1
|
Hernandez M, Ghislin S, Lalonde R, Strazielle C. Corticosterone effects on postnatal cerebellar development in mice. Neurochem Int 2023; 171:105611. [PMID: 37704081 DOI: 10.1016/j.neuint.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Glucocorticoids administered early in infancy can affect the architectonic organization of brain structures, particularly those with a postnatal development and resulting in long-term deficits of neuromotor function and cognition. The present study was undertaken to study the effects of daily corticosterone (CORT) injections at a pharmacological dose from postnatal days 8-15 on cerebellar and hippocampal development in mouse pups. Gene expression status for trophic factors involved in synaptic development and function as well as measures of layer thickness associated with cytochrome oxidase labelling were analyzed in the hippocampus, hypothalamus, and specific cerebellar lobules involved in motor control. Repeated CORT injections dysregulated the HPA axis with increased Crh and Nr3c1 mRNA levels in the hypothalamus and a resulting higher serum corticosterone level. The CORT treatment altered the morphology of the hippocampus and down-regulated gene transcription for corticotropin-releasing hormone (Crh) and its type-1 receptor (Crhr1), glucocorticoid receptor (Nr3c1), and brain-derived neurotrophic factor Bdnf and its receptor Ntrk2 (neurotrophic receptor tyrosine kinase 2). Similar mRNA expression decreases were found in the cerebellum for Crhr1, Crhr2, Nr3c1, and Grid2 (glutamatergic δ2 receptor). Morphological alterations and metabolic activity variations were observed in specific cerebellar lobules involved in motor control. The paramedian lobule, normally characterized by mitotic activity in the external germinative layer during the second postnatal week, was atrophic but metabolically hyperactive in its granule cell and molecular layers. On the contrary, lobules with an earlier cell proliferation displayed neurogenesis but a hypoactivated granule cell layer, suggesting a developmental delay in synaptogenesis. The results indicate that glucocorticoid, administered daily during the second postnatal week modulated the developmental programming of the hippocampus and cerebellum. These growth and metabolic alterations may lead possibly to morphological and functional changes later in life.
Collapse
Affiliation(s)
- M Hernandez
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| | - S Ghislin
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - R Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France
| | - C Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
2
|
Wang S, Liu H, Cheng B, Wu Q, Li L, Yang T, Hou N, Li T. Vitamin A supplementation ameliorates motor incoordination via modulating RORα in the cerebellum in a valproic acid-treated rat autism model with vitamin A deficiency. Neurotoxicology 2021; 85:90-98. [PMID: 33991534 DOI: 10.1016/j.neuro.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Motor dysfunctions are common comorbidities among autism spectrum disorder (ASD) patients. Abnormal cerebellar development throughout critical periods may have an effect on motor functions and result in motor impairments. Vitamin A (VA) plays a crucial role in the developing process of the nervous system. The correlation of VA deficiency (VAD) and ASD with motor dysfunctions, however, is not clear. Therefore, we built rat models with different VA levels based on the valproic acid (VPA)-treated autism model. ASD rats with VAD showed aggravated motor coordination abnormalities, Purkinje cell loss and impaired dendritic arborization of Purkinje cells compared to ASD rats with normal VA levels (VA normal, VAN). Additionally, the expression levels of retinoid-related orphan receptor α (RORα) and retinoic acid receptor α (RARα) were lower in the cerebellum of ASD rats with VAD than in those of ASD rats with VAN. VA supplementation (VAS) effectively improved motor coordination and cerebellar Purkinje cell abnormalities in ASD rats with VAD. Furthermore, the results of chromatin immunoprecipitation (ChIP) assays confirmed that the enrichment of RARα was detected on the RORα promoter in the cerebellum and that VAS could upregulate the binding capacity of RARα for RORα promoters. These results showed that VAD in autism might result in cerebellar impairments and be a factor aggravating a subtype of ASD with motor comorbidities. The therapeutic effect of VAS on motor deficits and Purkinje neuron impairments in autism might be due to the regulation of RORα by RARα.
