hippocampal system is involved in fear and anxiety. In this study we examined the effects on anxiety of temporary neuronal inhibition of various aspects of the septo-hippocampal system in rats. Infusions of tetrodotoxin (TTX) were used to induce reversible lesions in the fimbria fornix, medial septum, dorsal hippocampus, and ventral hippocampus. To assess anxiety we used the elevated plus-maze and the shock-probe burying tests. A reduction in anxiety in the elevated plus-maze is indicated by increased open arm exploration, whereas a reduction in anxiety in the shock-probe burying test is indicated by decreased burying behavior or increased contacts with the shock-probe. The results suggested that inhibition of the septal-hippocampal system induced site-specific anxiolytic effects that vary in nature. Tetrodotoxin lesions of the fimbria fornix increased both open arm exploration and the number of shocks taken by the rats, while having no effect on burying behavior. Both septal and ventral hippocampal lesions increased open arm exploration and decreased burying behavior, but had no effect on the number of probe shocks. Finally, TTX lesions of the dorsal hippocampus increased the number of shocks taken by the rats, but did not affect open arm activity or burying behavior. Neuroanatomical studies indicated that the effect on the number of shocks induced by dorsal hippocampal TTX lesions was not likely mediated by the amygdala. Collectively, the data suggest that the control of specific anxiety reactions is functionally segregated within different aspects of the septo-hippocampal system.
Collapse
Affiliation(s)
- Aldemar Degroot
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.
| | | |
Collapse
|
21
|
Ayala-Grosso C, Tam J, Xanthoudakis S, Bureau Y, Roy S, Nicholson DW, Robertson GS. Effects of fimbria-fornix transection on calpain and choline acetyl transferase activities in the septohippocampal pathway. Neuroscience 2004; 126:927-40. [PMID: 15207327 DOI: 10.1016/j.neuroscience.2004.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/28/2004] [Accepted: 04/22/2004] [Indexed: 01/09/2023]
Abstract
The ability of fimbria-fornix bilateral axotomy to elicit calpain and caspase-3 activation in the rat septohippocampal pathway was determined using antibodies that selectively recognize either calpain- or caspase-cleaved products of the cytoskeletal protein alphaII-spectrin. Radioenzymatically determined choline acetyl transferase (ChAT) activity was elevated in the septum at day 5, but reduced in the dorsal hippocampus at days 3, 5 and 7, after axotomy. Prominent accumulation of calpain-, but not caspase-3-, cleaved spectrin proteolytic fragments was observed in both the septum and dorsal hippocampus 1-7 days after axotomy. ChAT-positive neuronal cell bodies in the septum also displayed calpain-cleaved spectrin indicating that calpain activation occurred in cholinergic septal neurons as a consequence of transection of the septohippocampal pathway. Calpain-cleaved alphaII-spectrin immunoreactivity was observed in cholinergic fibers coursing through the fimbria-fornix, but not in pyramidal neurons of the dorsal hippocampus, suggesting that degenerating cholinergic nerve terminals were the source of calpain activity in the dorsal hippocampus following axotomy. Accumulation of calpain-cleaved spectrin proteolytic fragments in the dorsal hippocampus and septum at day 5 after axotomy was reduced by i.c.v. administration of two calpain inhibitors. Calpain inhibition partially reduced the elevation of ChAT activity in the septum produced by transection but failed to decrease the loss of ChAT activity in the dorsal hippocampus following axotomy. These findings suggest that calpain activation contributes to the cholinergic cell body response and hippocampal axonal cytoskeletal degradation produced by transection of the septohippocampal pathway.
