1
|
Shimamoto A, Rappeneau V, Munjal H, Farris T, Davis C, Wilson A, Edwards M, Moore C, Reynolds C, Meshul CK. Glutamate-Glutamine Transfer and Chronic Stress-Induced Sex Differences in Cocaine Responses. Neuroscience 2018; 391:104-119. [DOI: 10.1016/j.neuroscience.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/16/2023]
|
2
|
Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, Nabeshima T, Kim HC. Role of Mitochondria in Methamphetamine-Induced Dopaminergic Neurotoxicity: Involvement in Oxidative Stress, Neuroinflammation, and Pro-apoptosis-A Review. Neurochem Res 2017; 43:66-78. [PMID: 28589520 DOI: 10.1007/s11064-017-2318-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Methamphetamine (MA), an amphetamine-type psychostimulant, is associated with dopaminergic toxicity and has a high abuse potential. Numerous in vivo and in vitro studies have suggested that impaired mitochondria are critical in dopaminergic toxicity induced by MA. Mitochondria are important energy-producing organelles with dynamic nature. Evidence indicated that exposure to MA can disturb mitochondrial energetic metabolism by inhibiting the Krebs cycle and electron transport chain. Alterations in mitochondrial dynamic processes, including mitochondrial biogenesis, mitophagy, and fusion/fission, have recently been shown to contribute to dopaminergic toxicity induced by MA. Furthermore, it was demonstrated that MA-induced mitochondrial impairment enhances susceptibility to oxidative stress, pro-apoptosis, and neuroinflammation in a positive feedback loop. Protein kinase Cδ has emerged as a potential mediator between mitochondrial impairment and oxidative stress, pro-apoptosis, or neuroinflammation in MA neurotoxicity. Understanding the role and underlying mechanism of mitochondrial impairment could provide a molecular target to prevent or alleviate dopaminergic toxicity induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Phuong-Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Chronic Methamphetamine Effects on Brain Structure and Function in Rats. PLoS One 2016; 11:e0155457. [PMID: 27275601 PMCID: PMC4898739 DOI: 10.1371/journal.pone.0155457] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/28/2016] [Indexed: 01/02/2023] Open
Abstract
Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA-induced neurotoxicity.
Collapse
|
4
|
Ramkissoon A, Wells PG. Methamphetamine oxidative stress, neurotoxicity, and functional deficits are modulated by nuclear factor-E2-related factor 2. Free Radic Biol Med 2015; 89:358-68. [PMID: 26427884 DOI: 10.1016/j.freeradbiomed.2015.07.157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/30/2022]
Abstract
Activation of redox-sensitive transcription factors like nuclear factor-E2-related factor 2 (Nrf2) can enhance the transcription of cytoprotective genes during oxidative stress. We investigated whether Nrf2 is activated by methamphetamine (METH) thereby altering neurotoxicity in Nrf2 +/+ and -/- adult mouse brain. A single dose of METH can induce the mRNA levels of Nrf2-regulated antioxidant and cytoprotective proteins in mouse brain. Multiple-day dosing with METH enhanced DNA oxidation and decreased tyrosine hydroxylase and dopamine transporter staining in the striatum, indicating dopaminergic nerve terminal toxicity, which was more severe in -/- mice, as were deficits in motor coordination and olfactory discrimination. These Nrf2-dependent effects were independent of changes in METH metabolism or the induction of hyperthermia. Similarly, METH increased striatal glial fibrillary acidic protein, indicating neurotoxicity. METH neurotoxicity was also observed in the glial cells and in the GABAergic system of the olfactory bulbs and was enhanced in -/- mice, whereas dopaminergic parameters were unaffected. With one-day dosing of METH, there were no differences between +/+ and -/- mice in either basal or METH-enhanced DNA oxidation and neurotoxicity markers. Nrf2-mediated pathways accordingly may protect against the neurodegenerative effects and functional deficits initiated by METH and perhaps other reactive oxygen species-enhancing neurotoxicants, when there is time for transcriptional activation and protein induction. In human users of METH, this mechanism may be essential when differences in drug abuse patterns may alter the induction and duration of Nrf2 activation thereby modulating susceptibility to the neurotoxic effects of METH.
