1
|
Lu X, Franz EA, Robertson SP, Markie D. Aberrant connectivity of the lateralized readiness system in non-syndromic congenital mirror movements. Clin Neurophysiol 2024; 167:61-73. [PMID: 39293386 DOI: 10.1016/j.clinph.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Non-syndromic CMM has a complex phenotype. Abnormal corpus callosum and corticospinal tract processes are suggested mechanisms of the mirror movements. To further explore behavioural and neural phenotype(s) the present study tests the hypothesis that the response readiness network comprising supplementary motor area (SMA) and connections with motor cortex (M1) functions abnormally in CMM. METHODS Twelve participants with (non-syndromic) CMM and a control group (n = 28) were tested on a probabilistic Go-NoGo task while electroencephalography (EEG) was recorded to assess possible group differences in lateralized readiness of voluntary hand movements together with measures of SMA-M1 functional connectivity. RESULTS The CMM group demonstrated delayed lateralized readiness and stronger functional connectivity between left-brain SMA-M1 regions. Connectivity strength was correlated with measures of behavioural performance but not with extent of mirroring. CONCLUSIONS Abnormalities in brain processes upstream of movement output likely reflect neurocompensation as a result of lifelong experience with mirroring in CMM. SIGNIFICANCE These findings extend the known neural abnormalities in CMM to include brain networks upstream from those involved in motor output and raise the question of whether neurocompensatory plasticity might be involved.
Collapse
Affiliation(s)
- Xueyao Lu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Stephen P Robertson
- Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - David Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Ivanov V, Manenti GL, Plewe SS, Kagan I, Schwiedrzik CM. Decision-making processes in perceptual learning depend on effectors. Sci Rep 2024; 14:5644. [PMID: 38453977 PMCID: PMC10920771 DOI: 10.1038/s41598-024-55508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024] Open
Abstract
Visual perceptual learning is traditionally thought to arise in visual cortex. However, typical perceptual learning tasks also involve systematic mapping of visual information onto motor actions. Because the motor system contains both effector-specific and effector-unspecific representations, the question arises whether visual perceptual learning is effector-specific itself, or not. Here, we study this question in an orientation discrimination task. Subjects learn to indicate their choices either with joystick movements or with manual reaches. After training, we challenge them to perform the same task with eye movements. We dissect the decision-making process using the drift diffusion model. We find that learning effects on the rate of evidence accumulation depend on effectors, albeit not fully. This suggests that during perceptual learning, visual information is mapped onto effector-specific integrators. Overlap of the populations of neurons encoding motor plans for these effectors may explain partial generalization. Taken together, visual perceptual learning is not limited to visual cortex, but also affects sensorimotor mapping at the interface of visual processing and decision making.
Collapse
Affiliation(s)
- Vladyslav Ivanov
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany
- Sensorimotor Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Giorgio L Manenti
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Systems Neuroscience Program, Graduate School for Neurosciences, Biophysics and Molecular Biosciences (GGNB), 37077, Göttingen, Germany
| | - Sandrin S Plewe
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Igor Kagan
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Decision and Awareness Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany.
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany.
| |
Collapse
|
3
|
Merrick CM, Doyle ON, Gallegos NE, Irwin ZT, Olson JW, Gonzalez CL, Knight RT, Ivry RB, Walker HC. Differential contribution of sensorimotor cortex and subthalamic nucleus to unimanual and bimanual hand movements. Cereb Cortex 2024; 34:bhad492. [PMID: 38124548 PMCID: PMC10793582 DOI: 10.1093/cercor/bhad492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Why does unilateral deep brain stimulation improve motor function bilaterally? To address this clinical observation, we collected parallel neural recordings from sensorimotor cortex (SMC) and the subthalamic nucleus (STN) during repetitive ipsilateral, contralateral, and bilateral hand movements in patients with Parkinson's disease. We used a cross-validated electrode-wise encoding model to map electromyography data to the neural signals. Electrodes in the STN encoded movement at a comparable level for both hands, whereas SMC electrodes displayed a strong contralateral bias. To examine representational overlap across the two hands, we trained the model with data from one condition (contralateral hand) and used the trained weights to predict neural activity for movements produced with the other hand (ipsilateral hand). Overall, between-hand generalization was poor, and this limitation was evident in both regions. A similar method was used to probe representational overlap across different task contexts (unimanual vs. bimanual). Task context was more important for the STN compared to the SMC indicating that neural activity in the STN showed greater divergence between the unimanual and bimanual conditions. These results indicate that SMC activity is strongly lateralized and relatively context-free, whereas the STN integrates contextual information with the ongoing behavior.
Collapse
Affiliation(s)
- Christina M Merrick
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Owen N Doyle
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Natali E Gallegos
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Zachary T Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Joseph W Olson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Christopher L Gonzalez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Robert T Knight
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, United States
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
| | - Richard B Ivry
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, United States
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
| | - Harrison C Walker
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
4
|
Çavdar S, Köse B, Altınöz D, Özkan M, Güneş YC, Algın O. The brainstem connections of the supplementary motor area and its relations to the corticospinal tract: Experimental rat and human 3-tesla tractography study. Neurosci Lett 2023; 798:137099. [PMID: 36720343 DOI: 10.1016/j.neulet.2023.137099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Although the supplementary motor area (SMA) is a large region on the medial surface of the frontal lobe of the brain, little is known about its function. The current study uses 3-tesla high-resolution diffusion tensor tractography (DTI) in healthy individuals and biotinylated dextran amine (BDA) and fluoro-gold (FG) tracer in rats to demonstrate the afferent and efferent connections of the SMA with brainstem structures. It also aims to clarify how SMA fibers relate to the corticospinal tract (CST). The BDA (n = 6) and FG (n = 8) tracers were pressure-injected into the SMA of 14 Wistar albino rats. Light and fluorescence microscopy was used to capture images of the FG and BDA-labeled cells and axons. High-resolution 3-tesla DTI data were acquired from the Human Connectome Project database. Tracts between the SMA and brainstem structures were analyzed using diffusion spectrum imaging (DSI) studio software. The FG injections into the SMA showed afferent projections from mesencephalic (periaqueductal gray matter, substantia nigra pars reticulata, ventral tegmental area, inferior colliculus, mesencephalic reticular, tegmental, and raphe nuclei), pontine (locus coeruleus, pontine reticular and vestibular nuclei), and medullary (area postrema, parabrachial, and medullary reticular nuclei) structures. The anterograde tracer BDA injections into the SMA showed efferent connections with mesencephalic (periaqueductal gray, substantia nigra pars compacta, dorsal raphe, trigeminal motor mesencephalic, and mesencephalic reticular nuclei), pontine (locus coeruleus, nucleus of the lateral lemniscus, vestibular, cochlear, and pontine reticular nuclei), and medullary (area postrema, medullary reticular, olivary, and parabrachial nuclei) structures. The SMA had efferent but no afferent connections with the cerebellar nuclei. The DTI results in healthy human subjects highly corresponded with the experimental results. Further, the DTI results showed a distinct bundle that descended to spinal levels closely related to the CST. Understanding SMA's afferent and efferent connections will enrich our knowledge of its contribution to various brainstem networks and may provide new perspectives for understanding its motor and non-motor functions.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, Koç University, School of Medicine, Istanbul, Turkey.
| | - Büşra Köse
- Department of Anatomy, Koç University, School of Medicine, Istanbul, Turkey
| | - Damlasu Altınöz
- Department of Anatomy, Koç University, School of Medicine, Istanbul, Turkey
| | - Mazhar Özkan
- Department of Anatomy, Tekirdağ Namık Kemal University, School of Medicine, Istanbul, Turkey
| | - Yasin Celal Güneş
- Department of Radiology, Ankara Bilkent City Hospital, Ankara, Turkey; Department of Radiology, Ankara Atatürk Sanatorium Training and Research Hospital, Ankara, Turkey
| | - Oktay Algın
- Department of Radiology, Ankara Atatürk Sanatorium Training and Research Hospital, Ankara, Turkey; Yıldırım Beyazıt University, Medical Faculty, Ankara, Turkey; National MR Research Center (UMRAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
5
|
Nakajima T, Fortier-Lebel N, Drew T. A secondary motor area contributing to interlimb coordination during visually guided locomotion in the cat. Cereb Cortex 2022; 33:290-315. [PMID: 35259760 PMCID: PMC9837607 DOI: 10.1093/cercor/bhac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 01/19/2023] Open
Abstract
We investigated the contribution of cytoarchitectonic cortical area 4δc, in the caudal bank of the cruciate sulcus of the cat, to the control of visually guided locomotion. To do so, we recorded the activity of 114 neurons in 4δc while cats walked on a treadmill and stepped over an obstacle that advanced toward them. A total of 84/114 (74%) cells were task-related and 68/84 (81%) of these cells showed significant modulation of their discharge frequency when the contralateral limbs were the first to step over the obstacle. These latter cells included a substantial proportion (27/68 40%) that discharged between the passage of the contralateral forelimb and the contralateral hindlimb over the obstacle, suggesting a contribution of this area to interlimb coordination. We further compared the discharge in area 4δc with the activity patterns of cells in the rostral division of the same cytoarchitectonic area (4δr), which has been suggested to be a separate functional region. Despite some differences in the patterns of activity in the 2 subdivisions, we suggest that activity in each is compatible with a contribution to interlimb coordination and that they should be considered as a single functional area that contributes to both forelimb-forelimb and forelimb-hindlimb coordination.