Collapse
Affiliation(s)
- C Ayala-Grosso
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir-William-Osler, Montreal, Canada H3G 1Y6
| | | | | | | | | | | | | |
Collapse
|
22
|
Al-Abdulla NA, Martin LJ. Projection neurons and interneurons in the lateral geniculate nucleus undergo distinct forms of degeneration ranging from retrograde and transsynaptic apoptosis to transient atrophy after cortical ablation in rat. Neuroscience 2003; 115:7-14. [PMID: 12401317 DOI: 10.1016/s0306-4522(02)00363-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The cytological responses of thalamic interneurons to selective degeneration of thalamocortical projection neurons after cortical damage in the adult brain are poorly understood. We used a unilateral neocortical lesion model (occipital cortex ablation) in the adult rat to test the hypothesis that interneurons and projection neurons in the lateral geniculate nucleus undergo distinct forms of degeneration. In situ nuclear DNA fragmentation in neurons in the lateral geniculate occurs maximally at 7 days postlesion. Geniculocortical projection neurons that are identified by the retrograde tracer Fluorogold die primarily with a morphology of endstage apoptosis prominent at 7 days postlesion. In contrast, interneurons, identified by their particular nuclear ultrastructure and by glutamic acid decarboxylase immunoreactivity, undergo an atrophic vacuolar pathology starting early during the period of projection neuron death and peaking after the projection neuron death is complete. This degeneration of interneurons is transient, because these neurons exhibit structural recovery and their numbers are not changed significantly postlesion. A rare subset of interneurons (less than one in 100 interneurons and less than one in 100 apoptotic cells) undergoes apoptosis concurrently with the projection neurons. We conclude that different types of neurons within the same thalamic nucleus respond differently to focal cortical target deprivation. Unlike the apoptosis-prone projection neurons, most interneurons undergo transient transsynaptic atrophy and recovery rather than cell death. Nevertheless, a small subset of lateral geniculate interneurons undergoes transsynaptic apoptosis in response to projection neuron apoptosis. The pathological responses of thalamic neurons to cortical trauma vary depending on cell type.
Collapse
Affiliation(s)
- N A Al-Abdulla
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | |
Collapse
|
23
|
Ginsberg SD, Martin LJ. Axonal transection in adult rat brain induces transsynaptic apoptosis and persistent atrophy of target neurons. J Neurotrauma 2002; 19:99-109. [PMID: 11852982 DOI: 10.1089/089771502753460277] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We used the fimbria-fornix (FF) transection model of axonal injury to test the hypothesis that transneuronal degeneration occurs in the adult central nervous system in response to deafferentation. The medial mammillary nucleus, pars medialis (MMNm) was analyzed by light and electron microscopy at 3, 7, 14, and 30 days, and 6 months after unilateral FF transection in adult rat to identify the time course of neuronal responses in a remote target. Presynaptic terminals and neuronal cell bodies degenerated in the MMNm ipsilateral to FF transection. Terminal degeneration occurred predominantly at 3 and 7 days postlesion. Between 14 and 30 days postlesion, neuronal number in the MMNm decreased (approximately 20%). Two forms of neuronal degeneration were found in the MMNm after deafferentation. Some neurons died apoptotically. Other neurons underwent vacuolar degeneration. In these latter neurons, somatodendritic pathology occurred at 14 and 30 days and 6 months postlesion. The ultrastructure of this vacuolar degeneration was characterized by disorganization of the cytoplasm, formation of membrane-bound vacuolar cisternae and membranous inclusions, loss of organelles, cytoplasmic pallor, and chromatin alterations. This study shows that both anterograde axonal degeneration and transneuronal degeneration occur in a fornical target after FF axon transection. This transneuronal degeneration can be classified as sustained neuronal atrophy or transsynaptic apoptosis.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
24
|
Martin LJ, Sieber FE, Traystman RJ. Apoptosis and necrosis occur in separate neuronal populations in hippocampus and cerebellum after ischemia and are associated with differential alterations in metabotropic glutamate receptor signaling pathways. J Cereb Blood Flow Metab 2000; 20:153-67. [PMID: 10616804 DOI: 10.1097/00004647-200001000-00020] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It was evaluated whether postischemic neurodegeneration is apoptosis and occurs with alterations in phosphoinositide-linked metabotropic glutamate receptors (mGluRs) and their associated signaling pathways. A dog model of transient global incomplete cerebral ischemia was used. The CA1 pyramidal cells and cerebellar Purkinje cells underwent progressive delayed degeneration. By in situ end-labeling of DNA, death of CA1 and Purkinje cells was greater at 7 days than 1 day after ischemia, whereas death of granule neurons in dentate gyrus and cerebellar cortex was greater at 1 than at 7 days. Ultrastructurally, degenerating CA1 pyramidal neurons and cerebellar Purkinje cells were necrotic; in contrast, degenerating granule neurons were apoptotic. In agarose gels of regional DNA extracts, random DNA fragmentation coexisted with internucleosomal fragmentation. By immunoblotting of regional homogenates, mGluR1alpha, mGluR5, phospholipase Cbeta (PLCbeta), and Galphaq/11 protein levels in hippocampus at 1 and 7 days after ischemia were similar to control levels, but in cerebellar cortex, mGluR1alpha and mGluR5 were decreased but PLCbeta was increased. By immunocytochemistry, mGluR and PLCbeta immunoreactivity dissipated in CA1 and cerebellar Purkinje cell/ molecular layers, whereas immunoreactivities for these proteins were enhanced in granule neurons. It was concluded that neuronal death after global ischemia exists as two distinct, temporally overlapping forms in hippocampus and cerebellum: necrosis of pyramidal neurons and Purkinje cells and apoptosis of granule neurons. Neuronal necrosis is associated with a loss of phosphoinositide-linked mGluR transduction proteins, whereas neuronal apoptosis occurs with increased mGluR signaling.