Collapse
Affiliation(s)
- Annmarie Ramkissoon
- Division of Biomolecular Sciences, Faculty of Pharmacy University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Peter G Wells
- Division of Biomolecular Sciences, Faculty of Pharmacy University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
5
|
Hong SJ, Zhang D, Zhang LH, Yang P, Wan J, Yu Y, Wang TH, Feng ZT, Li LH, Yew DTW. Expression of dopamine transporter in the different cerebral regions of methamphetamine-dependent rats. Hum Exp Toxicol 2015; 34:707-717. [PMID: 25504685 DOI: 10.1177/0960327114555929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Objectives: To observe the expression of the dopamine transporter (DAT) in six cerebral regions of a methamphetamine (MA)-dependent rat, which were frontal cortex, nucleus accumbens septi, striatum, hippocampus, substantia nigra and ventral tegmental area. Methods: The rats were administrated intraperitoneally with 10 mg/kg/day of MA for 10 days consecutively; the behaviour changes were measured via the conditioned place preference (CPP), and the scores of stereotyped behaviour (SB) were used to confirm animal addiction. Then, the animals were further injected with MA respectively for 1, 2, 4 and 8 weeks to establish different periods of MA-dependent models. The expressions of DAT and DAT messenger RNA in six cerebral regions were detected. Results: The results of CPP and SB scores were significant different when comparing all four experimental groups with the control group ( p < 0.05). Comparing between different experimental groups, the expression of DAT mainly decreased and had dynamic changes in the same regions ( p < 0.05). Comparing the different regions with each other in the same experimental group, the expression of DAT also had significant difference in several regions p < 0.05). Conclusions: The expression of DAT mainly decreased and had different in the six cerebral regions at the same MA-dependent time period as well as at different time periods in the same cerebral region. It was speculated that DAT might play a crucial role in the mechanism of MA dependence.
Collapse
Affiliation(s)
- S-J Hong
- The School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
- The Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - D Zhang
- The Institute of Criminal Science and Technology, Public Security Bureau of Lincang City, Yunnan Province, People’s Republic of China
| | - L-H Zhang
- The School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - P Yang
- The Institute of Criminal Science and Technology, Public Security Bureau of Lincang City, Yunnan Province, People’s Republic of China
| | - J Wan
- The School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - Y Yu
- The School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - T-H Wang
- The Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - Z-T Feng
- The Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - L-H Li
- The School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - DTW Yew
- Brain Research Centre, Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People’s Republic of China
| |
Collapse
|
6
|
Meck WH, Cheng RK, MacDonald CJ, Gainetdinov RR, Caron MG, Çevik MÖ. Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology 2012; 62:1221-9. [DOI: 10.1016/j.neuropharm.2011.01.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
7
|
Slamberová R, Hrubá L, Matějovská I, Bernášková K, Rokyta R. Increased seizure susceptibility induced by prenatal methamphetamine exposure in adult female rats is not affected by early postnatal cross-fostering. Epilepsy Behav 2011; 20:6-11. [PMID: 21067979 DOI: 10.1016/j.yebeh.2010.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
Our previous studies repeatedly demonstrated that prenatal methamphetamine (MA) exposure alters seizure susceptibility in adult rats. Both the inhibitory GABA system and the excitatory NMDA system play a role in the effect of MA on epileptic seizures. On the basis of our previous behavioral results, the effect of cross-fostering on seizure susceptibility in adult female rats was examined in the present study. Bicuculline (GABA(A) receptor antagonist) and NMDA (NMDA receptor agonist) were used to induce seizures in adult female offspring exposed to MA in the prenatal and/or preweaning periods. Female dams were injected with MA (5mg/kg daily) or physiological saline (S) for approximately 9 weeks [about 3 weeks prior to impregnation, for the entire gestation period (22 days), and in the preweaning period (21 days)]. Absolute controls (C) did not receive any injections. On postnatal day 1, pups were cross-fostered so that each mother received pups from all three treatments. Thus, nine groups (based on the prenatal and postnatal drug exposures) of adult female rats were tested in each seizure test: C/C, C/S, C/MA, S/C, S/S, S/MA, MA/C, MA/S, MA/MA. The present study demonstrated that both the excitatory NMDA system and the inhibitory GABA system are involved in the proconvulsive effect of MA during prenatal and partially also postnatal development in female rats. However, because our results did not show any improvement in seizure susceptibility in prenatally MA-exposed animals that were fostered by control mothers (MA/C) relative to their siblings fostered by MA-treated mothers (MA/MA), our hypothesis of the cross-fostering effect seems to be incorrect in contrast to our behavioral studies.