Collapse
Affiliation(s)
- Toshi Nakajima
- Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nicolas Fortier-Lebel
- Département de Neurosciences, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA) Groupe de recherche sur la signalisation neurale et la circuiterie (SNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Trevor Drew
- Département de Neurosciences, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA) Groupe de recherche sur la signalisation neurale et la circuiterie (SNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Dixon TC, Merrick CM, Wallis JD, Ivry RB, Carmena JM. Hybrid dedicated and distributed coding in PMd/M1 provides separation and interaction of bilateral arm signals. PLoS Comput Biol 2021; 17:e1009615. [PMID: 34807905 PMCID: PMC8648118 DOI: 10.1371/journal.pcbi.1009615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/06/2021] [Accepted: 11/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pronounced activity is observed in both hemispheres of the motor cortex during preparation and execution of unimanual movements. The organizational principles of bi-hemispheric signals and the functions they serve throughout motor planning remain unclear. Using an instructed-delay reaching task in monkeys, we identified two components in population responses spanning PMd and M1. A “dedicated” component, which segregated activity at the level of individual units, emerged in PMd during preparation. It was most prominent following movement when M1 became strongly engaged, and principally involved the contralateral hemisphere. In contrast to recent reports, these dedicated signals solely accounted for divergence of arm-specific neural subspaces. The other “distributed” component mixed signals for each arm within units, and the subspace containing it did not discriminate between arms at any stage. The statistics of the population response suggest two functional aspects of the cortical network: one that spans both hemispheres for supporting preparatory and ongoing processes, and another that is predominantly housed in the contralateral hemisphere and specifies unilateral output. The motor cortex of the brain primarily controls the opposite side of the body, yet neural activity in this area is often observed during movements of either arm. To understand the functional significance of these signals we must first characterize how they are organized across the neural network. Are there patterns of activity that are unique to a single arm? Are there other patterns that reflect shared functions? Importantly, these features may change across time as motor plans are developed and executed. In this study, we analyzed the responses of individual neurons in the motor cortex and modeled their patterns of co-activity across the population to characterize the changes that distinguish left and right arm use. Across preparation and execution phases of the task, we found that signals became gradually more segregated. Despite many neurons modulating in association with either arm, those that were more dedicated to a single (typically contralateral) limb accounted for a disproportionately large amount of the variance. However, there were also weaker patterns of activity that did not distinguish between the two arms at any stage. These results reveal a heterogeneity in the motor cortex that highlights both independent and interactive components of reaching signals.
Collapse
Affiliation(s)
- Tanner C. Dixon
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Christina M. Merrick
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
| | - Joni D. Wallis
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Richard B. Ivry
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Jose M. Carmena
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, California, United States of America
| |
Collapse
|
7
|
Paul T, Hensel L, Rehme AK, Tscherpel C, Eickhoff SB, Fink GR, Grefkes C, Volz LJ. Early motor network connectivity after stroke: An interplay of general reorganization and state-specific compensation. Hum Brain Mapp 2021; 42:5230-5243. [PMID: 34346531 PMCID: PMC8519876 DOI: 10.1002/hbm.25612] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
Motor recovery after stroke relies on functional reorganization of the motor network, which is commonly assessed via functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (rsFC) or task-related effective connectivity (trEC). Measures of either connectivity mode have been shown to successfully explain motor impairment post-stroke, posing the question whether motor impairment is more closely reflected by rsFC or trEC. Moreover, highly similar changes in ipsilesional and interhemispheric motor network connectivity have been reported for both rsFC and trEC after stroke, suggesting that altered rsFC and trEC may capture similar aspects of information integration in the motor network reflecting principle, state-independent mechanisms of network reorganization rather than state-specific compensation strategies. To address this question, we conducted the first direct comparison of rsFC and trEC in a sample of early subacute stroke patients (n = 26, included on average 7.3 days post-stroke). We found that both rsFC and trEC explained motor impairment across patients, stressing the clinical potential of fMRI-based connectivity. Importantly, intrahemispheric connectivity between ipsilesional M1 and premotor areas depended on the activation state, whereas interhemispheric connectivity between homologs was state-independent. From a mechanistic perspective, our results may thus arise from two distinct aspects of motor network plasticity: task-specific compensation within the ipsilesional hemisphere and a more fundamental form of reorganization between hemispheres.
Collapse
Affiliation(s)
- Theresa Paul
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Lukas Hensel
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Anne K Rehme
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
8
|
Porcaro C, Mayhew SD, Bagshaw AP. Role of the Ipsilateral Primary Motor Cortex in the Visuo-Motor Network During Fine Contractions and Accurate Performance. Int J Neural Syst 2021; 31:2150011. [PMID: 33622198 DOI: 10.1142/s0129065721500118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is widely recognized that continuous sensory feedback plays a crucial role in accurate motor control in everyday life. Feedback information is used to adapt force output and to correct errors. While primary motor cortex contralateral to the movement (cM1) plays a dominant role in this control, converging evidence supports the idea that ipsilateral primary motor cortex (iM1) also directly contributes to hand and finger movements. Similarly, when visual feedback is available, primary visual cortex (V1) and its interactions with the motor network also become important for accurate motor performance. To elucidate this issue, we performed and integrated behavioral and electroencephalography (EEG) measurements during isometric compression of a compliant rubber bulb, at 10% and 30% of maximum voluntary contraction, both with and without visual feedback. We used a semi-blind approach (functional source separation (FSS)) to identify separate functional sources of mu-frequency (8-13[Formula: see text]Hz) EEG responses in cM1, iM1 and V1. Here for the first time, we have used orthogonal FSS to extract multiple sources, by using the same functional constraint, providing the ability to extract different sources that oscillate in the same frequency range but that have different topographic distributions. We analyzed the single-trial timecourses of mu power event-related desynchronization (ERD) in these sources and linked them with force measurements to understand which aspects are most important for good task performance. Whilst the amplitude of mu power was not related to contraction force in any of the sources, it was able to provide information on performance quality. We observed stronger ERDs in both contralateral and ipsilateral motor sources during trials where contraction force was most consistently maintained. This effect was most prominent in the ipsilateral source, suggesting the importance of iM1 to accurate performance. This ERD effect was sustained throughout the duration of visual feedback trials, but only present at the start of no feedback trials, consistent with more variable performance in the absence of feedback. Overall, we found that the behavior of the ERD in iM1 was the most informative aspect concerning the accuracy of the contraction performance, and the ability to maintain a steady level of contraction. This new approach of using FSS to extract multiple orthogonal sources provides the ability to investigate both contralateral and ipsilateral nodes of the motor network without the need for additional information (e.g. electromyography). The enhanced signal-to-noise ratio provided by FSS opens the possibility of extracting complex EEG features on an individual trial basis, which is crucial for a more nuanced understanding of fine motor performance, as well as for applications in brain-computer interfacing.
Collapse
Affiliation(s)
- Camillo Porcaro
- Institute of Cognitive Sciences and Technologies, (ISTC) - National Research Council (CNR), Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK.,S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy.,Department of Information Engineering - Università Politecnica delle Marche, Ancona, Italy.,Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium
| | - Stephen D Mayhew
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Andrew P Bagshaw
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Wu J, Cheng H, Zhang J, Bai Z, Cai S. The modulatory effects of bilateral arm training (BAT) on the brain in stroke patients: a systematic review. Neurol Sci 2020; 42:501-511. [PMID: 33180209 DOI: 10.1007/s10072-020-04854-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 10/22/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To systematically review the modulatory effects of bilateral arm training (BAT) on the brain of stroke patients in contrast to unilateral arm training (UAT) or regular motor training. METHODS We conducted a literature search using PubMed, EMBASE, MEDLINE, and Science Citation Index Expanded databases from the inception to March 2019 for identifying any relevant studies. Two authors independently screened the literature, extracted data, and qualitatively described the included studies. RESULTS Eleven studies with a total of 225 stroke patients were included in this review. 156 out of those participants received neuroimaging or neurophysiological examinations. Six studies reported enhanced activation of the ipsilesional primary motor area (M1) induced by BAT, as measured by MEP and fMRI. Beyond the M1, three studies showed that supplementary motor area (SMA) was activated, and three studies found the primary sensory cortex area (S1) was activated by BAT in stroke patients, as measured by fMRI. One article showed that the inter-/intra-hemispheric functional connections of the sensorimotor network were more highly strengthened after BAT than regular motor training, in particular the functional connectivity between the SMA and the M1 in the bi-hemispheres. Three studies reported that BAT increased the inhibitory flow from the ipsilesional hemisphere to the contralesional hemisphere, as measured by interhemispheric transcallosal inhibition (IHI). However, the superiority of BAT in inducing a symmetric IHI than UAT was controversial. CONCLUSION BAT is potentially more effective than UAT in improving upper limb recovery after stroke by activating the ipsilesional primary motor area (M1), supplementary motor area (SMA), and primary sensory cortex (S1) and enhancing the intra-hemispheric and interhemispheric connectivity within the sensorimotor network and the cortical motor system.
Collapse
Affiliation(s)
- Jingyi Wu
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Hao Cheng
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Jiaqi Zhang
- The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhongfei Bai
- The Hong Kong Polytechnic University, Hong Kong, China.,Department of Occupational Therapy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China
| | - Sufang Cai
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China. .,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Ames KC, Churchland MM. Motor cortex signals for each arm are mixed across hemispheres and neurons yet partitioned within the population response. eLife 2019; 8:e46159. [PMID: 31596230 PMCID: PMC6785221 DOI: 10.7554/elife.46159] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023] Open
Abstract
Motor cortex (M1) has lateralized outputs, yet neurons can be active during movements of either arm. What is the nature and role of activity across the two hemispheres? We recorded muscles and neurons bilaterally while monkeys cycled with each arm. Most neurons were active during movement of either arm. Responses were strongly arm-dependent, raising two possibilities. First, population-level signals might differ depending on the arm used. Second, the same population-level signals might be present, but distributed differently across neurons. The data supported this second hypothesis. Muscle activity was accurately predicted by activity in either the ipsilateral or contralateral hemisphere. More generally, we failed to find signals unique to the contralateral hemisphere. Yet if signals are shared across hemispheres, how do they avoid impacting the wrong arm? We found that activity related to each arm occupies a distinct subspace, enabling muscle-activity decoders to naturally ignore signals related to the other arm.
