1
|
Clark RM, Clark CM, Lewis KE, Dyer MS, Chuckowree JA, Hoyle JA, Blizzard CA, Dickson TC. Intranasal neuropeptide Y1 receptor antagonism improves motor deficits in symptomatic SOD1 ALS mice. Ann Clin Transl Neurol 2023; 10:1985-1999. [PMID: 37644692 PMCID: PMC10647012 DOI: 10.1002/acn3.51885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Neuropeptide Y (NPY) is a 36 amino acid peptide widely considered to provide neuroprotection in a range of neurodegenerative diseases. In the fatal motor neuron disease amyotrophic lateral sclerosis (ALS), recent evidence supports a link between NPY and ALS disease processes. The goal of this study was to determine the therapeutic potential and role of NPY in ALS, harnessing the brain-targeted intranasal delivery of the peptide, previously utilised to correct motor and cognitive phenotypes in other neurological conditions. METHODS To confirm the association with clinical disease characteristics, NPY expression was quantified in post-mortem motor cortex tissue of ALS patients and age-matched controls. The effect of NPY on ALS cortical pathophysiology was investigated using slice electrophysiology and multi-electrode array recordings of SOD1G93A cortical cultures in vitro. The impact of NPY on ALS disease trajectory was investigated by treating SOD1G93A mice intranasally with NPY and selective NPY receptor agonists and antagonists from pre-symptomatic and symptomatic phases of disease. RESULTS In the human post-mortem ALS motor cortex, we observe a significant increase in NPY expression, which is not present in the somatosensory cortex. In vitro, we demonstrate that NPY can ameliorate ALS hyperexcitability, while brain-targeted nasal delivery of NPY and a selective NPY Y1 receptor antagonist modified survival and motor deficits specifically within the symptomatic phase of the disease in the ALS SOD1G93A mouse. INTERPRETATION Taken together, these findings highlight the capacity for non-invasive brain-targeted interventions in ALS and support antagonism of NPY Y1Rs as a novel strategy to improve ALS motor function.
Collapse
Affiliation(s)
- Rosemary M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Courtney M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Katherine E.A. Lewis
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Marcus S. Dyer
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Jyoti A. Chuckowree
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Joshua A. Hoyle
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Catherine A. Blizzard
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmania7000Australia
| | - Tracey C. Dickson
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| |
Collapse
|
2
|
Clark CM, Clark RM, Hoyle JA, Dickson TC. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J Neurochem 2020; 156:273-289. [PMID: 32654149 DOI: 10.1111/jnc.15125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous peptide of the central and enteric nervous systems which has gained significant interest as a potential neuroprotective agent for treatment of neurodegenerative disease. Amyotrophic lateral sclerosis (ALS) is an aggressive and fatal neurodegenerative disease characterized by motor deficits and motor neuron loss. In ALS, recent evidence from ALS patients and animal models has indicated that NPY may have a role in the disease pathogenesis. Increased NPY levels were found to correlate with disease progression in ALS patients. Similarly, NPY expression is increased in the motor cortex of ALS mice by end stages of the disease. Although the functional consequence of increased NPY levels in ALS is currently unknown, NPY has been shown to exert a diverse range of neuroprotective roles in other neurodegenerative diseases; through modulation of potassium channel activity, increased production of neurotrophins, inhibition of endoplasmic reticulum stress and autophagy, reduction of excitotoxicity, oxidative stress, neuroinflammation and hyperexcitability. Several of these mechanisms and signalling pathways are heavily implicated in the pathogenesis of ALS. Therefore, in this review, we discuss possible effects of NPY and NPY-receptor signalling in the ALS disease context, as determining NPY's contribution to, or impact on, ALS disease mechanisms will be essential for future studies investigating the NPY system as a therapeutic strategy in this devastating disease.
Collapse
Affiliation(s)
- Courtney M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Joshua A Hoyle
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
3
|
Devilbiss DM. Consequences of tuning network function by tonic and phasic locus coeruleus output and stress: Regulating detection and discrimination of peripheral stimuli. Brain Res 2018; 1709:16-27. [PMID: 29908165 DOI: 10.1016/j.brainres.2018.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022]
Abstract
Flexible and adaptive behaviors have evolved with increasing complexity and numbers of neuromodulator systems. The neuromodulatory locus coeruleus-norepinephrine (LC-NE) system is central to regulating cognitive function in a behaviorally-relevant and arousal-dependent manner. Through its nearly ubiquitous efferent projections, the LC-NE system acts to modulate neuron function on a cell-by-cell basis and exert a spectrum of actions across different brain regions to optimize target circuit function. As LC neuron activity, NE signaling, and arousal level increases, cognitive performance improves over an inverted-U shaped curve. Additionally, LC neurons burst phasically in relation to novel or salient sensory stimuli and top-down decision- or response-related processes. Together, the variety of LC activity patterns and complex actions of the LC-NE system indicate that the LC-NE system may dynamically regulate the function of target neural circuits. The manner in which neural networks encode, represent, and perform neurocomputations continue to be revealed. This has improved our ability to understand the optimization of neural circuits by NE and generation of flexible and adaptive goal-directed behaviors. In this review, the rat vibrissa somatosensory system is explored as a model neural circuit to bridge known modulatory actions of NE and changes in cognitive function. It is argued that fluid transitions between neural computational states reflect the ability of this sensory system to shift between two principal functions: detection of novel or salient sensory information and detailed descriptions of sensory information. Such flexibility in circuit function is likely critical for producing context-appropriate sensory signal processing. Nonetheless, many challenges remain including providing a causal link between NE mediated changes in sensory neural coding and perceptual changes, as well as extending these principles to higher cognitive functions including behavioral flexibility and decision making.