Collapse
Affiliation(s)
- R Slamberová
- Department of Normal, Pathological, and Clinical Physiology, Prague, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
8
|
Slamberová R, Hrubá L, Bernásková K, Matejovská I, Rokyta R. Effect of cross-fostering on seizures in adult male offspring of methamphetamine-treated rat mothers. Int J Dev Neurosci 2010; 28:429-35. [PMID: 20599607 DOI: 10.1016/j.ijdevneu.2010.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 05/14/2010] [Accepted: 06/21/2010] [Indexed: 11/19/2022] Open
Abstract
Stimulant drugs are often associated with increased seizure susceptibility. Inhibitory gamma-aminobutyric acid (GABA) and excitatory N-methyl-D-aspartate (NMDA) systems play a role in the effect of stimulants in the genesis of epileptic seizures. Our previous studies showed that prenatal methamphetamine (MA) exposure induced long-term changes in seizure susceptibility. The aim of the present study was to investigate the effect of cross-fostering on the prenatal and postnatal MA-exposed rats, respectively, on their seizures in adulthood. Bicuculline (GABA(A) receptor antagonist), NMDA (NMDA receptor agonist) and flurothyl (a convulsant gas) were used to induce seizures in adult male offsprings. Female dams were injected with MA (5 mg/kg daily) or physiological saline (S) for approx. 9 week [about 3 week prior to impregnation, for the entire gestation period (22 days) and in preweaning period (21 days)]. Absolute controls (C) did not receive any injections. On postnatal day 1, pups were cross-fostered so that each mother received pups from all three treatments. Thus, nine groups (based on the prenatal and postnatal drug exposure) of adult male rats were tested in each seizure test: C/C; C/S; C/MA; S/C; S/S; S/MA; MA/C; MA/S; MA/MA. The present study demonstrates that the effect of prenatal and/or postnatal MA exposure is seizure model specific. In addition, our data show that there is an effect of cross-fostering on seizures; particularly, the effect of prenatal MA exposure shown in animals fostered by control mothers is no longer apparent in animals fostered postnatally by MA-treated mothers. Such effect of postnatal treatment is not manifested in prenatal controls. In summary, it seems that: (1) prenatal MA exposure alters seizure susceptibility more than postnatal MA exposure; (2) especially in seizures induced by chemicals that affect GABAergic system (bicuculline, flurothyl) notable effect of adoption (cross-fostering) is apparent; (3) in seizure models that are associated with NMDA system (NMDA, flurothyl), effect of prenatal stress seems to play a role.
Collapse
Affiliation(s)
- R Slamberová
- Charles University in Prague, Third Faculty of Medicine, Departments of Normal, Pathological and Clinical Physiology, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
9
|
Yoo JH, Lee HK, Kim HC, Lee SY, Jang CG. GABAAreceptors mediate the attenuating effects of a 5-HT3receptor antagonist on methamphetamine-induced behavioral sensitization in mice. Synapse 2010; 64:274-9. [DOI: 10.1002/syn.20726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Methamphetamine use parameters do not predict neuropsychological impairment in currently abstinent dependent adults. Drug Alcohol Depend 2010; 106:154-63. [PMID: 19815352 PMCID: PMC2814900 DOI: 10.1016/j.drugalcdep.2009.08.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 08/15/2009] [Accepted: 08/17/2009] [Indexed: 11/23/2022]
Abstract
Methamphetamine (meth) abuse is increasingly of public health concern and has been associated with neurocognitive dysfunction. Some previous studies have been hampered by background differences between meth users and comparison subjects, as well as unknown HIV and hepatitis C (HCV) status, which can also affect brain functioning. We compared the neurocognitive functioning of 54 meth dependent (METH+) study participants who had been abstinent for an average of 129 days, to that of 46 demographically comparable control subjects (METH-) with similar level of education and reading ability. All participants were free of HIV and HCV infection. The METH+ group exhibited higher rates of neuropsychological impairment in most areas tested. Among meth users, neuropsychologically normal (n=32) and impaired (n=22) subjects did not differ with respect to self-reported age at first use, total years of use, route of consumption, or length of abstinence. Those with motor impairment had significantly greater meth use in the past year, but impairment in cognitive domains was unrelated to meth exposure. The apparent lack of correspondence between substance use parameters and cognitive impairment suggests the need for further study of individual differences in vulnerability to the neurotoxic effects of methamphetamine.