Collapse
Affiliation(s)
- Si Wang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Huan Liu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Boli Cheng
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Qionghui Wu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Lisha Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China
| | - Nali Hou
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Child Nutrition and Health, Chongqing, China.
| |
Collapse
|
3
|
Lalonde R, Strazielle C. Motor Performances of Spontaneous and Genetically Modified Mutants with Cerebellar Atrophy. THE CEREBELLUM 2019; 18:615-634. [PMID: 30820866 DOI: 10.1007/s12311-019-01017-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chance discovery of spontaneous mutants with atrophy of the cerebellar cortex has unearthed genes involved in optimizing motor coordination. Rotorod, stationary beam, and suspended wire tests are useful in delineating behavioral phenotypes of spontaneous mutants with cerebellar atrophy such as Grid2Lc, Grid2ho, Rorasg, Agtpbp1pcd, Relnrl, and Dab1scm. Likewise, transgenic or null mutants serving as experimental models of spinocerebellar ataxia (SCA) are phenotyped with the same tests. Among experimental models of autosomal dominant SCA, rotorod deficits were reported in SCA1 to 3, SCA5 to 8, SCA14, SCA17, and SCA27 and stationary beam deficits in SCA1 to 3, SCA5, SCA6, SCA13, SCA17, and SCA27. Beam tests are sensitive to experimental therapies of various kinds including molecules affecting glutamate signaling, mesenchymal stem cells, anti-oligomer antibodies, lentiviral vectors carrying genes, interfering RNAs, or neurotrophic factors, and interbreeding with other mutants.
Collapse
Affiliation(s)
- Robert Lalonde
- Department of Psychology, University of Rouen, 76821, Mont-Saint-Aignan Cedex, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, and Pathogens EA7300, and CHRU of Nancy, University of Lorraine, 54500, Vandoeuvre-les-Nancy, France
| |
Collapse
|
4
|
Shipman ML, Green JT. Cerebellum and cognition: Does the rodent cerebellum participate in cognitive functions? Neurobiol Learn Mem 2019; 170:106996. [PMID: 30771461 DOI: 10.1016/j.nlm.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/02/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Abstract
There is a widespread, nearly complete consensus that the human and non-human primate cerebellum is engaged in non-motor, cognitive functions. This body of research has implicated the lateral portions of lobule VII (Crus I and Crus II) and the ventrolateral dentate nucleus. With rodents, however, it is not so clear. We review here approximately 40 years of experiments using a variety of cerebellar manipulations in rats and mice and measuring the effects on executive functions (working memory, inhibition, and cognitive flexibility), spatial navigation, discrimination learning, and goal-directed and stimulus-driven instrumental conditioning. Our conclusion is that there is a solid body of support for engagement of the rodent cerebellum in tests of cognitive flexibility and spatial navigation, and some support for engagement in working memory and certain types of discrimination learning. Future directions will involve determining the relevant cellular mechanisms, cerebellar regions, and precise cognitive functions of the rodent cerebellum.
Collapse
Affiliation(s)
- Megan L Shipman
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA; Neuroscience Graduate Program, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA.
| | - John T Green
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
5
|
Portal E, Riess O, Nguyen HP. Automated home cage assessment shows behavioral changes in a transgenic mouse model of spinocerebellar ataxia type 17. Behav Brain Res 2013; 250:157-65. [PMID: 23665119 DOI: 10.1016/j.bbr.2013.04.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/09/2013] [Accepted: 04/24/2013] [Indexed: 11/26/2022]
Abstract
Spinocerebellar Ataxia type 17 (SCA17) is an autosomal dominantly inherited, neurodegenerative disease characterized by ataxia, involuntary movements, and dementia. A novel SCA17 mouse model having a 71 polyglutamine repeat expansion in the TATA-binding protein (TBP) has shown age related motor deficit using a classic motor test, yet concomitant weight increase might be a confounding factor for this measurement. In this study we used an automated home cage system to test several motor readouts for this same model to confirm pathological behavior results and evaluate benefits of automated home cage in behavior phenotyping. Our results confirm motor deficits in the Tbp/Q71 mice and present previously unrecognized behavioral characteristics obtained from the automated home cage, indicating its use for high-throughput screening and testing, e.g. of therapeutic compounds.