Collapse
Affiliation(s)
- Katherine Cora Ames
- Department of NeuroscienceColumbia UniversityNew YorkUnited States
- Zuckerman InstituteColumbia UniversityNew YorkUnited States
- Grossman Center for the Statistics of MindColumbia UniversityNew YorkUnited States
- Center for Theoretical NeuroscienceColumbia UniversityNew YorkUnited States
| | - Mark M Churchland
- Department of NeuroscienceColumbia UniversityNew YorkUnited States
- Zuckerman InstituteColumbia UniversityNew YorkUnited States
- Grossman Center for the Statistics of MindColumbia UniversityNew YorkUnited States
- Kavli Institute for Brain ScienceColumbia UniversityNew YorkUnited States
| |
Collapse
|
11
|
Aberrances of Cortex Excitability and Connectivity Underlying Motor Deficit in Acute Stroke. Neural Plast 2018; 2018:1318093. [PMID: 30420876 PMCID: PMC6215555 DOI: 10.1155/2018/1318093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022] Open
Abstract
Purpose This study was aimed at evaluating the motor cortical excitability and connectivity underlying the neural mechanism of motor deficit in acute stroke by the combination of functional magnetic resonance imaging (fMRI) and electrophysiological measures. Methods Twenty-five patients with motor deficit after acute ischemic stroke were involved. General linear model and dynamic causal model analyses were applied to fMRI data for detecting motor-related activation and effective connectivity of the motor cortices. Motor cortical excitability was determined as a resting motor threshold (RMT) of motor evoked potential detected by transcranial magnetic stimulation (TMS). fMRI results were correlated with cortical excitability and upper extremity Fugl-Meyer assessment scores, respectively. Results Greater fMRI activation likelihood and motor cortical excitability in the ipsilesional primary motor area (M1) region were associated with better motor performance. During hand movements, the inhibitory connectivity from the contralesional to the ipsilesional M1 was correlated with the degree of motor impairment. Furthermore, ipsilesional motor cortex excitability was correlated with an enhancement of promoting connectivity in ipsilesional M1 or a reduction of interhemispheric inhibition in contralesional M1. Conclusions The study suggested that a dysfunction of the ipsilesional M1 and abnormal interhemispheric interactions might underlie the motor disability in acute ischemic stroke. Modifying the excitability of the motor cortex and correcting the abnormal motor network connectivity associated with the motor deficit might be the therapeutic target in early neurorehabilitation for stroke patients.
Collapse
|
12
|
Choi H, Lee J, Park J, Lee S, Ahn KH, Kim IY, Lee KM, Jang DP. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates. J Neural Eng 2018; 15:016011. [DOI: 10.1088/1741-2552/aa8a83] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Fregosi M, Contestabile A, Hamadjida A, Rouiller EM. Corticobulbar projections from distinct motor cortical areas to the reticular formation in macaque monkeys. Eur J Neurosci 2017; 45:1379-1395. [PMID: 28394483 DOI: 10.1111/ejn.13576] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022]
Abstract
Corticospinal and corticobulbar descending pathways act in parallel with brainstem systems, such as the reticulospinal tract, to ensure the control of voluntary movements via direct or indirect influences onto spinal motoneurons. The aim of this study was to investigate the corticobulbar projections from distinct motor cortical areas onto different nuclei of the reticular formation. Seven adult macaque monkeys were analysed for the location of corticobulbar axonal boutons, and one monkey for reticulospinal neurons' location. The anterograde tracer BDA was injected in the premotor cortex (PM), in the primary motor cortex (M1) or in the supplementary motor area (SMA), in 3, 3 and 1 monkeys respectively. BDA anterograde labelling of corticobulbar axons were analysed on brainstem histological sections and overlapped with adjacent Nissl-stained sections for cytoarchitecture. One adult monkey was analysed for retrograde CB tracer injected in C5-C8 hemispinal cord to visualise reticulospinal neurons. The corticobulbar axons formed bilateral terminal fields with boutons terminaux and en passant, which were quantified in various nuclei belonging to the Ponto-Medullary Reticular Formation (PMRF). The corticobulbar projections from both PM and SMA tended to end mainly ipsilaterally in PMRF, but contralaterally when originating from M1. Furthermore, the corticobulbar projection was less dense when originating from M1 than from non-primary motor areas (PM, SMA). The main nuclei of bouton terminals corresponded to the regions where reticulospinal neurons were located with CB retrograde tracing. In conclusion, the corticobulbar projection differs according to the motor cortical area of origin in density and laterality.
Collapse
Affiliation(s)
- Michela Fregosi
- Department of Medecine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Alessandro Contestabile
- Department of Medecine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Adjia Hamadjida
- Department of Medecine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Eric M Rouiller
- Department of Medecine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| |
Collapse
|
14
|
Schimmel M, Ono T, Lam OLT, Müller F. Oro-facial impairment in stroke patients. J Oral Rehabil 2017; 44:313-326. [PMID: 28128465 DOI: 10.1111/joor.12486] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 01/10/2023]
Abstract
Stroke is considered one of the leading causes of death and acquired disability with a peak prevalence over the age of 80 years. Stroke may cause debilitating neurological deficiencies that frequently result in sensory deficits, motor impairment, muscular atrophy, cognitive deficits and psychosocial impairment. Oro-facial impairment may occur due to the frequent involvement of the cranial nerves' cortical representation areas, central nervous system pathways or motoneuron pools. The aim of this narrative, non-systematic review was to discuss the implications of stroke on oro-facial functions and oral health-related quality of life (OHRQoL). Stroke patients demonstrate an impaired masticatory performance, possibly due to reduced tongue forces and disturbed oral sensitivity. Furthermore, facial asymmetry is common, but mostly discrete and lip restraining forces are reduced. Bite force is not different between the ipsi- and contra-lesional side. In contrast, the contra-lesional handgrip strength and tongue-palate contact during swallowing are significantly impaired. OHRQoL is significantly reduced mainly because of the functional impairment. It can be concluded that impaired chewing efficiency, dysphagia, facial asymmetry, reduced lip force and OHRQoL are quantifiable symptoms of oro-facial impairment following a stroke. In the absence of functional rehabilitation, these symptoms seem not to improve. Furthermore, stroke affects the upper limb and the masseter muscle differently, both, at a functional and a morphological level. The rehabilitation of stroke survivors should, therefore, also seek to improve the strength and co-ordination of the oro-facial musculature. This would in turn help improve OHRQoL and the masticatory function, subsequently preventing weight loss and malnutrition.
Collapse
Affiliation(s)
- M Schimmel
- Division of Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Division of Gerodontology and Removable Prosthodontics, University of Geneva, Geneva, Switzerland
| | - T Ono
- Division of Comprehensive Prosthodontics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - O L T Lam
- Department of Oral Rehabilitation, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - F Müller
- Division of Gerodontology and Removable Prosthodontics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Badoud S, Borgognon S, Cottet J, Chatagny P, Moret V, Fregosi M, Kaeser M, Fortis E, Schmidlin E, Bloch J, Brunet JF, Rouiller EM. Effects of dorsolateral prefrontal cortex lesion on motor habit and performance assessed with manual grasping and control of force in macaque monkeys. Brain Struct Funct 2016; 222:1193-1206. [PMID: 27394722 PMCID: PMC5368204 DOI: 10.1007/s00429-016-1268-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 07/01/2016] [Indexed: 11/28/2022]
Abstract
In the context of an autologous adult neural cell ecosystem (ANCE) transplantation study, four intact adult female macaque monkeys underwent a unilateral biopsy of the dorsolateral prefrontal cortex (dlPFC) to provide the cellular material needed to obtain the ANCE. Monkeys were previously trained to perform quantitative motor (manual dexterity) tasks, namely, the “modified-Brinkman board” task and the “reach and grasp drawer” task. The aim of the present study was to extend preliminary data on the role of the prefrontal cortex in motor habit and test the hypothesis that dlPFC contributes to predict the grip force required when a precise level of force to be generated is known beforehand. As expected for a small dlPFC biopsy, neither the motor performance (score) nor the spatiotemporal motor sequences were affected in the “modified-Brinkman board” task, whereas significant changes (mainly decreases) in the maximal grip force (force applied on the drawer knob) were observed in the “reach and grasp drawer” task. The present data in the macaque monkey related to the prediction of grip force are well in line with the previous fMRI data reported for human subjects. Moreover, the ANCE transplantation strategy (in the case of stroke or Parkinson’s disease) based on biopsy in dlPFC does not generate unwanted motor consequences, at least as far as motor habit and motor performance are concerned in the context of a sequential grasping a small objects, which does not require the development of significant force levels.