Collapse
Affiliation(s)
- David M Devilbiss
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, United States.
| |
Collapse
|
4
|
Domingues MF, de Assis DR, Piovesan AR, Belo CAD, da Costa JC. Peptide YY (3-36) modulates intracellular calcium through activation of the phosphatidylinositol pathway in hippocampal neurons. Neuropeptides 2018; 67:1-8. [PMID: 29157865 DOI: 10.1016/j.npep.2017.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 10/18/2022]
Abstract
Peptide YY (PYY) belongs to the neuropeptide Y (NPY) family, which also includes the pancreatic polypeptide (PP) and NPY. PYY is secreted by the intestinal L cells, being present in the blood stream in two active forms capable of crossing the blood brain barrier, PYY (1-36) and its cleavage product, PYY (3-36). PYY is a selective agonist for the Y2 receptor (Y2R) and these receptors are abundant in the hippocampus. Here we investigated the mechanisms by which PYY (3-36) regulates intracellular Ca2+ concentrations ([Ca2+]i) in hippocampal neurons by employing a calcium imaging technique in hippocampal cultures. Alterations in [Ca2+]i were detected by changes in the Fluo-4 AM reagent emission. PYY (3-36) significantly increased [Ca2+] from the concentration of 10-11M as compared to the controls (infusion of HEPES-buffered solution (HBS) solution alone). The PYY (3-36)-increase in [Ca2+]i remained unchanged even in Ca2+-free extracellular solutions. Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase pump (SERCA pump) inhibition partially prevent the PYY (3-36)-increase of [Ca2+]i and inositol 1,4,5-triphosphate receptor (IP3R) inhibition also decreased the PYY (3-36)-increase of [Ca2+]i. Taken together, our data strongly suggest that PYY (3-36) mobilizes calcium from the neuronal endoplasmic reticulum (ER) stores towards the cytoplasm. Next, we showed that PYY (3-36) inhibited high K+-induced increases of [Ca2+]i, suggesting that PYY (3-36) could also act by activating G-protein coupled inwardly rectifying potassium K+ channels. Finally, the co-infusion of the Y2 receptor (Y2R) antagonist BIIE0246 with PYY (3-36) abolished the [Ca2+]i increase induced by the peptide, suggesting that PYY (3-36)-induced [Ca2+]i increase in hippocampal neurons occurs via Y2Rs.
Collapse
Affiliation(s)
- Michelle Flores Domingues
- Graduate Program in Cellular and Molecular Biology - Center for Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil; Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Dênis Reis de Assis
- Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Angela Regina Piovesan
- Graduate Program in Cellular and Molecular Biology - Center for Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil; Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Cháriston André Dal Belo
- Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil; Laboratory of Neurobiology and Toxinology, LANETOX, Universidade Federal do Pampa, UNIPAMPA, São Gabriel, Brazil; Graduate Program in Biological Sciences: Biochemical Toxicology, PPGBTox, Universidade Federal de Santa Maria, UFSM, Santa Maria, Brazil.
| | - Jaderson Costa da Costa
- Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
5
|
Deprivation-Induced Homeostatic Spine Scaling In Vivo Is Localized to Dendritic Branches that Have Undergone Recent Spine Loss. Neuron 2017; 96:871-882.e5. [PMID: 29107520 PMCID: PMC5697914 DOI: 10.1016/j.neuron.2017.09.052] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 01/11/2023]
Abstract
Synaptic scaling is a key homeostatic plasticity mechanism and is thought to be involved in the regulation of cortical activity levels. Here we investigated the spatial scale of homeostatic changes in spine size following sensory deprivation in a subset of inhibitory (layer 2/3 GAD65-positive) and excitatory (layer 5 Thy1-positive) neurons in mouse visual cortex. Using repeated in vivo two-photon imaging, we find that increases in spine size are tumor necrosis factor alpha (TNF-α) dependent and thus are likely associated with synaptic scaling. Rather than occurring at all spines, the observed increases in spine size are spatially localized to a subset of dendritic branches and are correlated with the degree of recent local spine loss within that branch. Using simulations, we show that such a compartmentalized form of synaptic scaling has computational benefits over cell-wide scaling for information processing within the cell.
Collapse
|
6
|
Plescia F, Brancato A, Marino RAM, Vita C, Navarra M, Cannizzaro C. Effect of Acetaldehyde Intoxication and Withdrawal on NPY Expression: Focus on Endocannabinoidergic System Involvement. Front Psychiatry 2014; 5:138. [PMID: 25324788 PMCID: PMC4181239 DOI: 10.3389/fpsyt.2014.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 01/17/2023] Open
Abstract
Acetaldehyde (ACD), the first alcohol metabolite, plays a pivotal role in the rewarding, motivational, and addictive properties of the parental compound. Many studies have investigated the role of ACD in mediating neurochemical and behavioral effects induced by alcohol administration, but very little is known about the modulation of neuropeptide systems following ACD intoxication and withdrawal. Indeed, the neuropeptide Y (NPY) system is altered during alcohol withdrawal in key regions for cerebrocortical excitability and neuroplasticity. The primary goal of this research was to investigate the effects of ACD intoxication and withdrawal by recording rat behavior and by measuring NPY immunoreactivity in hippocampus and NAcc, two brain regions mainly involved in processes which encompass neuroplasticity in alcohol dependence. Furthermore, on the basis of the involvement of endocannabinoidergic system in alcohol and ACD reinforcing effects, the role of the selective CB1 receptor antagonist AM281 in modulating NPY expression during withdrawal was assessed. Our results indicate that (i) ACD intoxication induced a reduction in NPY expression in hippocampus and NAcc; (ii) symptoms of physical dependence, similar to alcohol's, were scored at 12 h from the last administration of ACD; and (iii) NPY levels increased in early and prolonged acute withdrawal in both brain regions examined. The administration of AM281 was able to blunt signs of ACD-induced physical dependence, to modulate NPY levels, and to further increase NPY expression during ACD withdrawal both in hippocampus and NAcc. In conclusion, the present study shows that complex plastic changes take place in NPY system during ACD intoxication and subsequent withdrawal in rat hippocampal formation and NAcc. The pharmacological inhibition of CB1 signaling could counteract the neurochemical imbalance associated with ACD, and alcohol withdrawal, likely boosting the setting up of homeostatic functional recovery.