Collapse
|
11
|
Methamphetamine induces long-term alterations in reactivity to environmental stimuli: correlation with dopaminergic and serotonergic toxicity. Neurotox Res 2009; 15:232-45. [PMID: 19384596 DOI: 10.1007/s12640-009-9024-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 10/20/2022]
Abstract
Methamphetamine (METH) abuse is known to induce persistent cognitive and behavioral abnormalities, in association with alterations in serotonin (5-HT) and dopamine (DA) systems, yet the neurobiological mechanisms underpinning this link are elusive. Thus, in the present study we analyzed the long-term impact of an acute toxic regimen of METH (4 mg/kg, subcutaneous x 4 injections, 2 h apart) on the reactivity of adult male rats to environmental stimuli, and correlated it to toxicity on 5-HT and DA innervations. Two separate groups of METH-injected rats were compared to their saline-treated controls on object exploration and startle paradigms, at either 1 or 3 weeks after METH administration, respectively. Twenty-four hours after behavioral testing, animals were sacrificed, and the neurotoxic effects of the METH schedule on DA and 5-HT terminals were measured through immunochemical quantification of their transporters (DAT and 5-HTT). At both 1 and 3 weeks after treatment, METH-injected rats exhibited a significant decline in the number of exploratory approaches to unfamiliar objects, which was significantly correlated with a parallel reduction in DAT immunoreactivity (IR) in the nucleus accumbens (NAc) core. Furthermore, METH-treated rats displayed a significant enhancement in startle magnitude after 3 (but not 1) weeks, which was inversely correlated with a decrement in 5-HTT IR in the Cg3 infralimbic area of prefrontal cortex. Our results suggest that METH induces long-term changes in object exploration and startle responsiveness, which may be respectively underpinned by reductions in DAergic and 5-HTergic brain terminals.
Collapse
|
12
|
TATA DESPINAA, YAMAMOTO BRYANK. Chronic stress enhances methamphetamine-induced extracellular glutamate and excitotoxicity in the rat striatum. Synapse 2008; 62:325-36. [PMID: 18288648 PMCID: PMC4351443 DOI: 10.1002/syn.20497] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striking parallels exist between the neurochemical and toxic effects of stress and methamphetamine. Despite these similarities, no studies have examined how stress may promote the toxic effects of methamphetamine (METH). The current study tested the hypothesis that chronic stress enhances METH toxicity by augmenting glutamate (GLU) release and excitotoxicity in response to METH administration. Adult male Sprague-Dawley rats were exposed to 10 days of unpredictable stress and then received either saline or METH (7.5 mg/kg, i.p., once every 2 h x four injections). Prior exposure to unpredictable stress acutely enhanced the striatal extracellular GLU concentrations in response to METH, and eventually caused proteolysis of the cytoskeleton protein spectrin. Administration of the corticosterone synthesis inhibitor, metyrapone (25 mg/kg, i.p., prior to each stressor), during unpredictable stress attenuated the enhanced striatal GLU release in response to METH, blocked spectrin proteolysis, and attenuated METH-associated toxicity measured by long-term depletions in the dopamine and serotonin tissue content as well as depletions in dopamine and serotonin transporter immunoreactivity of the striatum. In summary, prior exposure to unpredictable stress enhances METH-induced elevations of GLU in the striatum, resulting in long-term excitotoxic damage and an augmentation of damage to dopamine and serotonin terminals. These studies provide a neurochemical basis for how stress contributes to the deleterious effects of METH abuse.