Collapse
Affiliation(s)
- S Badoud
- Laboratory for sensorimotor and Multisensory Integration, Research Cluster Neurosciences, Department of Medicine, Fribourg Cognition Center, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - S Borgognon
- Laboratory for sensorimotor and Multisensory Integration, Research Cluster Neurosciences, Department of Medicine, Fribourg Cognition Center, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - J Cottet
- Laboratory for sensorimotor and Multisensory Integration, Research Cluster Neurosciences, Department of Medicine, Fribourg Cognition Center, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - P Chatagny
- Laboratory for sensorimotor and Multisensory Integration, Research Cluster Neurosciences, Department of Medicine, Fribourg Cognition Center, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - V Moret
- Laboratory for sensorimotor and Multisensory Integration, Research Cluster Neurosciences, Department of Medicine, Fribourg Cognition Center, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - M Fregosi
- Laboratory for sensorimotor and Multisensory Integration, Research Cluster Neurosciences, Department of Medicine, Fribourg Cognition Center, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - M Kaeser
- Laboratory for sensorimotor and Multisensory Integration, Research Cluster Neurosciences, Department of Medicine, Fribourg Cognition Center, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - E Fortis
- Laboratory for sensorimotor and Multisensory Integration, Research Cluster Neurosciences, Department of Medicine, Fribourg Cognition Center, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - E Schmidlin
- Laboratory for sensorimotor and Multisensory Integration, Research Cluster Neurosciences, Department of Medicine, Fribourg Cognition Center, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - J Bloch
- Department of Neurosurgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - J F Brunet
- Department of Neurosurgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - E M Rouiller
- Laboratory for sensorimotor and Multisensory Integration, Research Cluster Neurosciences, Department of Medicine, Fribourg Cognition Center, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland.
| |
Collapse
|
16
|
Rao J, Liu Z, Zhao C, Wei R, Zhao W, Yang Z, Li X. Longitudinal evaluation of functional connectivity variation in the monkey sensorimotor network induced by spinal cord injury. Acta Physiol (Oxf) 2016; 217:164-73. [PMID: 26706280 DOI: 10.1111/apha.12645] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
Abstract
AIM Given the unclear pattern of cerebral function reorganization induced by spinal cord injury (SCI), this study aimed to longitudinally evaluate the changes in resting-state functional connectivity (FC) in the sensorimotor network after SCI and explore their relationship with gait performance. METHODS Four adult female rhesus monkeys were examined using resting-state functional magnetic resonance imaging during their healthy stage and after hemitransected SCI (4, 8 and 12 weeks after SCI), and the gait characteristics of their hindlimbs were recorded (except 4 weeks after SCI). Twenty sensorimotor-related cortical areas were adopted in the FC analysis to evaluate the functional network reorganization. Correlation analyses were then used to explore the relationship between functional network variations and gait characteristic changes. RESULTS Compared with that during the healthy stage, the FC strength during post-SCI period was significantly increased in multiple areas of the motor control network, including the primary sensorimotor cortex, supplementary motor area (SMA) and putamen (Pu). However, the FC strength was remarkably reduced in the thalamus and parieto-occipital association cortex of the sensory network 8 weeks after SCI. Most FC intensities gradually approached the normal level 12 weeks after the SCI. Correlation analyses revealed that the enhanced FC strength between Pu and SMA in the left hemisphere, which regulates motor functions of the right side, was negatively correlated with the gait height of the right hindlimb. CONCLUSION The cerebral functional network presents an adjust-recover pattern after SCI, which may help us further understand the cerebral function reorganization after SCI.
Collapse
Affiliation(s)
- J.S. Rao
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
| | - Z. Liu
- State Key Laboratory of Brain and Cognitive Science; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
| | - C. Zhao
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
| | - R.H. Wei
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
| | - W. Zhao
- Department of Neurobiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| | - Z.Y. Yang
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
- Department of Neurobiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| | - X.G. Li
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
- Department of Neurobiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| |
Collapse
|
17
|
Cabib C, Llufriu S, Martinez-Heras E, Saiz A, Valls-Solé J. Enhanced mirror activity in ‘crossed’ reaction time tasks in multiple sclerosis. Clin Neurophysiol 2016; 127:2001-9. [DOI: 10.1016/j.clinph.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
18
|
Sakurada T, Ito K, Gomi H. Bimanual motor coordination controlled by cooperative interactions in intrinsic and extrinsic coordinates. Eur J Neurosci 2015; 43:120-30. [PMID: 26540267 PMCID: PMC4738419 DOI: 10.1111/ejn.13123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/02/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022]
Abstract
Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks.
Collapse
Affiliation(s)
- Takeshi Sakurada
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Wakamiya 3-1, Morinosato, Atsugi, Kanagawa, 243-0198, Japan.,Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Koji Ito
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Wakamiya 3-1, Morinosato, Atsugi, Kanagawa, 243-0198, Japan
| |
Collapse
|
19
|
Lin CH, Chou LW, Luo HJ, Tsai PY, Lieu FK, Chiang SL, Sung WH. Effects of Computer-Aided Interlimb Force Coupling Training on Paretic Hand and Arm Motor Control following Chronic Stroke: A Randomized Controlled Trial. PLoS One 2015; 10:e0131048. [PMID: 26193492 PMCID: PMC4507879 DOI: 10.1371/journal.pone.0131048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/27/2015] [Indexed: 11/26/2022] Open
Abstract
Objective We investigated the training effects of interlimb force coupling training on paretic upper extremity outcomes in patients with chronic stroke and analyzed the relationship between motor recovery of the paretic hand, arm and functional performances on paretic upper limb. Design A randomized controlled trial with outcome assessment at baseline and after 4 weeks of intervention. Setting Taipei Veterans General Hospital, National Yang-Ming University. Participants Thirty-three subjects with chronic stroke were recruited and randomly assigned to training (n = 16) and control groups (n = 17). Interventions The computer-aided interlimb force coupling training task with visual feedback included different grip force generation methods on both hands. Main Outcome Measures The Barthel Index (BI), the upper extremity motor control Fugl-Meyer Assessment (FMA-UE), the Motor Assessment Score (MAS), and the Wolf Motor Function Test (WMFT). All assessments were executed by a blinded evaluator, and data management and statistical analysis were also conducted by a blinded researcher. Results The training group demonstrated greater improvement on the FMA-UE (p<.001), WMFT (p<.001), MAS (p = .004) and BI (p = .037) than the control group after 4 weeks of intervention. In addition, a moderate correlation was found between the improvement of scores for hand scales of the FMA and other portions of the FMA UE (r = .528, p = .018) or MAS (r = .596, p = .015) in the training group. Conclusion Computer-aided interlimb force coupling training improves the motor recovery of a paretic hand, and facilitates motor control and enhances functional performance in the paretic upper extremity of people with chronic stroke. Trial Registration ClinicalTrials.gov NCT02247674.
Collapse
Affiliation(s)
- Chueh-Ho Lin
- School of Gerontology Health Management & Master Program in Long-Term Care, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan (R.O.C.)
| | - Hong-Ji Luo
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan (R.O.C.)
| | - Po-Yi Tsai
- Physical Medicine and Rehabilitation Department, Taipei Veterans General Hospital, Taipei, Taiwan (R.O.C.)
| | | | - Shang-Lin Chiang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan (R.O.C.)
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, Taipei, Taiwan (R.O.C.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Defense Medical Center, Taipei, Taiwan (R.O.C.)
| | - Wen-Hsu Sung
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan (R.O.C.)
- * E-mail:
| |
Collapse
|
20
|
Schrafl-Altermatt M, Dietz V. Cooperative hand movements in post-stroke subjects: Neural reorganization. Clin Neurophysiol 2015; 127:748-754. [PMID: 26275809 DOI: 10.1016/j.clinph.2015.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/01/2015] [Accepted: 07/05/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Recent research indicates a task-specific neural coupling controlling cooperative hand movements reflected in bilateral electromyographic reflex responses in arm muscles following unilateral nerve stimulation. Reorganization of this mechanism was explored in post-stroke patients in this study. METHODS Electromyographic reflex responses in forearm muscles to unilateral electrical ulnar nerve stimulation were examined during cooperative and non-cooperative hand movements. RESULTS Stimulation of the unaffected arm during cooperative hand movements led to electromyographic responses in bilateral forearm muscles, similar to those seen in healthy subjects, while stimulation of the affected side was followed only by ipsilateral responses. No contralateral reflex responses could be evoked in severely affected patients. The presence of contralateral responses correlated with the clinical motor impairment as assessed by the Fugl-Meyer test. CONCLUSION The observations suggest that after stroke an impaired processing of afferent input from the affected side leads to a defective neural coupling and is associated with a greater involvement of fiber tracts from the unaffected hemisphere during cooperative hand movements. SIGNIFICANCE The mechanism of neural coupling underlying cooperative hand movements is shown to be defective in post-stroke patients. The neural re-organizations observed have consequences for the rehabilitation of hand function.
Collapse
Affiliation(s)
| | - Volker Dietz
- Spinal Cord Injury Center, Balgrist University Hospital, 8008 Zurich, Switzerland
| |
Collapse
|
21
|
Wu T, Hou Y, Hallett M, Zhang J, Chan P. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease. Hum Brain Mapp 2015; 36:1878-91. [PMID: 25644527 DOI: 10.1002/hbm.22743] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 02/01/2023] Open
Abstract
We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | | | | | | | | |
Collapse
|
22
|
Dancause N, Touvykine B, Mansoori BK. Inhibition of the contralesional hemisphere after stroke. PROGRESS IN BRAIN RESEARCH 2015; 218:361-87. [DOI: 10.1016/bs.pbr.2015.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Potgieser ARE, de Jong BM, Wagemakers M, Hoving EW, Groen RJM. Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition. Front Hum Neurosci 2014; 8:960. [PMID: 25506324 PMCID: PMC4246659 DOI: 10.3389/fnhum.2014.00960] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/11/2014] [Indexed: 11/24/2022] Open
Abstract
The supplementary motor area (SMA) syndrome is a characteristic neurosurgical syndrome that can occur after unilateral resection of the SMA. Clinical symptoms may vary from none to a global akinesia, predominantly on the contralateral side, with preserved muscle strength and mutism. A remarkable feature is that these symptoms completely resolve within weeks to months, leaving only a disturbance in alternating bimanual movements. In this review we give an overview of the old and new insights from the SMA syndrome and extrapolate these findings to seemingly unrelated diseases and symptoms such as Parkinson's disease (PD) and tics. Furthermore, we integrate findings from lesion, stimulation and functional imaging studies to provide insight in the motor function of the SMA.