Collapse
Affiliation(s)
- Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Rosa Anna Maria Marino
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Carlotta Vita
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Michele Navarra
- Department of Drug Sciences and Products for Health, University of Messina , Messina , Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| |
Collapse
|
7
|
Corticotropin-releasing factor acting at the locus coeruleus disrupts thalamic and cortical sensory-evoked responses. Neuropsychopharmacology 2012; 37:2020-30. [PMID: 22510725 PMCID: PMC3398725 DOI: 10.1038/npp.2012.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stress and stress-related psychiatric disorders, including post-traumatic stress disorder, are associated with disruptions in sensory information processing. The neuropeptide, corticotropin-releasing factor (CRF), coordinates the physiological and behavioral responses to stress, in part, by activating the locus coeruleus-norepinephrine (LC-NE) projection system. Although the LC-NE system is an important modulator of sensory information processing, to date, the consequences of CRF activation of this system on sensory signal processing are poorly understood. The current study examined the dose-dependent actions of CRF at the LC on spontaneous and sensory-evoked discharge of neurons within the thalamus and cortex of the vibrissa somatosensory system in the awake, freely moving rat. Peri-LC infusions of CRF resulted in a dose-dependent suppression of sensory-evoked discharge in ventral posterior medial thalamic and barrel field cortical neurons. A concurrent increase in spontaneous activity was observed. This latter action is generally not found with iontophoretic application of NE to target neurons or stimulation of the LC-NE pathway. Net decreases in signal-to-noise of sensory-evoked responses within both regions suggest that under conditions associated with CRF release at the LC, including stress, the transfer of afferent information within sensory systems is impaired. Acutely, a suppression of certain types of sensory information may represent an adaptive response to an immediate unexpected stressor. Persistence of such effects could contribute to abnormalities of information processing seen in sensorimotor gating associated with stress and stress-related psychopathology.
Collapse
|
8
|
Neuropeptide Y increases in vivo hippocampal extracellular glutamate levels through Y1 receptor activation. Neurosci Lett 2012; 510:143-7. [DOI: 10.1016/j.neulet.2012.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 01/19/2023]
|
9
|
Kovac S, Megalogeni M, Walker M. In vitro effects of neuropeptide Y in rat neocortical and hippocampal tissue. Neurosci Lett 2011; 492:43-6. [PMID: 21276831 DOI: 10.1016/j.neulet.2011.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/13/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
Neuropeptide Y (NPY) network effects in hippocampus and frontal cortex and its impact on epileptiform neocortical discharges were investigated in rat juvenile brain slices. NPY (1 μM) reduced amplitudes of paired pulse stimulation in hippocampal brain tissue (p<0.05) whereas NPY (1 nM-2 μM) had no effect in neocortex. Late stage epileptiform activity in the neocortex was unaffected by NPY (1 μM). Our results point to a region dependent effect of NPY with a high impact on hippocampal and minimal impact on neocortical networks.
Collapse
Affiliation(s)
- Stjepana Kovac
- Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | | | | |
Collapse
|
10
|
Devilbiss DM, Waterhouse BD. Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat. J Neurophysiol 2010; 105:69-87. [PMID: 20980542 DOI: 10.1152/jn.00445.2010] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons of the nucleus locus coeruleus (LC) discharge with phasic bursts of activity superimposed on highly regular tonic discharge rates. Phasic bursts are elicited by bottom-up input mechanisms involving novel/salient sensory stimuli and top-down decision making processes; whereas tonic rates largely fluctuate according to arousal levels and behavioral states. Although it is generally believed that these two modes of activity differentially modulate information processing in LC targets, the unique role of phasic versus tonic LC output on signal processing in cells, circuits, and neural networks of waking animals is not well understood. In the current study, simultaneous recordings of individual neurons within ventral posterior medial thalamus and barrel field cortex of conscious rats provided evidence that each mode of LC output produces a unique modulatory impact on single neuron responsiveness to sensory-driven synaptic input and representations of sensory information across ensembles of simultaneously recorded cells. Each mode of LC activation specifically modulated the relationship between sensory-stimulus intensity and the subsequent responses of individual neurons and neural ensembles. Overall these results indicate that phasic versus tonic modes of LC discharge exert fundamentally different modulatory effects on target neuronal circuits within the rodent trigeminal somatosensory system. As such, each mode of LC output may differentially influence signal processing as a means of optimizing behaviorally relevant neural computations within this sensory network. Likely the ability of the LC system to differentially regulate neural responses and local circuit operations according to behavioral demands extends to other brain regions including those involved in higher cognitive functions.
Collapse
Affiliation(s)
- David M Devilbiss
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
11
|
Olling JD, Ulrichsen J, Correll M, Woldbye DPD. Gene expression in the neuropeptide Y system during ethanol withdrawal kindling in rats. Alcohol Clin Exp Res 2009; 34:462-70. [PMID: 20028355 DOI: 10.1111/j.1530-0277.2009.01110.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Multiple episodes of ethanol intoxication and withdrawal result in progressive, irreversible intensification of the withdrawal reaction, a process termed "ethanol withdrawal kindling." Previous studies show that a single episode of chronic ethanol intoxication and withdrawal causes prominent changes in neuropeptide Y (NPY) and its receptors that have been implicated in regulating withdrawal hyperexcitability. This study for the first time examined the NPY system during ethanol withdrawal kindling. METHODS Ethanol withdrawal kindling was studied in rats receiving 16 episodes of 2 days of chronic ethanol intoxication by intragastric intubations followed by 5 days withdrawal. The study included 6 groups: 4 multiple withdrawal episode (MW) groups [peak withdrawal plus (MW+)/minus (MW-) seizures, 3-day (MW3d), and 1-month (MW1mth) withdrawal], a single withdrawal episode group (SW), and an isocalorically fed control group. Gene expression of NPY and its receptors Y1, Y2, and Y5 was studied in the hippocampal dentate gyrus (DG) and CA3/CA1, as well as piriform cortex (PirCx), and neocortex (NeoCx). RESULTS MW+/- as well as SW groups showed decreased NPY gene expression in all hippocampal areas compared with controls, but, in the DG and CA3, decreases were significantly smaller in the MW- group compared with the SW group. In the MW+/- and SW groups, Y1, Y2, and Y5 mRNA levels were decreased in most brain areas compared with controls; however, decreases in Y1 and Y5 mRNA were augmented in the MW+/- groups compared with the SW group. The MW+ group differed from the MW- group in the PirCx, where Y2 gene expression was significantly higher. CONCLUSION Multiple withdrawal episodes reversibly decreased NPY and NPY receptor mRNA levels at peak withdrawal, with smaller decreases in NPY mRNA levels and augmented decreases in Y1/Y5 mRNA levels compared with a SW episode. Multiple withdrawal-induced seizures increased the Y2 mRNA levels in PirCx. These complex changes in NPY system gene expression could play a role in the ethanol withdrawal kindling process.