Collapse
Affiliation(s)
- DESPINA A. TATA
- Laboratory of Neurochemistry, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - BRYAN K. YAMAMOTO
- Laboratory of Neurochemistry, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
13
|
Does prenatal methamphetamine exposure affect seizure susceptibility in adult rats with acute administration of the same drug? Epilepsy Res 2008; 78:33-9. [DOI: 10.1016/j.eplepsyres.2007.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 11/22/2022]
|
14
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
15
|
Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, Grant I. Neurocognitive Effects of Methamphetamine: A Critical Review and Meta-analysis. Neuropsychol Rev 2007; 17:275-97. [PMID: 17694436 DOI: 10.1007/s11065-007-9031-0] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review provides a critical analysis of the central nervous system effects of acute and chronic methamphetamine (MA) use, which is linked to numerous adverse psychosocial, neuropsychiatric, and medical problems. A meta-analysis of the neuropsychological effects of MA abuse/dependence revealed broadly medium effect sizes, showing deficits in episodic memory, executive functions, information processing speed, motor skills, language, and visuoconstructional abilities. The neuropsychological deficits associated with MA abuse/dependence are interpreted with regard to their possible neural mechanisms, most notably MA-associated frontostriatal neurotoxicity. In addition, potential explanatory factors are considered, including demographics (e.g., gender), MA use characteristics (e.g., duration of abstinence), and the influence of common psychiatric (e.g., other substance-related disorders) and neuromedical (e.g., HIV infection) comorbidities. Finally, these findings are discussed with respect to their potential contribution to the clinical management of persons with MA abuse/dependence.
Collapse
Affiliation(s)
- J Cobb Scott
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, CA 92120, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Caligiuri MP, Buitenhuys C. Do preclinical findings of methamphetamine-induced motor abnormalities translate to an observable clinical phenotype? Neuropsychopharmacology 2005; 30:2125-34. [PMID: 16123755 DOI: 10.1038/sj.npp.1300859] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review summarizes the preclinical literature of the effects of methamphetamine (MA) on subcortical dopaminergic and GABAergic mechanisms underlying motor behavior with the goal of elucidating the clinical presentation of human MA-induced movement disorders. Acute and chronic MA exposure in laboratory animal can lead to a variety of motor dysfunctions including increased locomotor activity, stereotypies, diminished or enhanced response times, and parkinsonian-like features. With the exception of psychomotor impairment and hyperkinesia, MA-induced movement disorders are not well documented in humans. This review attempts to draw parallels between the animal and human changes in basal ganglia neurochemistry associated with MA exposure and offers explanations for why a parkinsonian phenotype is not apparent among individuals who use and abuse MA. Significant differences in the expression of neurotoxicity and presence of multiple environmental and pharmacologic confounds may account for the lack of a parkinsonian phenotype in humans despite evidence of altered dopamine function.
Collapse
Affiliation(s)
- Michael P Caligiuri
- UCSD School of Medicine, Department of Psychiatry and Psychiatry Service, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
17
|
Slamberová R, Rokyta R. Occurrence of bicuculline-, NMDA- and kainic acid-induced seizures in prenatally methamphetamine-exposed adult male rats. Naunyn Schmiedebergs Arch Pharmacol 2005; 372:236-41. [PMID: 16247608 DOI: 10.1007/s00210-005-0016-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 09/19/2005] [Indexed: 11/25/2022]
Abstract
Stimulant drugs are often associated with increased seizure susceptibility. Inhibitory gamma-aminobutyric acid (GABA) and excitatory N-methyl-D-aspartate (NMDA) systems play an important role in the effect of stimulants on epileptic seizures. No studies investigating the effect of prenatal methamphetamine (MA) exposure on seizures are available. In this study, bicuculline (GABAA receptor antagonist), NMDA (NMDA receptor agonist) and kainic acid (non-NMDA receptor agonist) were used to induce seizures in adult male rats. Three groups of animals were tested in each seizure test: prenatally MA- (5 mg/kg) exposed, prenatally saline-exposed, and absolute controls without any prenatal exposure. In bicuculline-induced seizures, the latency to onset of tonic-clonic seizures was shorter in MA-exposed rats than in controls, but it did not differ from saline-exposed rats. There were no differences in clonic seizure onset between groups. In NMDA-induced seizures, the latency to onset of clonic-tonic seizures was shorter in prenatally MA-exposed rats than in controls; however, the latency to onset of saline-exposed animals did not differ from either MA-exposed or from control rats. There were no differences in seizure susceptibility in kainic acid-induced clonic seizures. There were no differences in seizure incidences or stereotypical behavior in any seizure model. The question remains as to how much the present data demonstrate the effect of prenatal drug exposure on seizure susceptibility per se, and how much they may be explained by the effect of prenatal stress or by other mechanism(s).