Collapse
Affiliation(s)
- Esteban Portal
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | | | | |
Collapse
|
6
|
Blaise S, Kneib M, Rousseau A, Gambino F, Chenard MP, Messadeq N, Muckenstrum M, Alpy F, Tomasetto C, Humeau Y, Rio MC. In vivo evidence that TRAF4 is required for central nervous system myelin homeostasis. PLoS One 2012; 7:e30917. [PMID: 22363515 PMCID: PMC3281907 DOI: 10.1371/journal.pone.0030917] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/29/2011] [Indexed: 01/22/2023] Open
Abstract
Tumor Necrosis Factor Receptor-Associated Factors (TRAFs) are major signal transducers for the TNF and interleukin-1/Toll-like receptor superfamilies. However, TRAF4 does not fit the paradigm of TRAF function in immune and inflammatory responses. Its physiological and molecular functions remain poorly understood. Behavorial analyses show that TRAF4-deficient mice (TRAF4-KO) exhibit altered locomotion coordination typical of ataxia. TRAF4-KO central nervous system (CNS) ultrastructure shows strong myelin perturbation including disorganized layers and disturbances in paranode organization. TRAF4 was previously reported to be expressed by CNS neurons. Using primary cell culture, we now show that TRAF4 is also expressed by oligodendrocytes, at all stages of their differentiation. Moreover, histology and electron microscopy show degeneration of a high number of Purkinje cells in TRAF4-KO mice, that was confirmed by increased expression of the Bax pro-apoptotic marker (immunofluorescence), TUNEL analysis, and caspase-3 activation and PARP1 cleavage (western blotting). Consistent with this phenotype, MAG and NogoA, two myelin-induced neurite outgrowth inhibitors, and their neuron partners, NgR and p75NTR were overexpressed (Q-RT-PCR and western blotting). The strong increased phosphorylation of Rock2, a RhoA downstream target, indicated that the NgR/p75NTR/RhoA signaling pathway, known to induce actin cytoskeleton rearrangement that favors axon regeneration inhibition and neuron apoptosis, is activated in the absence of TRAF4 (western blotting). Altogether, these results provide conclusive evidence for the pivotal contribution of TRAF4 to myelination and to cerebellar homeostasis, and link the loss of TRAF4 function to demyelinating or neurodegenerative diseases.
Collapse
Affiliation(s)
- Sébastien Blaise
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Marie Kneib
- Centre National de la Recherche Scientifique UPR3212, Strasbourg, France
| | - Adrien Rousseau
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Frederic Gambino
- Centre National de la Recherche Scientifique UPR3212, Strasbourg, France
| | - Marie-Pierre Chenard
- Département de Pathologie, Centre Hospitalier Universitaire de Hautepierre, Strasbourg, France
| | - Nadia Messadeq
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Martine Muckenstrum
- Département de Pathologie, Centre Hospitalier Universitaire de Hautepierre, Strasbourg, France
| | - Fabien Alpy
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Yann Humeau
- Centre National de la Recherche Scientifique UPR3212, Strasbourg, France
| | - Marie-Christine Rio
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
7
|
Kaneko CRS, Rosenfeld S, Fontaine E, Markov A, Phillips JO, Yarno J. A preformed scleral search coil for measuring mouse eye movements. J Neurosci Methods 2010; 193:126-31. [PMID: 20817027 DOI: 10.1016/j.jneumeth.2010.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 08/12/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
Abstract
Mice are excellent subjects for use of genetic-manipulation techniques to study the basis of pathological and normal physiology and behavior; however behavioral analyses of associated phenotypes is often limited. To improve the accuracy and specificity of repeated measurements of vestibular function, we developed a miniaturized, contact-lens scleral search coil to measure mouse eye movements. We describe the physical attributes and document its functionality by measuring vestibuloocular responses in normal mice. This coil should greatly improve the sensitivity and documentation of vestibular dysfunction in mouse models of pathology and dysfunction while allowing screening of significant numbers of subjects.