Collapse
Affiliation(s)
- Janne D Olling
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen & University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | |
Collapse
|
12
|
Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I. Sigma 1 receptor-mediated increase in hippocampal extracellular dopamine contributes to the mechanism of the anticonvulsant action of neuropeptide Y. Eur J Neurosci 2007; 26:3079-92. [PMID: 18005069 DOI: 10.1111/j.1460-9568.2007.05911.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potent anticonvulsant properties of neuropeptide Y (NPY) are generally attributed to a Y2 receptor-mediated inhibition of glutamatergic synaptic transmission. Independent studies have shown that NPY increases brain dopamine content, possibly via interaction with sigma 1 receptors. Recently, we showed that increased extracellular hippocampal dopamine attenuates pilocarpine-induced limbic seizures via activation of hippocampal D2 receptors. Our aim in this study was to elucidate the role of increased hippocampal dopamine in the mechanism of the anticonvulsant action of NPY and to investigate the involvement of Y2 and sigma 1 receptors in this process. Limbic seizures were evoked in freely moving rats by intrahippocampal administration of pilocarpine via a microdialysis probe. NPY was administered intracerebroventricularly, intrahippocampally via the microdialysis probe, or coadministered intrahippocampally with the D2 receptor antagonist remoxipride, the Y2 receptor antagonist BIIE0246 or the sigma 1 receptor antagonist BD1047. Changes in hippocampal extracellular dopamine were monitored, and behavioural changes indicative of seizure activity were scored. Intracerebroventricular (10 nmol/3 microL) and intrahippocampal (20-50 microm) NPY administration increased hippocampal dopamine and attenuated pilocarpine-induced seizures. Hippocampal D2 receptor blockade (4 microm remoxipride) reversed the anticonvulsant effect of NPY. Y2 receptor blockade (1 microm BIIE0246) reversed the anticonvulsant effect of NPY but did not prevent NPY-induced increases in hippocampal dopamine. Sigma 1 receptor blockade (10 microm BD1047) abolished NPY-induced increases in hippocampal dopamine and reversed the anticonvulsant effect of NPY. Our results indicate that NPY-induced increases in hippocampal dopamine are mediated via sigma 1 receptors and contribute to the anticonvulsant effect of NPY via increased activation of hippocampal D2 receptors. This novel mechanism of anticonvulsant action of NPY is separate from, and may be complementary to, the well established Y2 receptor-mediated inhibition of hippocampal excitability.
Collapse
Affiliation(s)
- Alfred Meurs
- Department of Neurology, U. Z. Brussel, Laarbeeklaan 101,1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|
13
|
Sichardt K, Nieber K. Adenosine A(1) receptor: Functional receptor-receptor interactions in the brain. Purinergic Signal 2007; 3:285-98. [PMID: 18404442 PMCID: PMC2072922 DOI: 10.1007/s11302-007-9065-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 12/20/2022] Open
Abstract
Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders.
Collapse
Affiliation(s)
- Kathrin Sichardt
- Institute of Pharmacy, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany
| | - Karen Nieber
- Institute of Pharmacy, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Nadler JV, Tu B, Timofeeva O, Jiao Y, Herzog H. Neuropeptide Y in the recurrent mossy fiber pathway. Peptides 2007; 28:357-64. [PMID: 17204350 PMCID: PMC1853293 DOI: 10.1016/j.peptides.2006.07.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 07/14/2006] [Indexed: 10/23/2022]
Abstract
In the epileptic brain, hippocampal dentate granule cells become synaptically interconnected through the sprouting of mossy fibers. This new circuitry is expected to facilitate epileptiform discharge. Prolonged seizures induce the long-lasting neoexpression of neuropeptide Y (NPY) in mossy fibers. NPY is released spontaneously from recurrent mossy fiber terminals, reduces glutamate release from those terminals by activating presynaptic Y2 receptors, and depresses granule cell epileptiform activity dependent on the recurrent pathway. These effects are much greater in rats than in C57BL/6 mice, despite apparently equivalent mossy fiber sprouting and neoexpression of NPY. This species difference can be explained by contrasting changes in the expression of mossy fiber Y2 receptors; seizures upregulate Y2 receptors in rats but downregulate them in mice. The recurrent mossy fiber pathway may synchronize granule cell discharge more effectively in humans and mice than in rats, due to its lower expression of either NPY (humans) or Y2 receptors (mice).
Collapse
Affiliation(s)
- J Victor Nadler
- Department of Pharmacology and Cancer Biology and Department of Neurobiology, Box 3813, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
15
|
Christensen DZ, Olesen MV, Kristiansen H, Mikkelsen JD, Woldbye DPD. Unaltered neuropeptide Y (NPY)-stimulated [35S]GTPgammaS binding suggests a net increase in NPY signalling after repeated electroconvulsive seizures in mice. J Neurosci Res 2007; 84:1282-91. [PMID: 16941487 DOI: 10.1002/jnr.21028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although electroconvulsive seizures (ECS) are widely used as a treatment for severe depression, the working mechanism of ECS remains unclear. Repeated ECS causes anticonvulsant effects that have been proposed to underlie the therapeutic effect of ECS, and neuropeptide Y (NPY) is a potential candidate for mediating this anticonvulsant effect. Repeated ECS results in prominent increases in NPY synthesis. In contrast, NPY-sensitive receptor binding is decreased, so it is unclear whether ECS causes a net increase in NPY signalling. Agonist-stimulated [35S]GTPgammaS binding is a method for detecting functional activation of G-protein-coupled receptors. The present study in mice examined the effects of daily ECS for 14 days on NPY-stimulated [35S]GTPgammaS functional binding and compared this with gene expression of NPY and NPY receptors as well as [125I]peptide YY (PYY) binding in hippocampus of the same animals. Significant increases in NPY mRNA and concomitant reductions in NPY-sensitive binding were found in the dentate gyrus, hippocampal CA1, and neocortex of ECS treated mice, which is consistent with previous rat data. These changes remained significant 1 week after repeated ECS. Significant increases in NPY Y1, Y2, and Y5 mRNA were found in the dentate gyrus after ECS. Surprisingly, unaltered levels of functional NPY receptor binding accompanied the decreased NPY-sensitive binding. This suggests that mechanisms coupling NPY receptor stimulation to G-protein activation could be augmented after repeated ECS. Thus increased synthesis of NPY after repeated ECS should result in a net increase in NPY signalling in spite of reduced levels of NPY-sensitive binding.