Collapse
Affiliation(s)
- Romana Slamberová
- Department of Normal, Pathological and Clinical Physiology, 3rd Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00, Praha 2, Czech Republic.
| | | |
Collapse
|
18
|
Slamberová R, Rokyta R. Seizure susceptibility in prenatally methamphetamine-exposed adult female rats. Brain Res 2005; 1060:193-7. [PMID: 16202984 DOI: 10.1016/j.brainres.2005.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/18/2005] [Accepted: 08/19/2005] [Indexed: 02/02/2023]
Abstract
The purpose of the present study was to examine the effect of prenatal methamphetamine (MA) exposure on seizures induced by bicuculline and N-methyl-d-aspartate in adult female rats. The present results show that prenatal MA exposure alters seizures in a model-specific manner and that the seizure susceptibility of adult female rats may be affected by the stage of their estrous cycle.
Collapse
Affiliation(s)
- R Slamberová
- Department of Normal, Pathological and Clinical Physiology, 3rd Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Praha 2, Czech Republic
| | | |
Collapse
|
19
|
Rodrigues LG, Tavares MA, Wood JPM, Schmidt KG, Osborne NN. Methamphetamine exacerbates the toxic effect of kainic acid in the adult rat retina. Neurochem Int 2004; 45:1133-41. [PMID: 15380623 DOI: 10.1016/j.neuint.2004.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/23/2004] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
The recreational use of the psychoactive drug, methamphetamine has increased markedly over the last three decades. It has long been known that this drug has detrimental effects upon the mammalian brain monoaminergic system, but the long- or short-term effects on the retina, a neurological extension of the central nervous system, have received little attention. The aim of this study was, therefore, to determine whether intraocular injection of methamphetamine (MA) is toxic to the healthy adult rat retina and to analyse its effects on the compromised retina after an injection of the ionotropic glutamate receptor agonist, kainate, which is known to cause retinal neuropathology. The equivalent of 1 mM (in the vitreous humour) MA and/or kainate (40 microM) were injected intravitreally. Flash electroretinograms (ERGs) were recorded before and 2 and 4 days after treatment. Five days after treatment, animals were killed and the retinas analysed either for the immunohistochemical localisation of various antigens or for electrophoresis/Western blotting. Some animals were kept for 19 days after treatment and the retinas analysed for tyrosine hydroxylase immunoreactivity. No differences could be found between vehicle- and MA-treated retinas with respect to the nature or localisation of either tyrosine hydroxylase immunoreactivity after 5 or 19 days or other antigens after 5 days. Moreover, the normal ERG and GFAP and calretinin protein antigens were unaffected by MA. Kainate treatment, however, caused a change in the ERGs after 2 and 4 days, an alteration in every antigen localised by immunohistochemistry and an increase in the retinal levels of calretinin and GFAP proteins. Significantly, the changes seen in the b-wave amplitude and implicit time of the ERG after 4 days and the increased level of GFAP protein after 5 days following kainate treatment were enhanced when MA was co-injected. Intravitreal injection of methamphetamine had no detectable detrimental effect on the normal adult rat retina but exacerbated the damaging effects of kainic acid. Such data suggest that a neurotoxic effect of MA may be more obviously illustrated when the tissue is already compromised as occurs in, for example, ischemia.
Collapse
Affiliation(s)
- L G Rodrigues
- Nuffield Laboratory of Ophthalmology, Oxford University, Walton Street, Oxford OX2 6AW, UK.