Collapse
Affiliation(s)
- Chris R S Kaneko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Lalonde R, Strazielle C. Brain regions and genes affecting postural control. Prog Neurobiol 2007; 81:45-60. [PMID: 17222959 DOI: 10.1016/j.pneurobio.2006.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 08/05/2006] [Accepted: 11/08/2006] [Indexed: 12/24/2022]
Abstract
Postural control is integrated in all facets of motor commands. The role of cortico-subcortical pathways underlying postural control, including cerebellum and its afferents (climbing, mossy, and noradrenergic fibers), basal ganglia, motor thalamus, and parieto-frontal neocortex has been identified in animal models, notably through the brain lesion technique in rats and in mice with spontaneous and induced mutations. These studies are complemented by analyses of the factors underlying postural deficiencies in patients with cerebellar atrophy. With the gene deletion technique in mice, specific genes expressed in cerebellum encoding glutamate receptors (Grid2 and Grm1) and other molecules (Prkcc, Cntn6, Klf9, Syt4, and En2) have also been shown to affect postural control. In addition, transgenic mouse models of the synucleinopathies and of Huntington's disease cause deficiencies of motor coordination resembling those of patients with basal ganglia damage.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, Faculté de Médecine et de Pharmacie, INSERM U614, IFRMP, 76183 Rouen Cedex,
| | | |
Collapse
|
9
|
Strazielle C, Deiss V, Naudon L, Raisman-Vozari R, Lalonde R. Regional brain variations of cytochrome oxidase activity and motor coordination in Girk2Wv (Weaver) mutant mice. Neuroscience 2006; 142:437-49. [PMID: 16844307 DOI: 10.1016/j.neuroscience.2006.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 05/11/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
The Girk2(Wv) (weaver) phenotype, caused by a mutated inward rectifying potassium channel, is characterized by degeneration of cerebellar granule cell population as well as midbrain dopamine-containing cells of the nigrostriatal pathway. To investigate the regional brain metabolic consequences of this combined pathology, cytochrome oxidase (CO) activity was measured by histochemistry from brain regions of wild-type and homozygous Girk2(Wv) mutant mice and correlated with motor performances. CO activity of Girk2(Wv) mutants was abnormal in cerebellar cortex, dentate nucleus, and brainstem regions (medial and lateral vestibular nuclei, prepositus, superior colliculus, lateral cuneiform nucleus, and reticular nuclei) implicated in the gaze system. CO activity increased in midbrain dopaminergic regions after correcting for tissue density, regions with severe depletion of tyrosine hydroxylase activity. Forebrain regions were relatively spared in term of CO activity, except for subthalamic nucleus, lateral geniculate nucleus, and cortical eye field. Similarly to the Rora(sg) cerebellar mutant, metabolic alterations in cerebellar and vestibular regions were linearly correlated with poor motor coordination, underlining the sensitivity of these tests to cerebellar dysfunction.
Collapse
Affiliation(s)
- C Strazielle
- INSERM U724 and Laboratoire de Microscopie Electronique, Facultés de Médecine et d'Odontologie, 7 avenue de la Forêt de Haye, 54500 Vandoeuvre les Nancy, France.
| | | | | | | | | |
Collapse
|
10
|
Lalonde R, Strazielle C. Regional Variations of 5HT Concentrations in Rora sg (staggerer) Mutants. Neurochem Res 2006; 31:921-4. [PMID: 16804755 DOI: 10.1007/s11064-006-9096-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2006] [Indexed: 11/24/2022]
Abstract
Ataxic Rora(sg) (staggerer) mouse mutants, containing a deletion of the Rora gene which encodes a retinoid-like nuclear receptor, were compared to non-ataxic controls for concentrations of 5-hydroxytryptamine (HT), its main metabolite (5-hydroxy-indole acetic acid, 5HIAA), and its precursor (tryptophan) in cerebellum, brainstem, and forebrain. In Rora(sg) cerebellum, 5HT concentrations increased relative to controls, while tryptophan concentrations decreased. 5HIAA concentrations increased in mutant cerebellum and brainstem, but the 5HIAA/5HT ratio declined only in cerebellum. These results indicate that 5HT turnover decreased in cerebellum of an ataxic mutant, perhaps indicative of presynaptic accumulation and compromised neurotransmission and susceptible to be modified by 5HT pharmacotherapy.