Collapse
Affiliation(s)
- L J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
25
|
Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res Bull 1998; 46:281-309. [PMID: 9671259 DOI: 10.1016/s0361-9230(98)00024-0] [Citation(s) in RCA: 480] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the human brain and spinal cord, neurons degenerate after acute insults (e.g., stroke, cardiac arrest, trauma) and during progressive, adult-onset diseases [e.g., amyotrophic lateral sclerosis, Alzheimer's disease]. Glutamate receptor-mediated excitotoxicity has been implicated in all of these neurological conditions. Nevertheless, effective approaches to prevent or limit neuronal damage in these disorders remain elusive, primarily because of an incomplete understanding of the mechanisms of neuronal death in in vivo settings. Therefore, animal models of neurodegeneration are crucial for improving our understanding of the mechanisms of neuronal death. In this review, we evaluate experimental data on the general characteristics of cell death and, in particular, neuronal death in the central nervous system (CNS) following injury. We focus on the ongoing controversy of the contributions of apoptosis and necrosis in neurodegeneration and summarize new data from this laboratory on the classification of neuronal death using a variety of animal models of neurodegeneration in the immature or adult brain following excitotoxic injury, global cerebral ischemia, and axotomy/target deprivation. In these different models of brain injury, we determined whether the process of neuronal death has uniformly similar morphological characteristics or whether the features of neurodegeneration induced by different insults are distinct. We classified neurodegeneration in each of these models with respect to whether it resembles apoptosis, necrosis, or an intermediate form of cell death falling along an apoptosis-necrosis continuum. We found that N-methyl-D-aspartate (NMDA) receptor- and non-NMDA receptor-mediated excitotoxic injury results in neurodegeneration along an apoptosis-necrosis continuum, in which neuronal death (appearing as apoptotic, necrotic, or intermediate between the two extremes) is influenced by the degree of brain maturity and the subtype of glutamate receptor that is stimulated. Global cerebral ischemia produces neuronal death that has commonalities with excitotoxicity and target deprivation. Degeneration of selectively vulnerable populations of neurons after ischemia is morphologically nonapoptotic and is indistinguishable from NMDA receptor-mediated excitotoxic death of mature neurons. However, prominent apoptotic cell death occurs following global ischemia in neuronal groups that are interconnected with selectively vulnerable populations of neurons and also in nonneuronal cells. This apoptotic neuronal death is similar to some forms of retrograde neuronal apoptosis that occur following target deprivation. We conclude that cell death in the CNS following injury can coexist as apoptosis, necrosis, and hybrid forms along an apoptosis-necrosis continuum. These different forms of cell death have varying contributions to the neuropathology resulting from excitotoxicity, cerebral ischemia, and target deprivation/axotomy. Degeneration of different populations of cells (neurons and nonneuronal cells) may be mediated by distinct or common causal mechanisms that can temporally overlap and perhaps differ mechanistically in the rate of progression of cell death.
Collapse
Affiliation(s)
- L J Martin
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| | | | | | | | | | | |
Collapse
|