1
|
Haque S, Yadav DK, Bisht SC, Yadav N, Singh V, Dubey KK, Jawed A, Wahid M, Dar SA. Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. J Chemother 2019; 31:161-187. [DOI: 10.1080/1120009x.2019.1599175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gene Expression Laboratory, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Dinesh K. Yadav
- Department of Botany, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Shekhar C. Bisht
- Department of Biotechnology, H.N.B Garhwal University, Srinagar, Uttarakhand, India
| | - Neelam Yadav
- Department of Botany, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - Vineeta Singh
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Kashyap Kumar Dubey
- Industrial Biotechnology Laboratory, University Institute of Engineering and Technology, M.D. University, Rohtak, Haryana, India
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Departments of Microbiology, University College of Medical Sciences (University of Delhi), Delhi, India
| |
Collapse
|
2
|
Correia S, Nunes-Miranda JD, Pinto L, Santos HM, de Toro M, Sáenz Y, Torres C, Capelo JL, Poeta P, Igrejas G. Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain. Int J Mol Sci 2014; 15:14191-219. [PMID: 25196519 PMCID: PMC4159846 DOI: 10.3390/ijms150814191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen.
Collapse
Affiliation(s)
- Susana Correia
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Júlio D Nunes-Miranda
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Luís Pinto
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Hugo M Santos
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - María de Toro
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander 39011, Spain.
| | - Yolanda Sáenz
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - Carmen Torres
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - José Luis Capelo
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - Patrícia Poeta
- Centre of Studies of Animal and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| |
Collapse
|
3
|
Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308-41. [PMID: 23554419 DOI: 10.1128/cmr.00066-12] [Citation(s) in RCA: 504] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success.
Collapse
|
4
|
Choi J, Shin D, Kim M, Park J, Lim S, Ryu S. LsrR-mediated quorum sensing controls invasiveness of Salmonella typhimurium by regulating SPI-1 and flagella genes. PLoS One 2012; 7:e37059. [PMID: 22623980 PMCID: PMC3356404 DOI: 10.1371/journal.pone.0037059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/12/2012] [Indexed: 12/20/2022] Open
Abstract
Bacterial cell-to-cell communication, termed quorum sensing (QS), controls bacterial behavior by using various signal molecules. Despite the fact that the LuxS/autoinducer-2 (AI-2) QS system is necessary for normal expression of Salmonella pathogenicity island-1 (SPI-1), the mechanism remains unknown. Here, we report that the LsrR protein, a transcriptional regulator known to be involved in LuxS/AI-2-mediated QS, is also associated with the regulation of SPI-1-mediated Salmonella virulence. We determined that LsrR negatively controls SPI-1 and flagella gene expressions. As phosphorylated AI-2 binds to and inactivates LsrR, LsrR remains active and decreases expression of SPI-1 and flagella genes in the luxS mutant. The reduced expression of those genes resulted in impaired invasion of Salmonella into epithelial cells. Expression of SPI-1 and flagella genes was also reduced by overexpression of the LsrR regulator from a plasmid, but was relieved by exogenous AI-2, which binds to and inactivates LsrR. These results imply that LsrR plays an important role in selecting infectious niche of Salmonella in QS dependent mode.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Dongwoo Shin
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Minjeong Kim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Joowon Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
5
|
Evans MR, Fink RC, Vazquez-Torres A, Porwollik S, Jones-Carson J, McClelland M, Hassan HM. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol 2011; 11:58. [PMID: 21418628 PMCID: PMC3075218 DOI: 10.1186/1471-2180-11-58] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/21/2011] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control) helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium. Results We compared the transcriptional profiles of the virulent wild-type (WT) strain (ATCC 14028s) and its isogenic arcA mutant grown under anaerobic conditions. We found that ArcA directly or indirectly regulates 392 genes (8.5% of the genome); of these, 138 genes are poorly characterized. Regulation by ArcA in S. Typhimurium is similar, but distinct from that in E. coli. Thus, genes/operons involved in core metabolic pathways (e.g., succinyl-CoA, fatty acid degradation, cytochrome oxidase complexes, flagellar biosynthesis, motility, and chemotaxis) were regulated similarly in the two organisms. However, genes/operons present in both organisms, but regulated differently by ArcA in S. Typhimurium included those coding for ethanolamine utilization, lactate transport and metabolism, and succinate dehydrogenases. Salmonella-specific genes/operons regulated by ArcA included those required for propanediol utilization, flagellar genes (mcpAC, cheV), Gifsy-1 prophage genes, and three SPI-3 genes (mgtBC, slsA, STM3784). In agreement with our microarray data, the arcA mutant was non-motile, lacked flagella, and was as virulent in mice as the WT. Additionally, we identified a set of 120 genes whose regulation was shared with the anaerobic redox regulator, Fnr. Conclusion(s) We have identified the ArcA regulon in anaerobically grown S. Typhimurium. Our results demonstrated that in S. Typhimurium, ArcA serves as a transcriptional regulator coordinating cellular metabolism, flagella biosynthesis, and motility. Furthermore, ArcA and Fnr share in the regulation of 120 S. Typhimurium genes.