Collapse
Affiliation(s)
- A. R. E. Potgieser
- Department of Neurosurgery, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - B. M. de Jong
- Department of Neurology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - M. Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - E. W. Hoving
- Department of Neurosurgery, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - R. J. M. Groen
- Department of Neurosurgery, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|
24
|
Ifft PJ, Shokur S, Li Z, Lebedev MA, Nicolelis MAL. A brain-machine interface enables bimanual arm movements in monkeys. Sci Transl Med 2014; 5:210ra154. [PMID: 24197735 DOI: 10.1126/scitranslmed.3006159] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to paralyzed patients. So far, BMIs have enabled only one arm to be moved at a time. Control of bimanual arm movements remains a major challenge. We have developed and tested a bimanual BMI that enables rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374 to 497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a fifth-order unscented Kalman filter (UKF). The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals' performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control. These findings should help in the design of more sophisticated BMIs capable of enabling bimanual motor control in human patients.
Collapse
Affiliation(s)
- Peter J Ifft
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
25
|
Gao Q, Tao Z, Zhang M, Chen H. Differential contribution of bilateral supplementary motor area to the effective connectivity networks induced by task conditions using dynamic causal modeling. Brain Connect 2014; 4:256-64. [PMID: 24606178 DOI: 10.1089/brain.2013.0194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional imaging studies have indicated hemispheric asymmetry of activation in bilateral supplementary motor area (SMA) during unimanual motor tasks. However, the hemispherically special roles of bilateral SMAs on primary motor cortex (M1) in the effective connectivity networks (ECN) during lateralized tasks remain unclear. Aiming to study the differential contribution of bilateral SMAs during the motor execution and motor imagery tasks, and the hemispherically asymmetric patterns of ECN among regions involved, the present study used dynamic causal modeling to analyze the functional magnetic resonance imaging data of the unimanual motor execution/imagery tasks in 12 right-handed subjects. Our results demonstrated that distributions of network parameters underlying motor execution and motor imagery were significantly different. The variation was mainly induced by task condition modulations of intrinsic coupling. Particularly, regardless of the performing hand, the task input modulations of intrinsic coupling from the contralateral SMA to contralateral M1 were positive during motor execution, while varied to be negative during motor imagery. The results suggested that the inhibitive modulation suppressed the overt movement during motor imagery. In addition, the left SMA also helped accomplishing left hand tasks through task input modulation of left SMA→right SMA connection, implying that hemispheric recruitment occurred when performing nondominant hand tasks. The results specified differential and altered contributions of bilateral SMAs to the ECN during unimanual motor execution and motor imagery, and highlighted the contributions induced by the task input of motor execution/imagery.
Collapse
Affiliation(s)
- Qing Gao
- 1 School of Mathematical Sciences, University of Electronic Science and Technology of China , Chengdu, P.R. China
| | | | | | | |
Collapse
|
26
|
Dietz V, Macauda G, Schrafl-Altermatt M, Wirz M, Kloter E, Michels L. Neural coupling of cooperative hand movements: a reflex and fMRI study. ACTA ACUST UNITED AC 2013; 25:948-58. [PMID: 24122137 DOI: 10.1093/cercor/bht285] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The neural control of "cooperative" hand movements reflecting "opening a bottle" was explored in human subjects by electromyographic (EMG) and functional magnetic resonance imaging (fMRI) recordings. EMG responses to unilateral nonnoxious ulnar nerve stimulation were analyzed in the forearm muscles of both sides during dynamic movements against a torque applied by the right hand to a device which was compensated for by the left hand. For control, stimuli were applied while task was performed in a static/isometric mode and during bilateral synchronous pro-/supination movements. During the dynamic cooperative task, EMG responses to stimulations appeared in the right extensor and left flexor muscles, regardless of which side was stimulated. Under the control conditions, responses appeared only on the stimulated side. fMRI recordings showed a bilateral extra-activation and functional coupling of the secondary somatosensory cortex (S2) during the dynamic cooperative, but not during the control, tasks. This activation might reflect processing of shared cutaneous input during the cooperative task. Correspondingly, it is assumed that stimulation-induced unilateral volleys are processed in S2, leading to a release of EMG responses to both forearms. This indicates a task-specific neural coupling during cooperative hand movements, which has consequences for the rehabilitation of hand function in poststroke patients.
Collapse
Affiliation(s)
- Volker Dietz
- Spinal Cord Injury Center, Balgrist University Hospital, 8008 Zurich, Switzerland and
| | - Gianluca Macauda
- Clinic of Neuroradiology, University Hospital of Zurich, 8001 Zurich, Switzerland
| | | | - Markus Wirz
- Spinal Cord Injury Center, Balgrist University Hospital, 8008 Zurich, Switzerland and
| | - Evelyne Kloter
- Spinal Cord Injury Center, Balgrist University Hospital, 8008 Zurich, Switzerland and
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital of Zurich, 8001 Zurich, Switzerland
| |
Collapse
|
27
|
Abstract
Left-right coordination is essential for locomotor movements and is partly mediated by spinal commissural systems. Such coordination is also essential for reaching and manipulation in primates, but the role of spinal commissural systems here has not been studied. We investigated commissural connectivity to motoneurons innervating forelimb muscles using intracellular recordings in acutely anesthetized macaque monkeys. In 57 of 81 motoneurons, synaptic responses (52 of 57 excitatory) were evoked after contralateral intraspinal microstimulation in the gray matter (cISMS; 300 μA maximum current intensity). Some responses (15 of 57) occurred at latencies compatible with a monosynaptic linkage, including in motoneurons projecting to intrinsic hand muscles (9 cells). Three pieces of evidence suggest that these effects reflected the action of commissural interneurons. In two cells, preceding cISMS with stimulation of the contralateral medial brainstem descending pathways facilitated the motoneuron responses, suggesting that cISMS acted on cell bodies whose excitability was increased by descending inputs. Pairing cISMS with stimulation of the contralateral corticospinal tract yielded no evidence of response occlusion in 16 cells tested, suggesting that the effects were not merely axon reflexes generated by stimulation of corticospinal axon branches, which cross the midline. Finally, stimulation of contralateral peripheral nerves evoked responses in 28 of 52 motoneurons (7 of 9 projecting to the hand). Our results demonstrate the existence of commissural neurons with access to spinal motoneurons in primate cervical spinal cord that receive inputs from the periphery as well as descending pathways. Most importantly, commissural neurons also innervate motoneurons of intrinsic hand muscles.
Collapse
|
28
|
Network dynamics engaged in the modulation of motor behavior in healthy subjects. Neuroimage 2013; 82:68-76. [PMID: 23747288 DOI: 10.1016/j.neuroimage.2013.05.123] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 02/05/2023] Open
Abstract
Motor skills are mediated by a dynamic and finely regulated interplay of the primary motor cortex (M1) with various cortical and subcortical regions engaged in movement preparation and execution. To date, data elucidating the dynamics in the motor network that enable movements at different levels of behavioral performance remain scarce. We here used functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to investigate effective connectivity of key motor areas at different movement frequencies performed by right-handed subjects (n=36) with the left or right hand. The network of interest consisted of motor regions in both hemispheres including M1, supplementary motor area (SMA), ventral premotor cortex (PMv), motor putamen, and motor cerebellum. The connectivity analysis showed that performing hand movements at higher frequencies was associated with a linear increase in neural coupling strength from premotor areas (SMA, PMv) contralateral to the moving hand and ipsilateral cerebellum towards contralateral, active M1. In addition, we found hemispheric differences in the amount by which the coupling of premotor areas and M1 was modulated, depending on which hand was moved. Other connections were not modulated by changes in motor performance. The results suggest that a stronger coupling, especially between contralateral premotor areas and M1, enables increased motor performance of simple unilateral hand movements.
Collapse
|
29
|
Cortical representation of different motor rhythms during bimanual movements. Exp Brain Res 2012; 223:489-504. [DOI: 10.1007/s00221-012-3276-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
|
30
|
Changes in oro-facial function and hand-grip strength during a 2-year observation period after stroke. Clin Oral Investig 2012; 17:867-76. [DOI: 10.1007/s00784-012-0769-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
31
|
Banerjee A, Tognoli E, Kelso JAS, Jirsa VK. Spatiotemporal re-organization of large-scale neural assemblies underlies bimanual coordination. Neuroimage 2012; 62:1582-92. [PMID: 22634864 DOI: 10.1016/j.neuroimage.2012.05.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/16/2012] [Accepted: 05/20/2012] [Indexed: 11/19/2022] Open
Abstract
Bimanual coordination engages a distributed network of brain areas, the spatiotemporal organization of which has given rise to intense debates. Do bimanual movements require information processing in the same set of brain areas that are engaged by movements of the individual components (left and right hands)? Or is it necessary that other brain areas are recruited to help in the act of coordination? These two possibilities are often considered as mutually exclusive, with studies yielding support for one or the other depending on techniques and hypotheses. However, as yet there is no account of how the two views may work together dynamically. Using the method of Mode-Level Cognitive Subtraction (MLCS) on high density EEG recorded during unimanual and bimanual movements, we expose spatiotemporal reorganization of large-scale cortical networks during stable inphase and antiphase coordination and transitions between them. During execution of stable bimanual coordination patterns, neural dynamics were dominated by temporal modulation of unimanual networks. At instability and transition, there was evidence for recruitment of additional areas. Our study provides a framework to quantify large-scale network mechanisms underlying complex cognitive tasks often studied with macroscopic neurophysiological recordings.