Collapse
Affiliation(s)
- D Z Christensen
- Laboratory of Neuropsychiatry, Department of Pharmacology, University of Copenhagen and Rigshospitalet University Hospital 6102, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
16
|
Woldbye DPD, Nanobashvili A, Sørensen AT, Husum H, Bolwig TG, Sørensen G, Ernfors P, Kokaia M. Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors. Neurobiol Dis 2005; 20:760-72. [PMID: 15979311 DOI: 10.1016/j.nbd.2005.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 04/14/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022] Open
Abstract
Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice with the same genetic background and explored anti-epileptic action of NPY in vitro and in vivo. In Y2 (Y2-/-) and Y5 (Y5-/-) receptor knockouts, NPY partially inhibited 0 Mg2+-induced epileptiform activity in hippocampal slices. In contrast, in double knockouts (Y2Y5-/-), NPY had no effect, suggesting that in the hippocampus in vitro both receptors mediate anti-epileptiform action of NPY in an additive manner. Systemic kainate induced more severe seizures in Y5-/- and Y2Y5-/-, but not in Y2-/- mice, as compared to wild-type mice. Moreover, kainate seizures were aggravated by administration of the Y5 antagonist L-152,804 in wild-type mice. In Y5-/- mice, hippocampal kindling progressed faster, and afterdischarge durations were longer in amygdala, but not in hippocampus, as compared to wild-type controls. Taken together, these data suggest that, in mice, both Y2 and Y5 receptors regulate hippocampal seizures in vitro, while activation of Y5 receptors in extra-hippocampal regions reduces generalized seizures in vivo.
Collapse
Affiliation(s)
- David P D Woldbye
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A-11, Lund University Hospital, S-221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Benmaamar R, Richichi C, Gobbi M, Daniels AJ, Beck-Sickinger AG, Vezzani A. Neuropeptide Y Y5 receptors inhibit kindling acquisition in rats. ACTA ACUST UNITED AC 2005; 125:79-83. [PMID: 15582717 DOI: 10.1016/j.regpep.2004.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 07/15/2004] [Accepted: 07/26/2004] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y inhibits neuronal excitability and seizures in various experimental models. This peptide delays kindling epileptogenesis but the receptors involved in this action are unknown. We have studied the role of Y5 receptors in kindling using the selective antagonist GW438014A (IC50=210 nM), a small heterocycle molecule that crosses the blood-brain barrier, and the selective peptide agonist Ala31Aib34 NPY (IC50=6.0 nM). Intraperitoneal injection of GW438014A (10 mg/kg), 30 min before the beginning of a rapid-kindling protocol, significantly accelerated the rate of kindling acquisition as compared to vehicle-injected rats. Thus, the number of electrical stimuli required to reach stages 3 and 4-5 of kindling were reduced by 50% and 25%, respectively. The average afterdischarge duration in the stimulated hippocampus was prolonged by 2-fold. Conversely, kindling rate was delayed by intracerebroventricular administration of 24 nmol Ala31Aib32 NPY. Thus, the number of stimuli necessary to reach stages 2 and 3 of kindling was increased by 3- and 4-fold, respectively. During the stimulation protocol (40 stimuli) none of the rats treated with the Y5 agonist showed stages 4-5 seizures. Twenty-four hours after the last kindling stimulation, thus during the re-test session, Y5 agonist- or antagonist-treated rats had stages 4-5 seizures as their controls. In rats treated with both the antagonist and the agonist, kindling rate was similar to vehicle-injected rats. These data indicate that Y5 receptors mediate inhibitory effects of NPY in kindling and display anticonvulsant rather then antiepileptogenic effects upon agonist stimulation.
Collapse
Affiliation(s)
- R Benmaamar
- Laboratoire de Neuropharmacologie des Epilepsies, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
18
|
Wang SJ. Activation of neuropeptide Y Y1 receptors inhibits glutamate release through reduction of voltage-dependent Ca2+ entry in the rat cerebral cortex nerve terminals: Suppression of this inhibitory effect by the protein kinase C-dependent facilitatory pathway. Neuroscience 2005; 134:987-1000. [PMID: 16026936 DOI: 10.1016/j.neuroscience.2005.04.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 04/21/2005] [Accepted: 04/27/2005] [Indexed: 11/26/2022]
Abstract
Neuropeptide Y (NPY) is known to regulate the presynaptic glutamate release and neuronal responses to excitatory neurotransmission. The aim of this study was to investigate the effect of NPY on the release of endogenous glutamate from rat cerebrocortical nerve terminals (synaptosomes). NPY inhibited the Ca2+-dependent glutamate release evoked by 4-aminopyridine, and this inhibitory effect was mediated via NPY Y1 receptors, because it was mimicked by the specific NPY Y1 receptor agonist [Leu31 Pro34] NPY and blocked by the NPY Y1 receptor antagonist GR 231118. The inhibitory action of NPY was not due to it decreasing synaptosomal excitability or directly interfering with the release process at some point subsequent to Ca2+ influx, because NPY did not alter the 4-aminopyridine-evoked depolarization of the synaptosomal plasma membrane potential or ionomycin and hypertonic solution-induced glutamate release. Examination of the effect of NPY on the cytosolic [Ca2+] revealed that the inhibition of glutamate release could be attributed to a reduction in voltage-dependent Ca2+ influx. Consistent with this, the NPY-mediated inhibition of glutamate release was completely abolished in synaptosomes pretreated with N- and P/Q-type Ca2+ channel blocker, omega-conotoxin MVIIC. Moreover, NPY-mediated inhibition of 4-aminopyridine-evoked glutamate release was insensitive to KT 5720 and Ro32-0432 but was suppressed when protein kinase C was stimulated with phorbol ester. Together, these results suggest that NPY acting predominantly on NPY Y1 receptors inhibits glutamate release from rat cerebrocortical synaptosomes, likely by a mechanism involving direct coupling of receptors to N- and P/Q-type Ca2+ channels, and this coupling is subject to regulation by protein kinase C-dependent pathway. This implies that selective ligand for NPY receptors may be of value for treatment of conditions characterized by excessive glutamate release in the cerebral cortex.