Collapse
Affiliation(s)
- Matthew R Evans
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Crozat E, Hindré T, Kühn L, Garin J, Lenski RE, Schneider D. Altered regulation of the OmpF porin by Fis in Escherichia coli during an evolution experiment and between B and K-12 strains. J Bacteriol 2011; 193:429-40. [PMID: 21097626 PMCID: PMC3019833 DOI: 10.1128/jb.01341-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 11/08/2010] [Indexed: 12/19/2022] Open
Abstract
The phenotypic plasticity of global regulatory networks provides bacteria with rapid acclimation to a wide range of environmental conditions, while genetic changes in those networks provide additional flexibility as bacteria evolve across long time scales. We previously identified mutations in the global regulator-encoding gene fis that enhanced organismal fitness during a long-term evolution experiment with Escherichia coli. To gain insight into the effects of these mutations, we produced two-dimensional protein gels with strains carrying different fis alleles, including a beneficial evolved allele and one with an in-frame deletion. We found that Fis controls the expression of the major porin-encoding gene ompF in the E. coli B-derived ancestral strain used in the evolution experiment, a relationship that has not been described before. We further showed that this regulatory connection evolved over two different time scales, perhaps explaining why it was not observed before. On the longer time scale, we showed that this regulation of ompF by Fis is absent from the more widely studied K-12 strain and thus is specific to the B strain. On a shorter time scale, this regulatory linkage was lost during 20,000 generations of experimental evolution of the B strain. Finally, we mapped the Fis binding sites in the ompF regulatory region, and we present a hypothetical model of ompF expression that includes its other known regulators.
Collapse
Affiliation(s)
- Estelle Crozat
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Thomas Hindré
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Lauriane Kühn
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Jérome Garin
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Richard E. Lenski
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Dominique Schneider
- Laboratoire Adaptation et Pathogénie des Micro-organismes, CNRS UMR 5163, Université Joseph Fourier, Grenoble 1, BP 170, F-38042 Grenoble Cedex 9, France, CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, INSERM, U880, F-38042 Grenoble Cedex 9, France, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
7
|
Lim S, Kim M, Choi J, Ryu S. A mutation in tdcA attenuates the virulence of Salmonella enterica serovar Typhimurium. Mol Cells 2010; 29:509-17. [PMID: 20396961 DOI: 10.1007/s10059-010-0063-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/14/2010] [Accepted: 01/18/2010] [Indexed: 12/23/2022] Open
Abstract
The Salmonella tdc operon encodes enzymes belonging to a metabolic pathway that degrades L-serine and L-threonine. The upregulation of the tdc operon and increased virulence of Salmonella grown under oxygen-limiting conditions prompted us to investigate the role of the tdc operon in the pathogenesis of Salmonella Typhimurium. A Salmonella strain carrying a null mutation in tdcA, which encodes the transcriptional activator of the tdc operon, was impaired in mice infected intraperitoneally with the bacterium. In addition, the Salmonella tdcA mutant showed reduced replication compared with the parental strain in cultured animal cells, although their growth rates were similar in various culture media. To understand the function of TdcA in pathogenesis, we performed two-dimensional gel electrophoresis and found that flagellar and PhoP-regulated proteins were affected by the tdcA mutation. The results of beta-galactosidase assays and FACS analysis showed that, among the four PhoP-dependent genes tested, the expression of ssaG, which is located in Salmonella pathogenicity island 2 (SPI2), was reduced in the tdcA mutant, especially in the intracellular environment of macrophages. Taken together, our data suggest that tdcA plays an important role in the pathogenesis of Salmonella.