Collapse
Affiliation(s)
- Arpan Banerjee
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | | | |
Collapse
|
32
|
Schmidlin E, Kaeser M, Gindrat AD, Savidan J, Chatagny P, Badoud S, Hamadjida A, Beaud ML, Wannier T, Belhaj-Saif A, Rouiller EM. Behavioral assessment of manual dexterity in non-human primates. J Vis Exp 2011:3258. [PMID: 22105161 PMCID: PMC3308590 DOI: 10.3791/3258] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The corticospinal (CS) tract is the anatomical support of the exquisite motor ability to skillfully manipulate small objects, a prerogative mainly of primates1. In case of lesion affecting the CS projection system at its origin (lesion of motor cortical areas) or along its trajectory (cervical cord lesion), there is a dramatic loss of manual dexterity (hand paralysis), as seen in some tetraplegic or hemiplegic patients. Although there is some spontaneous functional recovery after such lesion, it remains very limited in the adult. Various therapeutic strategies are presently proposed (e.g. cell therapy, neutralization of inhibitory axonal growth molecules, application of growth factors, etc), which are mostly developed in rodents. However, before clinical application, it is often recommended to test the feasibility, efficacy, and security of the treatment in non-human primates. This is especially true when the goal is to restore manual dexterity after a lesion of the central nervous system, as the organization of the motor system of rodents is different from that of primates1,2. Macaque monkeys are illustrated here as a suitable behavioral model to quantify manual dexterity in primates, to reflect the deficits resulting from lesion of the motor cortex or cervical cord for instance, measure the extent of spontaneous functional recovery and, when a treatment is applied, evaluate how much it can enhance the functional recovery. The behavioral assessment of manual dexterity is based on four distinct, complementary, reach and grasp manual tasks (use of precision grip to grasp pellets), requiring an initial training of adult macaque monkeys. The preparation of the animals is demonstrated, as well as the positioning with respect to the behavioral set-up. The performance of a typical monkey is illustrated for each task. The collection and analysis of relevant parameters reflecting precise hand manipulation, as well as the control of force, are explained and demonstrated with representative results. These data are placed then in a broader context, showing how the behavioral data can be exploited to investigate the impact of a spinal cord lesion or of a lesion of the motor cortex and to what extent a treatment may enhance the spontaneous functional recovery, by comparing different groups of monkeys (treated versus sham treated for instance). Advantages and limitations of the behavioral tests are discussed. The present behavioral approach is in line with previous reports emphasizing the pertinence of the non-human primate model in the context of nervous system diseases2,3.
Collapse
|
33
|
Lack of evidence for direct corticospinal contributions to control of the ipsilateral forelimb in monkey. J Neurosci 2011; 31:11208-19. [PMID: 21813682 DOI: 10.1523/jneurosci.0257-11.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Strong experimental evidence implicates the corticospinal tract in voluntary control of the contralateral forelimb. Its potential role in controlling the ipsilateral forelimb is less well understood, although anatomical projections to ipsilateral spinal circuits are identified. We investigated inputs to motoneurons innervating hand and forearm muscles from the ipsilateral corticospinal tract using multiple methods. Intracellular recordings from 62 motoneurons in three anesthetized monkeys revealed no monosynaptic and only one weak oligosynaptic EPSP after stimulation of the ipsilateral corticospinal tract. Single stimulus intracortical microstimulation of the primary motor cortex (M1) in awake animals failed to produce any responses in ipsilateral muscles. Strong stimulation (>500 μA, single stimulus) of the majority of corticospinal axons at the medullary pyramids revealed only weak suppressions in ipsilateral muscles at longer latencies than the robust facilitations seen contralaterally. Spike-triggered averaging of ipsilateral muscle activity from M1 neural discharge (184 cells) did not reveal any postspike effects consistent with monosynaptic corticomotoneuronal connections. We also examined the activity of 191 M1 neurons during ipsilateral or contralateral "reach to precision grip" movements. Many cells (67%) modulated their activity during ipsilateral limb movement trials (compared with 90% with contralateral trials), but the timing of this activity was best correlated with weak muscle activity in the contralateral nonmoving arm. We conclude that, in normal adults, any inputs to forelimb motoneurons from the ipsilateral corticospinal tract are weak and indirect and that modulation of M1 cell firing seems to be related primarily to control of the contralateral limb.
Collapse
|
34
|
Cieslik EC, Zilles K, Grefkes C, Eickhoff SB. Dynamic interactions in the fronto-parietal network during a manual stimulus-response compatibility task. Neuroimage 2011; 58:860-9. [PMID: 21708271 DOI: 10.1016/j.neuroimage.2011.05.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/15/2011] [Accepted: 05/20/2011] [Indexed: 11/18/2022] Open
Abstract
Attentional orienting can be modulated by stimulus-driven bottom-up as well as task-dependent top-down processes. In a recent study we investigated the interaction of both processes in a manual stimulus-response compatibility task. Whereas the intraparietal sulcus (IPS) and the dorsal premotor cortex (dPMC) were involved in orienting towards the stimulus side facilitating congruent motor responses, the right temporoparietal junction (TPJ), right dorsolateral prefrontal cortex (DLPFC) as well as the preSMA sustained top-down control processes involved in voluntary reorienting. Here we used dynamic causal modelling to investigate the contributions and task-dependent interactions between these regions. Thirty-six models were tested, all of which included bilateral IPS, dPMC and primary motor cortex (M1) as a network transforming visual input into motor output as well as the right TPJ, right DLPFC and the preSMA as task-dependent top-down regions influencing the coupling within the dorsal network. Our data showed the right temporoparietal junction to play a mediating role during attentional reorienting processes by modulating the inter-hemispheric balance between both IPS. Analysis of connection strength supported the proposed role of the preSMA in controlling motor responses promoting or suppressing activity in primary motor cortex. As the results did not show a clear tendency towards a role of the right DLPFC, we propose this region, against the usual interpretation of an inhibitory influence in stimulus-response compatibility tasks, to subserve generic monitoring processes. Our DCM study hence provides evidence for context-dependent top-down control of right TPJ and DLPFC as well as the preSMA in stimulus-response compatibility.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, Jülich, Germany.
| | | | | | | |
Collapse
|
35
|
Bashir S, Kaeser M, Wyss A, Hamadjida A, Liu Y, Bloch J, Brunet JF, Belhaj-Saif A, Rouiller EM. Short-term effects of unilateral lesion of the primary motor cortex (M1) on ipsilesional hand dexterity in adult macaque monkeys. Brain Struct Funct 2011; 217:63-79. [PMID: 21597965 PMCID: PMC3249543 DOI: 10.1007/s00429-011-0327-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/01/2011] [Indexed: 02/05/2023]
Abstract
Although the arrangement of the corticospinal projection in primates is consistent with a more prominent role of the ipsilateral motor cortex on proximal muscles, rather than on distal muscles involved in manual dexterity, the role played by the primary motor cortex on the control of manual dexterity for the ipsilateral hand remains a matter a debate, either in the normal function or after a lesion. We, therefore, tested the impact of permanent unilateral motor cortex lesion on the manual dexterity of the ipsilateral hand in 11 macaque monkeys, within a time window of 60 days post-lesion. For comparison, unilateral reversible pharmacological inactivation of the motor cortex was produced in an additional monkey. Manual dexterity was assessed quantitatively based on three motor parameters derived from two reach and grasp manual tasks. In contrast to the expected dramatic, complete deficit of manual dexterity of the contralesional hand that persists for several weeks, the impact on the manual dexterity of the ipsilesional hand was generally moderate (but statistically significant) and, when present, lasted less than 20 days. Out of the 11 monkeys, only 3 showed a deficit of the ipsilesional hand for 2 of the 3 motor parameters, and 4 animals had a deficit for only one motor parameter. Four monkeys did not show any deficit. The reversible inactivation experiment yielded results consistent with the permanent lesion data. In conclusion, the primary motor cortex exerts a modest role on ipsilateral manual dexterity, most likely in the form of indirect hand postural control.
Collapse
Affiliation(s)
- Shahid Bashir
- Department of Medicine and Program in Neurosciences, Faculty of Sciences, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 2011; 55:1147-58. [PMID: 21238594 DOI: 10.1016/j.neuroimage.2011.01.014] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/10/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022] Open
Abstract
Functional neuroimaging studies frequently demonstrated that stroke patients show bilateral activity in motor and premotor areas during movements of the paretic hand in contrast to a more lateralized activation observed in healthy subjects. Moreover, a few studies modeling functional or effective connectivity reported performance-related changes in the motor network after stroke. Here, we investigated the temporal evolution of intra- and interhemispheric (dys-) connectivity during motor recovery from the acute to the early chronic phase post-stroke. Twelve patients performed hand movements in an fMRI task in the acute (≤72 hours) and subacute stage (2 weeks) post-stroke. A subgroup of 10 patients participated in a third assessment in the early chronic stage (3-6 months). Twelve healthy subjects served as reference for brain connectivity. Changes in effective connectivity within a bilateral network comprising M1, premotor cortex (PMC), and supplementary motor area (SMA) were estimated by dynamic causal modeling. Motor performance was assessed by the Action Research Arm Test and maximum grip force. Results showed reduced positive coupling of ipsilesional SMA and PMC with ipsilesional M1 in the acute stage. Coupling parameters among these areas increased with recovery and predicted a better outcome. Likewise, negative influences from ipsilesional areas to contralesional M1 were attenuated in the acute stage. In the subacute stage, contralesional M1 exerted a positive influence on ipsilesional M1. Negative influences from ipsilesional areas on contralesional M1 subsequently normalized, but patients with poorer outcome in the chronic stage now showed enhanced negative coupling from contralesional upon ipsilesional M1. These findings show that the reinstatement of effective connectivity in the ipsilesional hemisphere is an important feature of motor recovery after stroke. The shift of an early, supportive role of contralesional M1 into enhanced inhibitory coupling might indicate maladaptive processes which could be a target of non-invasive brain stimulation techniques.