| | | | | | | | | |
Collapse
|
20
|
Kozell LB, Meshul CK. Nerve terminal glutamate immunoreactivity in the rat nucleus accumbens and ventral tegmental area after a short withdrawal from cocaine. Synapse 2004; 51:224-32. [PMID: 14696010 DOI: 10.1002/syn.10304] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cocaine administration has been shown to alter glutamate transmission in numerous studies. Using quantitative electron microscopic immunogold labeling, our laboratory has previously reported that nerve terminal glutamate immunoreactivity is transiently altered following cocaine administration. The present study was undertaken to examine presynaptic nerve terminal glutamate immunoreactivity at shorter time points after withdrawal from cocaine. Animals received saline or cocaine for 7 days followed 3 days later by a cocaine or saline challenge. Most (>75%) cocaine-challenged animals had a heightened locomotor response to cocaine compared to the first day of cocaine and were considered behaviorally sensitized. One day after the challenge, glutamate immunogold-labeling was quantified in nerve terminals making asymmetrical synaptic contacts within the core and shell of the nucleus accumbens and ventral tegmental area. A single dose of cocaine did not alter the density of presynaptic nerve terminal glutamate immunoreactivity in the nucleus accumbens (NAc) or ventral tegmental area (VTA). The density of nerve terminal glutamate immunoreactivity in the shell, but not the core, was significantly increased in the animals receiving repeated cocaine. In the VTA the density of nerve terminal glutamate immunoreactivity did not change in the cocaine-sensitized group, but was significantly increased in the nonsensitized group. The finding that repeated cocaine treatment increased glutamate nerve terminal immunolabeling within the nucleus accumbens shell, but not the core, supports the hypothesis that glutamate synapses in the core and shell are differentially sensitive to repeated cocaine administration. Overall, our study does not support a role for changes in presynaptic glutamate in the development of behavioral sensitization.
Collapse
Affiliation(s)
- L B Kozell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
21
|
Raevskii VV, Dawe GS, Stevenson JD. Endogenous dopamine modulates corticopallidal influences via GABA. ACTA ACUST UNITED AC 2003; 33:839-44. [PMID: 14636002 DOI: 10.1023/a:1025113818854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acute experiments on Sprague-Dawley rats were performed to study the effects of local application of D1 and D2 receptor antagonists (SCH 23390 and raclopride) on the responses of neurons in the globus pallidus induced by stimulation of the somatosensory cortex. SCH 23390 induced short-latency inhibition in response to stimulation of the cortex and blocked long-latency inhibition. Application of raclopride suppressed short-latency inhibition and induced a long-latency inhibitory response to stimulation of the cortex. It is suggested that these changes are based on modulation of GABA release from striopallidal terminals by endogenous dopamine.
Collapse
Affiliation(s)
- V V Raevskii
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerov Street, 117865 Moscow, Russia
| | | | | |
Collapse
|
22
|
Jakab RL, Bowyer JF. Parvalbumin neuron circuits and microglia in three dopamine-poor cortical regions remain sensitive to amphetamine exposure in the absence of hyperthermia, seizure and stroke. Brain Res 2002; 958:52-69. [PMID: 12468030 DOI: 10.1016/s0006-8993(02)03439-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dopamine-releasing and depleting substance amphetamine (AMPH) can make cortical neurons susceptible to damage, and the prevention of hyperthermia, seizures and stroke is thought to block these effects. Here we report a 2-day AMPH treatment paradigm which affected only interneurons in three cortical regions with average or below-average dopamine input. AMPH (six escalating doses/day ranging from 5 to 30 mg/kg for 2 days) was given at 17-18 degrees C ambient temperature (T) to adult male rats. During the 2-day AMPH treatment, peak body T stayed below 38.9 degrees C in 40% of the AMPH treated rats. In 60% of the rats, deliberate cooling suppressed (<39.5 degrees C) or minimized (<40.0 degrees C) hyperthermia. Escalation of stereotypes to seizure-like behaviors was rare and post-mortem morphological signs of stroke were absent. Neurons labeled with the anionic, neurodegeneration-marker dye Fluoro-Jade (F-J) were seen 1 day after dosing, peaked 3 days later, but were barely detectable 14 days after dosing. Only nonpyramidal neurons in layer IV of the somatosensory barrel cortex and in layer II of the piriform cortex and posterolateral cortical amygdaloid nucleus were labeled with Fluoro-Jade. Isolectin B-labeled activated microglia were only detected in their neighborhood. F-J labeled neurons were extremely rare in cortical regions rich in dopamine (e.g. cingulate cortex), and were absent in cortical regions with no dopamine (e.g. visual cortex). Parvalbumin was seen in some Fluoro-Jade-labeled neurons and parvalbumin immunostaining in local axon plexuses intensified. This AMPH paradigm affected fewer cortical regions, and caused smaller reduction in striatal tyrosine hydroxylase (TH) immunoreactivity than previous 1-day AMPH regimens generating seizures or severe (above 40 degrees C) hyperthermia. Correlation between peak or mean body T and the extent of neurodegeneration or microgliosis was below statistical significance. Astrogliosis (elevated levels of the astroglia-marker, glial fibrillary acidic protein (GFAP)) was detected in many brain regions. In the striatum and midbrain, F-J labeled neurons and activated microglia were absent, but astrogliosis, decreased TH immunolabel, and swollen TH fibers were detected. In sum, after this AMPH treatment, cortical pyramidal neurons were spared, but astrogliosis was brain-wide and some interneurons and microglia in three cortical regions with average or below-average dopamine input remained sensitive to AMPH exposure.