Collapse
Affiliation(s)
- Robert Lalonde
- Faculté de Médecine et de Pharmacie, Université de Rouen, Bâtiment de Recherche, 22 bld Gambetta, INSERM U614, IFRMP 23, Salle 1B10, 76183 , Rouen Cedex, France
| | | |
Collapse
|
11
|
Lalonde R, Strazielle C. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res 2006; 1140:51-74. [PMID: 16499884 DOI: 10.1016/j.brainres.2006.01.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 01/12/2006] [Indexed: 11/20/2022]
Abstract
Grid2(Lc) (Lurcher), Grid2(ho) (hot-foot), Rora(sg) (staggerer), nr (nervous), Agtpbp1(pcd) (Purkinje cell degeneration), Reln(rl) (reeler), and Girk2(Wv) (Weaver) are spontaneous mutations with cerebellar atrophy, ataxia, and deficits in motor coordination tasks requiring balance and equilibrium. In addition to these signs, the Dst(dt) (dystonia musculorum) spinocerebellar mutant displays dystonic postures and crawling. More recently, transgenic models with human spinocerebellar ataxia mutations and alterations in calcium homeostasis have been shown to exhibit cerebellar anomalies and motor coordination deficits. We describe neurochemical characteristics of these mutants with respect to regional brain metabolism as well as amino acid and biogenic amine concentrations, uptake sites, and receptors.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, Faculté de Médecine et de Pharmacie, INSERM U614, 76183 Rouen Cedex, France.
| | | |
Collapse
|
12
|
Strazielle C, Hayzoun K, Derer M, Mariani J, Lalonde R. Regional brain variations of cytochrome oxidase activity inRelnrl-orl mutant mice. J Neurosci Res 2006; 83:821-31. [PMID: 16511878 DOI: 10.1002/jnr.20772] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell malpositioning has been described in laminated structures of the spontaneous mutation, reeler, including the cerebellum, the hippocampus, and the neocortex. Despite the ectopic positions of different neuronal populations, the specificity of synaptic connections is maintained. The metabolic consequences of this form of neuropathology were examined in Reln(rl) mutant mice by quantitative measures of cytochrome oxidase (CO) activity, a mitochondrial enzyme essential for oxidative metabolism in neurons. Despite severe tissue disorganization but in line with the intact synaptic organization, the reeler mutation did not affect global metabolic activity of the laminated structures of the brain. CO activity, however, was altered in specific subregions of the cerebellum, hippocampus, and neocortex, as well as in septum and various brainstem (medial pontine, paramedial reticular, paragigantocellular reticular) regions anatomically related to these structures, attesting to large functional alterations in Reln(rl-orl) brain. Metabolic activity variations were also detected in the ventral tegmental area and ventral neostriatum of the mesolimbic dopaminergic pathway. The results are discussed and compared to the regional CO variations found in other ataxic mice, in regard to the structural defects, the integrity of the connections, and the mutation-specific effects.
Collapse
Affiliation(s)
- C Strazielle
- Université Henri Poincaré, Nancy I, Laboratoire de Pathologie Moléculaire et Cellulaire en Nutrition (EMI-INSERM 0014), Vandoeuvre-les-Nancy, France.
| | | | | | | | | |
Collapse
|
13
|
Dubois M, Strazielle C, Julien JP, Lalonde R. Mice with the deleted neurofilament of low molecular weight (Nefl) gene: 2. Effects on motor functions and spatial orientation. J Neurosci Res 2005; 80:751-8. [PMID: 15884021 DOI: 10.1002/jnr.20493] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mice with a null mutation of the Nefl gene were compared with normal controls in tests of motor activity, equilibrium, and spatial orientation. Despite a normal capacity to ambulate, NFL -/- mice had fewer rears in an open field, crossed fewer segments on stationary beams, and fell more frequently when suspended on a horizontal bar. In addition, the distance swum before reaching the escape platform was greater in NFL -/- mice than in controls during acquisition of place learning in the Morris water maze at the start of training. The motor impairments were linearly correlated with increased cytochrome oxidase activity seen in cerebellum and brainstem. These results indicate that, as early as 6 months, depletion of the NFL protein is sufficient to cause mild sensorimotor dysfunctions and spatial deficits, but without overt signs of paresis.