Collapse
Affiliation(s)
- Anne K Rehme
- Neuromodulation & Neurorehabilitation, Max Planck Institute for Neurological Research Cologne, Germany
| | | | | | | | | |
Collapse
|
37
|
Abstract
Brain-machine interfaces (BMIs) hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurological diseases, and limb loss. Considerable progress has been achieved in BMIs that enact arm movements, and initial work has been done on BMIs for lower limb and trunk control. These developments put Duke University Center for Neuroengineering in the position to develop the first BMI for whole-body control. This whole-body BMI will incorporate very large-scale brain recordings, advanced decoding algorithms, artificial sensory feedback based on electrical stimulation of somatosensory areas, virtual environment representations, and a whole-body exoskeleton. This system will be first tested in nonhuman primates and then transferred to clinical trials in humans.
Collapse
|
38
|
Lebedev MA, Tate AJ, Hanson TL, Li Z, O'Doherty JE, Winans JA, Ifft PJ, Zhuang KZ, Fitzsimmons NA, Schwarz DA, Fuller AM, An JH, Nicolelis MAL. Future developments in brain-machine interface research. Clinics (Sao Paulo) 2011; 66 Suppl 1:25-32. [PMID: 21779720 PMCID: PMC3118434 DOI: 10.1590/s1807-59322011001300004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/30/2011] [Indexed: 02/03/2023] Open
Abstract
Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition.
Collapse
|
39
|
Andujar JÉ, Lajoie K, Drew T. A Contribution of Area 5 of the Posterior Parietal Cortex to the Planning of Visually Guided Locomotion: Limb-Specific and Limb-Independent Effects. J Neurophysiol 2010; 103:986-1006. [DOI: 10.1152/jn.00912.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that area 5 of the posterior parietal cortex (PPC) contributes to the planning of visually guided gait modifications. We recorded 121 neurons from the PPC of two cats during a task in which cats needed to process visual input to step over obstacles attached to a moving treadmill belt. During unobstructed locomotion, 64/121 (53%) of cells showed rhythmic activity. During steps over the obstacles, 102/121 (84%) of cells showed a significant change of their activity. Of these, 46/102 were unmodulated during the control task. We divided the 102 task-related cells into two groups on the basis of their discharge when the limb contralateral to the recording site was the first to pass over the obstacle. One group (41/102) was characterized by a brief, phasic discharge as the lead forelimb passed over the obstacle (Step-related cells). These cells were recorded primarily from area 5a. The other group (61/102) showed a progressive increase in activity prior to the onset of the swing phase in the modified limb and frequently diverged from control at least one step cycle before the gait modification (Step-advanced cells). Most of these cells were recorded in area 5b. In both groups, some cells maintained a fixed relationship to the activity of the contralateral forelimb regardless of which limb was the first to pass over the obstacle (limb-specific cells), whereas others changed their phase of activity so that they were always related to activity of the first limb to pass over the obstacle, either contralateral or ipsilateral (limb-independent cells). Limb-independent cells were more common among the Step-advanced cell population. We suggest that both populations of cells contribute to the gait modification and that the discharge characteristics of the Step-advanced cells are compatible with a contribution to the planning of the gait modification.
Collapse
Affiliation(s)
- Jacques-Étienne Andujar
- Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie, Université de Montréal, Montreal, Quebec, Canada
| | - Kim Lajoie
- Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie, Université de Montréal, Montreal, Quebec, Canada
| | - Trevor Drew
- Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Jantzen KJ, Steinberg FL, Kelso JAS. Coordination dynamics of large-scale neural circuitry underlying rhythmic sensorimotor behavior. J Cogn Neurosci 2010; 21:2420-33. [PMID: 19199411 DOI: 10.1162/jocn.2008.21182] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In coordination dynamics, rate is a nonspecific control parameter that alters the stability of behavioral patterns and leads to spontaneous pattern switching. We used fMRI in conjunction with measures of effective connectivity to investigate the neural basis of behavioral dynamics by examining two coordination patterns known to be differentially stable (synchronization and syncopation) across a range of rates (0.75 to 1.75 Hz). Activity in primary auditory and motor cortices increased linearly with rate, independent of coordination pattern. On the contrary, activity in a premotor-cerebellar circuit varied directly with the stability of the collective variable (relative phase) that specifies coordinated behavioral patterns. Connectivity between premotor and motor cortices was also modulated by the stability of the behavioral pattern indicative of greater reliance on sensorimotor integration as action becomes more variable. By establishing a critical connection between behavioral and large scale brain dynamics, these findings reveal a basic principle for the neural organization underlying coordinated action.
Collapse
|
41
|
Schmidlin E, Jouffrais C, Freund P, Wannier-Morino P, Beaud ML, Rouiller EM, Wannier T. A case of polymicrogyria in macaque monkey: impact on anatomy and function of the motor system. BMC Neurosci 2009; 10:155. [PMID: 20030837 PMCID: PMC2807873 DOI: 10.1186/1471-2202-10-155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 12/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polymicrogyria is a malformation of the cerebral cortex often resulting in epilepsy or mental retardation. It remains unclear whether this pathology affects the structure and function of the corticospinal (CS) system. The anatomy and histology of the brain of one macaque monkey exhibiting a spontaneous polymicrogyria (PMG monkey) were examined and compared to the brain of normal monkeys. The CS tract was labelled by injecting a neuronal tracer (BDA) unilaterally in a region where low intensity electrical microstimulation elicited contralateral hand movements (presumably the primary motor cortex in the PMG monkey). RESULTS The examination of the brain showed a large number of microgyri at macro- and microscopic levels, covering mainly the frontoparietal regions. The layered cortical organization was locally disrupted and the number of SMI-32 stained pyramidal neurons in the cortical layer III of the presumed motor cortex was reduced. We compared the distribution of labelled CS axons in the PMG monkey at spinal cervical level C5. The cumulated length of CS axon arbors in the spinal grey matter was not significantly different in the PMG monkey. In the red nucleus, numerous neurons presented large vesicles. We also assessed its motor performances by comparing its capacity to execute a complex reach and grasp behavioral task. The PMG monkey exhibited an increase of reaction time without any modification of other motor parameters, an observation in line with a normal CS tract organisation. CONCLUSION In spite of substantial cortical malformations in the frontal and parietal lobes, the PMG monkey exhibits surprisingly normal structure and function of the corticospinal system.
Collapse
Affiliation(s)
- Eric Schmidlin
- Unit of Physiology and Program in Neurosciences, Department of Medicine, Faculty of Sciences, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Kurata K. Conditional selection of contra- and ipsilateral forelimb movements by the dorsal premotor cortex in monkeys. J Neurophysiol 2009; 103:262-77. [PMID: 19889843 DOI: 10.1152/jn.91241.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been suggested that the dorsal premotor cortex (PMd) may contribute to conditional motor behavior. Thus when a selection is instructed by arbitrary conditional cues, it is possible that the unilateral PMd affects behavior, regardless of which arm, contra- or ipsilateral, is to be used. We examined this possibility by recording neuronal activity and injecting muscimol into the caudal PMd (PMdc) of monkeys while they were performing a reaching task toward visuospatial targets with either the right or left arm, as instructed by low-frequency or high-frequency tone signals. Following the injection of a small amount of muscimol (1 microL; 5 microg/microL) into the unilateral PMdc, monkeys exhibited two major deficits in behavioral performance: 1) erroneous selection of the arm not indicated by the instruction (selection errors) and 2) no movement initiation in response to a visuospatial target cue serving as a trigger signal for reaching within the reaction time limit (movement initiation errors). Errors were observed following unilateral muscimol injection into both right and left PMdc, although selection errors occurred with significantly greater frequency in the arm contralateral to the injection site. By contrast, movement initiation errors were more commonly observed in left-arm trials, regardless of whether the right or left PMdc was inactivated. Notably, errors rarely occurred following a ventral PM muscimol injection. These results suggest that the left and right PMdc cooperate to transform conditional sensory cues into appropriate motor output and can affect both contra- and ipsilateral body movement.
Collapse
Affiliation(s)
- Kiyoshi Kurata
- Department of Physiology, Hirosaki University School of Medicine, Hirosaki, Japan.
| |
Collapse
|
43
|
Wang J, Sainburg RL. Generalization of visuomotor learning between bilateral and unilateral conditions. J Neurophysiol 2009; 102:2790-9. [PMID: 19759325 PMCID: PMC2777833 DOI: 10.1152/jn.00444.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/11/2009] [Indexed: 11/22/2022] Open
Abstract
A long history of behavioral and physiological research has suggested that bilateral coordination invokes unique neural processes that are not involved in unilateral movements. This hypothesis predicts that motor learning should show limited transfer between unilateral and bilateral conditions, which is consistent with a recent finding that indicated partial, but not complete, transfer of learning between the two conditions. However, during learning of new motor skills, transformations must also be made between visual and proprioceptive coordinate systems, a process that may occur upstream to the processes that differentiate bilateral from unilateral movements. We now investigate whether visuomotor adaptations are shared between unilateral and bilateral movement conditions. Our results indicate substantial transfer from bilateral to subsequent unilateral conditions for both arms. Interestingly, whereas the nondominant arm never showed complete adaptation to visual rotation under bilateral conditions, this interference, or lack of improvement, in bilateral performance did not disturb the visuomotor adaptation process or transfer, as reflected by superb unilateral performances immediately following the bilateral conditions. These findings unambiguously indicate that visuomotor adaptation can extensively generalize between bilateral and unilateral conditions, thus suggesting a substantial overlap in the neural processes underlying visuomotor transformations between the two movement conditions. Our findings provide support for a two-stage model of motor planning, in which the visuomotor transformation process precedes the processes that convert the visuomotor plan into effector-specific commands that incorporate bilateral synergies and that result in the forces that determine motion.