Collapse
Affiliation(s)
- S-J Wang
- School of Medicine, Fu Jen Catholic University, 510, Chung-Cheng Road, Hsin-Chuang, Taipei Hsien, Taiwan 24205.
| |
Collapse
|
19
|
Shannon HE, Yang L. Seizure susceptibility of neuropeptide-Y null mutant mice in amygdala kindling and chemical-induced seizure models. Epilepsy Res 2004; 61:49-62. [PMID: 15451008 DOI: 10.1016/j.eplepsyres.2004.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 02/10/2004] [Accepted: 06/04/2004] [Indexed: 11/24/2022]
Abstract
Neuropeptide Y (NPY) administered exogenously is anticonvulsant, and, NPY null mutant mice are more susceptible to kainate-induced seizures. In order to better understand the potential role of NPY in epileptogenesis, the present studies investigated the development of amygdala kindling, post-kindling seizure thresholds, and anticonvulsant effects of carbamazepine and levetiracetam in 129S6/SvEv NPY(+/+) and NPY(-/-) mice. In addition, susceptibility to pilocarpine- and kainate-induced seizures was compared in NPY(+/+) and (-/-) mice. The rate of amygdala kindling development did not differ in the NPY(-/-) and NPY(+/+) mice either when kindling stimuli were presented once daily for at least 20 days, or, 12 times daily for 2 days. However, during kindling development, the NPY(-/-) mice had higher seizure severity scores and longer afterdischarge durations than the NPY(+/+) mice. Post-kindling, the NPY(-/-) mice had markedly lower afterdischarge thresholds and longer afterdischarge durations than NPY (+/+) mice. Carbamazepine and levetiracetam increased the seizure thresholds of both NPY (-/-) and (+/+) mice. In addition, NPY (-/-) mice had lower thresholds for both kainate- and pilocarpine-induced seizures. The present results in amygdala kindling and chemical seizure models suggest that NPY may play a more prominent role in determining seizure thresholds and severity of seizures than in events leading to epileptogenesis. In addition, a lack of NPY does not appear to confer drug-resistance in that carbamazepine and levetiracetam were anticonvulsant in both wild type (WT) and NPY null mutant mice.
Collapse
Affiliation(s)
- Harlan E Shannon
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
20
|
Abstract
The endogenous NPY system in the brain is centrally involved in seizure regulation. The present paper reviews the evidence that exogenously applied NPY receptor ligands can inhibit epileptic seizures in various rodent in vitro and in vivo models. Agonists at Y2 and/or Y5 receptors and antagonists at Y1 receptors appear to inhibit seizures, depending on the seizure model studied. Although progress has been made, further studies are needed using transgenic animals as well as novel selective agonists and antagonists to firmly identify the NPY receptors mediating antiepileptic effects. This may lead to the development of future antiepileptic drug treatments targeting the NPY system.
Collapse
Affiliation(s)
- D P D Woldbye
- Laboratory of Neuropsychiatry, Rigshospitalet University Hospital and Department of Pharmacology, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
21
|
Nanobashvili A, Woldbye DPD, Husum H, Bolwig TG, Kokaia M. Neuropeptide Y Y5 receptors suppress in vitro spontaneous epileptiform bursting in the rat hippocampus. Neuroreport 2004; 15:339-43. [PMID: 15076765 DOI: 10.1097/00001756-200402090-00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) has been implicated in antiepileptic action in different in vivo and in vitro epilepsy models in rats and mice. Both Y2 and Y5 receptors could mediate the seizure-suppressant effect of NPY. However, lack of selective ligands precluded previous studies from conclusively evaluating the role of Y5 receptors in anti-epileptiform action of NPY. In the present study, using the new highly selective Y5 receptor antagonist, CGP71683A, and agonist, [cPP]hPP, we show that the Y5 receptor subtype is centrally involved in NPY-induced suppression of spontaneous epileptiform (interictaform) bursting in the CA3 area of rat hippocampal slices. This novel finding underscores the importance of Y5 receptors as a potential target for future antiepileptic therapy, particularly, for interictal components of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Avtandil Nanobashvili
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A-11, University Hospital, S-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
22
|
Kowiański P, Moryś JM, Wójcik S, Dziewiatkowski J, Luczyńska A, Spodnik E, Timmermans JP, Moryś J. Neuropeptide-containing neurons in the endopiriform region of the rat: morphology and colocalization with calcium-binding proteins and nitric oxide synthase. Brain Res 2004; 996:97-110. [PMID: 14670636 DOI: 10.1016/j.brainres.2003.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The endopiriform nucleus, further divided into dorsal and ventral parts, and the neighbouring pre-endopiriform (pEn) nucleus form a region of highly heterogeneous structure involved in numerous physiological and pathological processes. Nonpyramidal neurons of this region containing three neuropeptides-somatostatin (SOM), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP)-were examined in this study. Their colocalization with three calcium-binding proteins-parvalbumin (PV), calbindin D28k (CB), calretinin (CR), and with nitric oxide synthase (NOS), was investigated by qualitative and quantitative methods. The results are summarized as follows: (1) all studied substances are distributed in neurons of the entire region, (2) SOM-ir neurons constitute the most numerous neuropeptide-containing population, whereas NOS-ir neurons make up the largest population of all studied, (3) colocalizations are found in the endopiriform region (Enr) (SOM with CB, PV and NOS; VIP with CR; NPY with NOS and NOS with CR), (4) heterogeneity of the endopiriform region appears in the differences of cells' shape distributions of single-labeled (SOM-, CR-PV-ir) and double-labeled (SOM/CB-, SOM/PV-, NPY/NOS- and NOS/CR-ir) neurons, as well as in differentiated percentage values of SOM/NOS, NPY/NOS and VIP/CR double-labeled neurons in three studied parts; additionally, differences in distribution of immunoreactive neuropil elements between parts of the region are observed. Numerous regional differences concerning neuronal morphology and immunocytochemical characteristics justify further division of the endopiriform region into distinguished parts. Some immunocytochemical features of the neurons in studied region may contribute to the role in epileptogenesis.
Collapse
Affiliation(s)
- Przemysław Kowiański
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Debinki Street, 80-211, Gdańsk, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
BACKGROUND Neuropeptide Y (NPY) is widely expressed in the brain and is known to affect consummatory behaviors including drinking alcohol as well as to play a role in seizures. We investigated the effects of a 4 day binge ethanol treatment model that is known to induce physical dependence and withdrawal seizures to determine the effects of ethanol dependence and withdrawal on NPY expression. METHODS Male Sprague Dawley rats were treated with ethanol or control nutritionally complete diets by intragastric treatment three times per day for 2 or 4 days with an average daily dose of approximately 8 g/kg ethanol per day. Ethanol-fed rats treated for 4 days and then withdrawn for 24, 72, and 168 hr also were studied. Brains were perfused and sectioned for immunohistochemistry for NPY, phospho-cyclic adenosine monophosphate responsive element binding (pCREB), and other proteins. RESULTS NPY immunoreactivity (NPY-IR) was found in several brain regions, with the hippocampus and cerebral cortex showing the most pronounced changes. NPY-IR was reduced by ethanol treatment in hippocampus and cortex, although at 72 hr of withdrawal there was a dramatic increase in NPY-IR in the hilus of the dentate gyrus and in CA3 and CA2 fields of hippocampus. Ethanol withdrawal seizures occurred around 12 to 24 hr of withdrawal, preceding the changes in NPY-IR at 72 hr. pCREB immunoreactivity (pCREB-IR) tended to decrease during ethanol treatment but showed a dramatic increase in dentate gyrus at 72 hr of withdrawal. Parvalbumin immunoreactivity indicated that some of the pCREB-IR and NPY-IR were within inhibitory interneuron basket cells of the hippocampal hilus. NPY-IR returned to control levels by 168 hr of withdrawal. CONCLUSIONS These studies suggest that hippocampal NPY is reduced during the development of ethanol dependence. Ethanol withdrawal seizures precede a dramatic increase in hippocampal NPY-IR. Previous studies have suggested that NPY in the hippocampus reduces seizure activity and that NPY is induced by seizure activity. Thus, the increase in NPY-IR at 72 hr of withdrawal after binge ethanol treatment may be protective against prolonged withdrawal seizure activity.