Collapse
Affiliation(s)
- M Dubois
- Faculté des Sciences, Université de Rouen, UPRES PSY.CO EA 1780, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
14
|
Dubois M, Lalonde R, Julien JP, Strazielle C. Mice with the deleted neurofilament of low-molecular-weight (Nefl) gene: 1. Effects on regional brain metabolism. J Neurosci Res 2005; 80:741-50. [PMID: 15742362 DOI: 10.1002/jnr.20449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuronal intermediate filaments consist of the NFL subunit linked with NFM and NFH, and their alterations have been proposed as a pathogenesic cause in motor neuron diseases. Depletion of the Nefl gene in mice mimicks the reduced NFL mRNA levels seen in amyotrophic lateral sclerosis and causes perikaryal accumulation of neurofilament proteins and axonal hypotrophy in motoneurons. NFL -/- mice were evaluated for regional brain metabolism by means of quantitative histochemical estimation of cytochrome oxidase (COx) activity. The NFL null mice displayed enzymatic activity alterations in numerous hindbrain regions, mainly the cerebellum, connected regions of the brainstem (red nucleus, vestibular nuclei, and reticular formation), and cranial nerve nuclei. All of the affected regions presented elevated COx activity, except for the Purkinje cells of the cerebellum and the magnocellular red nucleus, where enzymatic activity was lower. NFL-disrupted mice displayed functional alterations in brainstem sensorimotor regions affected in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- M Dubois
- Faculté des Sciences, UPRES PSY.CO EA 1780, Université de Rouen, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
15
|
Lalonde R, Strazielle C. The effects of cerebellar damage on maze learning in animals. THE CEREBELLUM 2004; 2:300-9. [PMID: 14964689 DOI: 10.1080/14734220310017456] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of the cerebellum in spatial learning has recently been investigated in genetically and non-genetically lesioned animal models, particularly in water mazes, in view of the minimal impact such lesions exert on swimming movements. A dissociation between place and cued learning in the Morris water maze has been observed in several models, including cerebellar mutant mice (Rora(sg), Nna1(pcd-1J), nervous), rats with lesions of either the lateral cerebellar cortex or the dentate nucleus, and rats with selective Purkinje cell loss caused by intracerebroventricular injections of OX-7-saporin, confirming the hypothesis that cerebellar damage may cause a cognitive deficit independently of fine motor control. In addition, the results of hemicerebellectomized rats indicate the probable involvement of the cerebellum in working memory and the procedural aspect of maze learning. The findings of impaired maze learning in cerebellar-lesioned mice and rats are concordant with those of deficient visuospatial functions in patients with cerebellar atrophy. The spatial deficits may be ascribed to altered metabolic activity in cerebellar-related pathways.
Collapse
Affiliation(s)
- R Lalonde
- Hôtel-Dieu du Centre Hospitalier de l'Université de Montréal, Service de Neurologie, 3840 St-Urbain, Montréal, Québec, Canada.
| | | |
Collapse
|
16
|
Strazielle C, Dubois M, Eyer J, Lalonde R. NFH-LacZ transgenic mice: regional brain activity of cytochrome oxidase. Exp Neurol 2002; 177:521-30. [PMID: 12429197 DOI: 10.1006/exnr.2002.7972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the NFH-LacZ fusion protein in transgenic mice causes an early accumulation of neurofilament proteins in the cell bodies of neurons, as well as a reduction of motor neuron axonal caliber and Purkinje cell number in the cerebellum. Young (3 month old) and older (12-20 months) NFH-LacZ transgenic mice were compared to normal controls for regional brain metabolism, as assessed by cytochrome oxidase (CO) activity. Irrespective of age, CO activity was reduced in three cerebellar-related regions of NFH-LacZ transgenic mice: (1) the lateral reticular nucleus, (2) the parvicellular red nucleus, and (3) the superior colliculus, possibly as a secondary consequence of cerebellar Purkinje cell histopathology. Aged NFH-LacZ mice had lower CO activity relative to either age-matched controls or young transgenic mice in the following regions: the motor nucleus of the vagus nerve, the trapezoid nucleus, the subiculum, the motor cortex, the superior olive, and the lateral dorsal thalamus. These results indicate regional and age-selective deficits of brain metabolism in a transgenic model with neurofilament maldistribution.