Collapse
Affiliation(s)
- Robert L Jakab
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, HFT-132, 3900 NCTR Road, Jefferson, AR 72079-9502, USA
| | | |
Collapse
|
23
|
Bustamante D, You ZB, Castel MN, Johansson S, Goiny M, Terenius L, Hökfelt T, Herrera-Marschitz M. Effect of single and repeated methamphetamine treatment on neurotransmitter release in substantia nigra and neostriatum of the rat. J Neurochem 2002; 83:645-54. [PMID: 12390526 DOI: 10.1046/j.1471-4159.2002.01171.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The main purpose of this study was to characterize the initial neurotransmission cascade elicited by methamphetamine, analysing simultaneously with in vivo microdialysis monoamine, amino acid and neuropeptide release in substantia nigra and neostriatum of the rat. The main effect of a single systemic dose of methamphetamine (15 mg/kg, subcutaneously) was an increase in dopamine levels, both in substantia nigra ( approximately 10-fold) and neostriatum ( approximately 40-fold), accompanied by a significant, but lesser, increase in dynorphin B ( approximately two-fold, in both regions), and a decrease in monoamine metabolites. A similar effect was also observed after local administration of methamphetamine (100 microm) via the microdialysis probes, but restricted to the treated region. In other experiments, rats were repeatedly treated with methamphetamine or saline, with the last dose administered 12 h before microdialysis. Dopamine K+-stimulated release was decreased following repeated methamphetamine administration compared with that following saline, both in the substantia nigra (by approximately 65%) and neostriatum (by approximately 20%). In contrast, the effect of K+-depolarization on glutamate, aspartate and GABA levels was increased following repeated administration of methamphetamine. In conclusion, apart from an impairment of monoamine neurotransmission, repeated methamphetamine produces changes in amino acid homeostasis, probably leading to NMDA-receptor overstimulation.
Collapse
Affiliation(s)
- Diego Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Santiago 7, Casilla 70.000, Chile
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Davidson C, Gow AJ, Lee TH, Ellinwood EH. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:1-22. [PMID: 11516769 DOI: 10.1016/s0165-0173(01)00054-6] [Citation(s) in RCA: 403] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Research into methamphetamine-induced neurotoxicity has experienced a resurgence in recent years. This is due to (1) greater understanding of the mechanisms underlying methamphetamine neurotoxicity, (2) its usefulness as a model for Parkinson's disease and (3) an increased abuse of the substance, especially in the American Mid-West and Japan. It is suggested that the commonly used experimental one-day methamphetamine dosing regimen better models the acute overdose pathologies seen in humans, whereas chronic models are needed to accurately model human long-term abuse. Further, we suggest that these two dosing regimens will result in quite different neurochemical, neuropathological and behavioral outcomes. The relative importance of the dopamine transporter and vesicular monoamine transporter knockout is discussed and insights into oxidative mechanisms are described from observations of nNOS knockout and SOD overexpression. This review not only describes the neuropathologies associated with methamphetamine in rodents, non-human primates and human abusers, but also focuses on the more recent literature associated with reactive oxygen and nitrogen species and their contribution to neuronal death via necrosis and/or apoptosis. The effect of methamphetamine on the mitochondrial membrane potential and electron transport chain and subsequent apoptotic cascades are also emphasized. Finally, we describe potential treatments for methamphetamine abusers with reference to the time after withdrawal. We suggest that potential treatments can be divided into three categories; (1) the prevention of neurotoxicity if recidivism occurs, (2) amelioration of apoptotic cascades that may occur even in the withdrawal period and (3) treatment of the atypical depression associated with withdrawal.
Collapse
Affiliation(s)
- C Davidson
- Department of Psychiatry, Box 3870, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|