Collapse
Affiliation(s)
- Silvia Bison
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, USA
| | | |
Collapse
|
24
|
Abstract
It is a central tenet of the epilepsy field that seizures result from the imbalance of excitation over inhibition (1). The bulk of excitation is mediated by the neurotransmitter glutamate, whereas inhibition results mainly from the actions of gamma-aminobutyric acid (GABA). In the neocortex and hippocampus, the intrinsic sources of GABA are the interneurons, which lately have come under intense scrutiny. It has become clear that a large number of distinct types of interneurons can be differentiated in part by the array of neuropeptides they coexpress (cf. (2)). Evidence is emerging that the neuropeptide complement of interneurons plays important roles in the way that interneurons regulate excitability. Here we discuss what is known about the relation of one well-characterized neuropeptide, neuropeptide Y (NPY), and epilepsy in experimental animals and humans, and suggest possible roles for the receptors as targets for the control of excessive excitation in epilepsy.
Collapse
Affiliation(s)
- William F. Colmers
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
25
|
Abstract
It is a central tenet of the epilepsy field that seizures result from the imbalance of excitation over inhibition ( 1 ). The bulk of excitation is mediated by the neurotransmitter glutamate, whereas inhibition results mainly from the actions of γ-aminobutyric acid (GABA). In the neocortex and hippocampus, the intrinsic sources of GABA are the interneurons, which lately have come under intense scrutiny. It has become clear that a large number of distinct types of interneurons can be differentiated in part by the array of neuropeptides they coexpress (cf. 2). Evidence is emerging that the neuropeptide complement of interneurons plays important roles in the way that interneurons regulate excitability. Here we discuss what is known about the relation of one well-characterized neuropeptide, neuropeptide Y (NPY), and epilepsy in experimental animals and humans, and suggest possible roles for the receptors as targets for the control of excessive excitation in epilepsy.
Collapse
Affiliation(s)
- William F. Colmers
- />Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Bouchaïb El Bahh
- />Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Malas S, Postlethwaite M, Ekonomou A, Whalley B, Nishiguchi S, Wood H, Meldrum B, Constanti A, Episkopou V. Sox1-deficient mice suffer from epilepsy associated with abnormal ventral forebrain development and olfactory cortex hyperexcitability. Neuroscience 2003; 119:421-32. [PMID: 12770556 DOI: 10.1016/s0306-4522(03)00158-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutations in several classes of embryonically-expressed transcription factor genes are associated with behavioral disorders and epilepsies. However, there is little known about how such genetic and neurodevelopmental defects lead to brain dysfunction. Here we present the characterization of an epilepsy syndrome caused by the absence of the transcription factor SOX1 in mice. In vivo electroencephalographic recordings from SOX1 mutants established a correlation between behavioral changes and cortical output that was consistent with a seizure origin in the limbic forebrain. In vitro intracellular recordings from three major forebrain regions, neocortex, hippocampus and olfactory (piriform) cortex (OC) showed that only the OC exhibits abnormal enhanced synaptic excitability and spontaneous epileptiform discharges. Furthermore, the hyperexcitability of the OC neurons was present in mutants prior to the onset of seizures but was completely absent from both the hippocampus and neocortex of the same animals. The local inhibitory GABAergic neurotransmission remained normal in the OC of SOX1-deficient brains, but there was a severe developmental deficit of OC postsynaptic target neurons, mainly GABAergic projection neurons within the olfactory tubercle and the nucleus accumbens shell. Our data show that SOX1 is essential for ventral telencephalic development and suggest that the neurodevelopmental defect disrupts local neuronal circuits leading to epilepsy in the SOX1-deficient mice.
Collapse
Affiliation(s)
- S Malas
- Mammalian Neurogenesis Group, MRC, Clinical Sciences Centre, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Peineau S, Potier B, Petit F, Dournaud P, Epelbaum J, Gardette R. AMPA-sst2 somatostatin receptor interaction in rat hypothalamus requires activation of NMDA and/or metabotropic glutamate receptors and depends on intracellular calcium. J Physiol 2003; 546:101-17. [PMID: 12509482 PMCID: PMC2342459 DOI: 10.1113/jphysiol.2002.025890] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Modulation of glutamatergic transmission by neuropeptides is an essential aspect of neuronal network activity. Activation of the hypothalamic somatostatin sst2 receptor subtype by octreotide decreases AMPA glutamate responses, indicating a central link between a neurohormonal and neuromodulatory peptide and the main hypothalamic fast excitatory neurotransmitter. In mediobasal hypothalamic slices, sst2 activation inhibits the AMPA component of glutamatergic synaptic responses but is ineffective when AMPA currents are pharmacologically isolated. In mediobasal hypothalamic cultures, the decrease of AMPA currents induced by octreotide requires a concomitant activation of sst2 receptors with either NMDA and/or metabotropic glutamate receptors. This modulation depends on changes in intracellular calcium concentration induced by calcium flux through NMDA receptors or calcium release from intracellular stores following metabotropic glutamate receptor activation. These results highlight an unusual regulatory mechanism in which the simultaneous activation of at least three different types of receptor is necessary to allow somatostatin-induced modulation of fast synaptic glutamatergic transmission in the hypothalamus.