Collapse
Affiliation(s)
- C Strazielle
- Université de Rouen, Faculté des Sciences, Laboratoire de Neurobiologie de l'Apprentissage, UPRES PSY.CO-EA 1780, 76821, Mont-Saint-Aignan Cedex, France.
| | | | | | | |
Collapse
|
17
|
Turner CA, Yang MC, Lewis MH. Environmental enrichment: effects on stereotyped behavior and regional neuronal metabolic activity. Brain Res 2002; 938:15-21. [PMID: 12031530 DOI: 10.1016/s0006-8993(02)02472-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study evaluated whether environmental enrichment-related effects on the development of stereotyped behavior in deer mice were associated with alterations in neuronal metabolic activity. Deer mice were reared under either enriched or standard housing conditions for 60 days following weaning. All mice were then placed in automated photocell detectors and classified as either stereotypic or non-stereotypic. Neuronal metabolic activity was then assessed using cytochrome oxidase (CO) histochemistry. The results demonstrated that environmental enrichment significantly increased neuronal metabolic activity in the motor cortex. Furthermore, non-stereotypic mice exhibited significantly more CO activity than stereotypic mice in the cortex, striatum, nucleus accumbens, thalamus, hippocampus and amygdala. This latter effect was due to the enriched mice as evidenced by a significant interaction between housing condition and behavioral status in the cortex, striatum, nucleus accumbens, thalamus and hippocampus. Thus, the observed increase in CO activity reflected increased neuronal metabolic activity in non-stereotypic enriched mice relative to stereotypic enriched mice. These results suggest that, in a developmental model of spontaneous stereotypy, the enrichment-related prevention of stereotyped behavior is associated with increased CO activity.
Collapse
Affiliation(s)
- Cortney A Turner
- Department of Psychiatry, P.O. Box 100256, University of Florida, Gainesville, FL 32601, USA
| | | | | |
Collapse
|
18
|
Lalonde R, Strazielle C. Motor performance and regional brain metabolism of spontaneous murine mutations with cerebellar atrophy. Behav Brain Res 2001; 125:103-8. [PMID: 11682101 DOI: 10.1016/s0166-4328(01)00276-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three spontaneous mutations with cerebellar atrophy were evaluated for motor coordination and regional brain metabolism, as assessed by cytochrome oxidase (CO) activity. Despite similar neuropathological characteristics, the behavioral phenotype of Lurcher is less severe than that of staggerer, possibly caused by the slower onset of their neuronal degeneration. Although fewer cerebellar cells degenerate in hot-foot than in Lurcher, their motor deficits are more severe, indicating the presence of dysfunctional cells. CO activity in the deep cerebellar nuclei was increased in Lurcher and staggerer but unchanged in hot-foot, probably due to the severe loss of GABAergic input from Purkinje cells in the first two mutants but not the third. Altered CO activity in cerebellar-related pathways was linearly correlated with motor performance, indicating that the activity of this enzyme is associated not only with neuronal activity but also with motor performance.
Collapse
Affiliation(s)
- R Lalonde
- Laboratoire de Neurobiologie de l'Apprentissage, Université de Rouen, Faculté des Sciences, UPRES PSY.CO-EA 1780, 76821 Mont-Saint-Aignan Cedex, France.
| | | |
Collapse
|
19
|
Deiss V, Dubois M, Lalonde R, Strazielle C. Cytochrome oxidase activity in the olfactory system of staggerer mutant mice. Brain Res 2001; 910:126-33. [PMID: 11489262 DOI: 10.1016/s0006-8993(01)02678-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The staggerer mutation is characterized by the disruption of a single recessive gene encoding for the nuclear hormone receptor RORalpha. In addition to the well-studied gene expression in the cerebellum causing massive primary Purkinje cell loss, the RORalpha gene is also expressed in the thalamus and the olfactory bulb. A quantitative histochemical study of cytochrome oxidase activity was performed in staggerer mutants and their respective controls in order to determine whether olfactory bulb neuropathology leads to neuronal metabolic alterations in olfactory and related limbic regions. In the staggerer olfactory bulb, the core and the shell of the glomeruli had lower levels of cytochrome activity, whereas higher levels were found in the external plexiform and granular layers. Other olfactory and limbic regions were unchanged, except for a higher level in the accessory olfactory bulb and a lower level in the most ventral part of the medial orbital cortex. These results are discussed with regard to the olfactory deficits and changes in social interactions previously observed in this mutant.
Collapse
Affiliation(s)
- V Deiss
- Laboratoire d'Ethologie Expérimentale et Comparée, Université Paris 13, 93430, Villetaneuse, France
| | | | | | | |
Collapse
|