Collapse
Affiliation(s)
- Jinsung Wang
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | | |
Collapse
|
44
|
Goble DJ. The potential for utilizing inter-limb coupling in the rehabilitation of upper limb motor disability due to unilateral brain injury. Disabil Rehabil 2009; 28:1103-8. [PMID: 16966230 DOI: 10.1080/09638280500526537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Symmetry tendencies in human movement have generally been regarded as a constraint to upper limb motor performance. However, several recent studies have suggested that this phenomenon might be utilized in the rehabilitation of individuals with motor disability due to unilateral brain injury. In this paper the efficacy of such a rehabilitative approach is explored by reviewing: (i) examples of symmetry tendencies in healthy individuals, (ii) the potential neurophysiological mechanisms responsible for inter-limb coupling, and (iii) recent studies which have directly assessed the effects of inter-limb coupling on individuals with unilateral brain injury. METHOD A thorough review of current published evidence was conducted utilizing various electronic search engines (Medline, PreMedline, Embase and Cinahl). Studies included those that focused on symmetry tendencies and/or inter-limb coupling in the upper limbs with a particular emphasis placed on studies of individuals with unilateral brain injury. RESULTS Based on the current literature it seems that motor function of the affected upper limb in individuals with unilateral brain injury can be improved through a rehabilitation approach that incorporates inter-limb coupling. CONCLUSION This approach should be considered as an adjunct to more common rehabilitation strategies with future research aimed at determining the most effective means of employing this paradigm.
Collapse
Affiliation(s)
- Daniel J Goble
- Motor Control Laboratory, Division of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109-2214, USA.
| |
Collapse
|
45
|
Alberts JL, Wolf SL. The use of kinetics as a marker for manual dexterity after stroke and stroke recovery. Top Stroke Rehabil 2009; 16:223-36. [PMID: 19740729 DOI: 10.1310/tsr1604-223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stroke is the leading cause of severe, long-term disability among older adults in the United States. Unimanual motor performance of the hemiparetic limb is clearly compromised, and these declines are well documented. An often overlooked aspect of motor function for patients with stroke is the effect of unilateral motor dysfunction on bimanual motor activities. Diminished bimanual function resulting from upper extremity hemiparesis necessarily limits the patient's daily functioning. In this review we describe a bimanual dexterity task that replicates many daily activities and outline how kinetic analysis of this task may provide insight into diminished bimanual function of patients with stroke and how these variables may be useful in assessing level of recovery and rate of motor recovery associated with behavioral interventions intended to improve upper extremity function. It is argued that the use of objective kinetic measures to quantify hand function may facilitate the clinical adoption of behavioral interventions for stroke, such as constraint-induced movement therapy and other repetitive task practice-based interventions.
Collapse
Affiliation(s)
- Jay L Alberts
- Department of Biomedical Engineering, Center for Neurological Restoration, Cleveland Clinic, Cleveland FES Center, Ohio, USA
| | | |
Collapse
|
46
|
Perez MA, Cohen LG. Scaling of motor cortical excitability during unimanual force generation. Cortex 2009; 45:1065-71. [PMID: 19243741 DOI: 10.1016/j.cortex.2008.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/04/2008] [Accepted: 12/09/2008] [Indexed: 12/22/2022]
Abstract
During performance of a unimanual force generation task primary motor cortices (M1s) experience clear functional changes. Here, we evaluated the way in which M1s interact during parametric increases in right wrist flexion force in healthy volunteers. We measured the amplitude and the slope of motor evoked potentials (MEP) recruitment curves to transcranial magnetic stimulation (TMS) in the left and right flexor carpi radialis (FCR) muscles at rest and during 10%, 30% and 70% of maximal wrist flexion force. At rest, no differences were observed in the amplitude and slope of MEP recruitment curves in the left and right FCR muscles. With increasing right wrist flexion force, MEP amplitudes increased in both FCR muscles, with larger amplitudes in the right FCR. We found a significant correlation between the left and right MEP amplitudes across conditions. The slope of right and left FCR MEP recruitment curve was significantly steeper at 70% of force compared to rest and 10% of force. A significant correlation between the slope of left and right FCR MEP amplitudes was found at 70% of force only. Our results indicate a differential scaling of excitability in the corticospinal system controlling right and left FCR muscles at increasing levels of unimanual force generation. Specifically, these data highlights that at strong levels of unimanual force the increases in motor cortical excitability with increasing TMS stimulus intensities follow a similar pattern in both M1s, while at low levels of force they do not.
Collapse
Affiliation(s)
- Monica A Perez
- Human Cortical Physiology Section and Stroke Neurorehabilitation Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
47
|
Wolynski B, Schott BH, Kanowski M, Hoffmann MB. Visuo-motor integration in humans: cortical patterns of response lateralisation and functional connectivity. Neuropsychologia 2009; 47:1313-22. [PMID: 19428395 DOI: 10.1016/j.neuropsychologia.2009.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/15/2009] [Accepted: 01/17/2009] [Indexed: 11/19/2022]
Abstract
PURPOSE We assessed response and functional connectivity patterns of different parts of the visual and motor cortices during visuo-motor integration with particular focus on the intraparietal sulcus (IPS). METHODS Brain activity was measured during a visuo-motor task in 14 subjects using event-related fMRI. During central fixation, a blue or red target embedded in an array of grey distractors was presented for 250 ms in either the left or right visual hemifield. After a delay, the subjects were prompted to press the upper or lower response button for targets in the upper and lower hemifield with the left or right thumb for blue and red targets, respectively. The fMRI responses were evaluated for different regions of interests (ROIs), and the functional connectivity of the IPS subregions with these ROIs was quantified. RESULTS In an anterior IPS region and a region in the anterior premotor cortex, presumably the frontal eye fields (FEF), visually driven responses were dominant contralateral to both visual stimulus and effector. Thus, the anterior IPS combines, in contrast to the posterior IPS and the occipital cortex, response properties of cortex activated by visual input and by motor output. Further, functional connectivity with the motor areas was stronger for the anterior than for the posterior IPS regions. DISCUSSION Anterior IPS and FEF appear to be of major relevance for relating visual and effector information during visuo-motor integration. Patient studies with the devised paradigm are expected to uncover the impact of pathophysiologies and plasticity on the observed cortical lateralisation patterns.
Collapse
Affiliation(s)
- Barbara Wolynski
- Visual Processing Laboratory, Department of Ophthalmology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | |
Collapse
|
48
|
Walsh RR, Small SL, Chen EE, Solodkin A. Network activation during bimanual movements in humans. Neuroimage 2008; 43:540-53. [PMID: 18718872 DOI: 10.1016/j.neuroimage.2008.07.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/07/2008] [Accepted: 07/10/2008] [Indexed: 11/16/2022] Open
Abstract
The coordination of movement between the upper limbs is a function highly distributed across the animal kingdom. How the central nervous system generates such bilateral, synchronous movements, and how this differs from the generation of unilateral movements, remain uncertain. Electrophysiologic and functional imaging studies support that the activity of many brain regions during bimanual and unimanual movement is quite similar. Thus, the same brain regions (and indeed the same neurons) respond similarly during unimanual and bimanual movements as measured by electrophysiological responses. How then are different motor behaviors generated? To address this question, we studied unimanual and bimanual movements using fMRI and constructed networks of activation using Structural Equation Modeling (SEM). Our results suggest that (1) the dominant hemisphere appears to initiate activity responsible for bimanual movement; (2) activation during bimanual movement does not reflect the sum of right and left unimanual activation; (3) production of unimanual movement involves a network that is distinct from, and not a mirror of, the network for contralateral unimanual movement; and (4) using SEM, it is possible to obtain robust group networks representative of a population and to identify individual networks which can be used to detect subtle differences both between subjects as well as within a single subject over time. In summary, these results highlight a differential role for the dominant and non-dominant hemispheres during bimanual movements, further elaborating the concept of handedness and dominance. This knowledge increases our understanding of cortical motor physiology in health and after neurological damage.
Collapse
Affiliation(s)
- R R Walsh
- Brain Research Imaging Center, Department of Neurology, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
49
|
Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 2008; 41:1382-94. [PMID: 18486490 DOI: 10.1016/j.neuroimage.2008.03.048] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 03/19/2008] [Accepted: 03/23/2008] [Indexed: 11/21/2022] Open
Abstract
Any motor action results from a dynamic interplay of various brain regions involved in different aspects of movement preparation and execution. Establishing a reliable model of how these areas interact is crucial for a better understanding of the mechanisms underlying motor function in both healthy subjects and patients. We used fMRI and dynamic causal modeling to reveal the specific excitatory and inhibitory influences within the human motor system for the generation of voluntary hand movements. We found an intrinsic balance of excitatory and inhibitory couplings among core motor regions within and across hemispheres. Neural coupling within this network was specifically modulated upon uni- and bimanual movements. During unimanual movements, connectivity towards the contralateral primary motor cortex was enhanced while neural coupling towards ipsilateral motor areas was reduced by both transcallosal inhibition and top-down modulation. Bimanual hand movements were associated with a symmetric facilitation of neural activity mediated by both increased intrahemispheric connectivity and enhanced transcallosal coupling of SMA and M1. The data suggest that especially the supplementary motor area represents a key structure promoting or suppressing activity in the cortical motor network driving uni- and bilateral hand movements. Our data demonstrate that fMRI in combination with DCM allows insights into intrinsic properties of the human motor system and task-dependent modulations thereof.
Collapse
|
50
|
|