Collapse
Affiliation(s)
- Stéphane Peineau
- INSERM U549, IFR Broca Sainte Anne, 2ter rue d'Alésia, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
28
|
Bacci A, Huguenard JR, Prince DA. Differential modulation of synaptic transmission by neuropeptide Y in rat neocortical neurons. Proc Natl Acad Sci U S A 2002; 99:17125-30. [PMID: 12482942 PMCID: PMC139280 DOI: 10.1073/pnas.012481899] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuropeptide Y (NPY) is widely expressed throughout the nervous system and is known to reduce excitatory (but also inhibitory) synaptic transmission in many CNS areas, leading to the proposal that it is an endogenous antiepileptic agent. In the neocortex, where NPY is present in gamma-aminobutyric acid (GABA)ergic interneurons, its effects on inhibitory and excitatory synaptic activities have not been completely explored. Here we report that NPY application elicits a long-lasting decrease in evoked excitatory postsynaptic current amplitude and a delayed, long-lasting increase in the amplitude of evoked monosynaptic inhibitory postsynaptic current (IPSC) in layer V pyramidal neurons of rat neocortex. The novel, late, NPY-mediated increase of inhibitory synaptic transmission is caused by modulation of Ca2+-dependent GABA release onto pyramidal neurons, as it was accompanied by an increase in Ca2+-dependent miniature IPSC frequency. NPY decreased evoked monosynaptic IPSCs in GABAergic interneurons, indicating that this neuropeptide has differential effects on different neuronal subtypes in the neocortex. Each of these NPY actions would decrease excitability in cortical circuits, a result that has important implications for both physiological neocortical operations as well as pathophysiological epileptiform activities.
Collapse
Affiliation(s)
- Alberto Bacci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | | | |
Collapse
|
29
|
Woldbye DPD, Nanobashvili A, Husum H, Bolwig TG, Kokaia M. Neuropeptide Y inhibits in vitro epileptiform activity in the entorhinal cortex of mice. Neurosci Lett 2002; 333:127-30. [PMID: 12419497 DOI: 10.1016/s0304-3940(02)01024-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies show that neuropeptide Y (NPY) inhibits in vitro seizures in rodent hippocampus. Here, we explored the effect of NPY application on epileptiform discharges induced by perfusion with magnesium-free solution in slices of entorhinal cortex from two different mouse strains. NPY significantly reduced the duration of epileptiform discharges with a peak effect of 36-50%. This is the first study showing anti-epileptiform effect of NPY in the entorhinal cortex and also the first evidence that NPY inhibits seizures in a cortical region in mice. The entorhinal cortex has a central role in transferring information between the hippocampus and the rest of the brain. Therefore our data further strengthen the concept of NPY and its receptors as widespread regulators of epileptiform activity and as a potential future target for antiepileptic therapy.
Collapse
Affiliation(s)
- D P D Woldbye
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A-11, University Hospital, S-221 84, Lund, Sweden.
| | | | | | | | | |
Collapse
|
30
|
Vezzani A, Michalkiewicz M, Michalkiewicz T, Moneta D, Ravizza T, Richichi C, Aliprandi M, Mulé F, Pirona L, Gobbi M, Schwarzer C, Sperk G. Seizure susceptibility and epileptogenesis are decreased in transgenic rats overexpressing neuropeptide Y. Neuroscience 2002; 110:237-43. [PMID: 11958866 DOI: 10.1016/s0306-4522(01)00581-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional studies in epileptic tissue indicate that neuropeptide Y and some of its peptide analogs potently inhibit seizure activity. We investigated seizure susceptibility in transgenic rats overexpressing the rat neuropeptide Y gene under the control of its natural promoter. Seizures were induced in adult transgenic male rats and their wild-type littermates by i.c.v. injection of 0.3 microg kainic acid or by electrical kindling of the dorsal hippocampus. Transgenic rats showed a significant reduction in the number and duration of electroencephalographic seizures induced by kainate by 30% and 55% respectively (P<0.05 and 0.01). Transgenic rats were also less susceptible to epileptogenesis than wild-type littermates as demonstrated by a 65% increase in the number of electrical stimuli required to induce stage 5 seizures (P<0.01). This phenotype was associated with a strong and specific expression of neuropeptide Y mRNA in area CA1, a brain area involved in the seizure network. We conclude that endogenous neuropeptide Y overexpression in the rat hippocampus is associated with inhibition of seizures and epileptogenesis suggesting that this system may be a valuable target for developing novel antiepileptic treatments.
Collapse
Affiliation(s)
- A Vezzani
- Department of Neurosciences, Istituo di Richerche Farmacologie Mario Negri, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Reibel S, Nadi S, Benmaamar R, Larmet Y, Carnahan J, Marescaux C, Depaulis A. Neuropeptide Y and epilepsy: varying effects according to seizure type and receptor activation. Peptides 2001; 22:529-39. [PMID: 11287111 DOI: 10.1016/s0196-9781(01)00347-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vitro and in vivo experiments suggest antiepileptic properties for NPY. In this study, the pharmacology of these effects was examined and compared in different rat models of seizures. Agonists for Y(1), Y(2) and Y(5) receptors reduced seizure-like activity in hippocampal cultures. Intracerebral injection of NPY or Y(5) agonists reduced the expression of focal seizures produced by a single electrical stimulation of the hippocampus. Conversely, NPY agonists increased the duration of generalized convulsive seizures induced by pentylenetetrazol. These results suggest that NPY reduces seizures of hippocampal origin through activation of Y(5) receptors. They also point to probable modulatory effects of NPY in brain structures other than the hippocampus, involved in initiation, propagation or control of seizures.
Collapse
Affiliation(s)
- S Reibel
- INSERM U398, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg cedex, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Intracerebroventricular injection of NPY inhibits epileptiform seizures and seizure-related "wet dog shakes" (WDS) following electrical stimulation of the dentate gyrus or subiculum. This study examined the effects of NPY on seizures and WDS elicited in hippocampal CA3. Like in the other hippocampal regions, NPY significantly inhibited both seizures and accompanying WDS consistent with in vitro data. The identification of an additional antiepileptic hippocampal target for NPY could prove therapeutically relevant considering that the hippocampal formation is a frequent seizure focus in human epilepsy. The effects of NPY were found to persist on seven repeated NPY injection days. Thus tolerance to the anti-seizure effects of NPY does not appear to develop rapidly. Tolerance being a problem with several current antiepileptic drugs, this further strengthens the concept of NPY receptors as a potential future antiepileptic target.
Collapse
Affiliation(s)
- K Klemp
- Laboratory of Neuropsychiatry, Department of Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|