Collapse
Affiliation(s)
- Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | | | | | | |
Collapse
|
8
|
The capability of catabolic utilization of N-acetylneuraminic acid, a sialic acid, is essential for Vibrio vulnificus pathogenesis. Infect Immun 2009; 77:3209-17. [PMID: 19487477 DOI: 10.1128/iai.00109-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acetylneuraminic acid (Neu5Ac, sialic acid) could provide a good substrate for enteropathogenic bacteria in the intestine, when the bacteria invade and colonize in human gut. In order to analyze the role of Neu5Ac catabolism in Vibrio vulnificus pathogenesis, a mutant with disruption of the nanA gene encoding Neu5Ac lyase was constructed by allelic exchanges. The nanA mutant was not able to utilize Neu5Ac as a sole carbon source and revealed an altered colony morphotype with reduced opacity in the presence of Neu5Ac. Compared to the wild type, the nanA mutant exhibited a low level of cytotoxicity toward INT-407 epithelial cells in vitro and reduced virulence in a mouse model. The disruption of nanA also resulted in a substantial decrease in histopathological damage in jejunum and colon tissues from the mouse intestine. These results indicated that NanA plays an important role in V. vulnificus pathogenesis. In addition, the nanA mutant was significantly diminished in growth with and adherence to INT-407 epithelial cells in vitro, and was defective for intestinal colonization, reflecting the impaired ability of the mutant to grow and survive with, persist in, and adhere to the intestine in vivo. Consequently, the combined results suggest that NanA and the capability of catabolic utilization of Neu5Ac contribute to V. vulnificus virulence by ensuring growth, adhesion, and survival during infection.
Collapse
|
9
|
Fass E, Groisman EA. Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol 2009; 12:199-204. [PMID: 19264535 PMCID: PMC2805070 DOI: 10.1016/j.mib.2009.01.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 12/20/2022]
Abstract
The Salmonella Pathogenicity Island-2 (i.e. SPI-2) encodes a unique type III secretion system that delivers effector proteins from the Salmonella-containing vacuole (SCV) into the host cell. The SPI-2 locus also encodes translocated effectors as well as a two-component system - termed SpiR/SsrB - that is essential for the expression of SPI-2 genes. Transcription of the horizontally acquired SPI-2 genes requires the ancestral nucleoid-associated proteins (i.e. NAPs) IHF and Fis, the regulatory protein SlyA, and the two-component systems PhoP/PhoQ and OmpR/EnvZ, as well as the DNA binding protein HilD encoded in a different pathogenicity island. Some of these positive SPI-2 regulators act to antagonize the robust silencing promoted by the NAPs H-NS, Hha, and YdgT.
Collapse
Affiliation(s)
- Ephraim Fass
- Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
10
|
Role of the DksA-like protein in the pathogenesis and diverse metabolic activity of Campylobacter jejuni. J Bacteriol 2008; 190:4512-20. [PMID: 18456813 DOI: 10.1128/jb.00105-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DksA is well known for its regulatory role in the transcription of rRNA and genes involved in amino acid synthesis in many bacteria. DksA has also been reported to control expression of virulence genes in pathogenic bacteria. Here, we elucidated the roles of a DksA-like protein (CJJ81176_0160, Cj0125c) in the pathogenesis of Campylobacter jejuni. As in other bacteria, transcription of stable RNA was repressed by the DksA-like protein under stress conditions in C. jejuni. Transcriptomic and proteomic analyses of C. jejuni 81-176 and an isogenic mutant lacking the DksA-like protein showed differential expression of many genes involved in amino acid metabolism, iron-related metabolism, and other metabolic reactions. Also, the C. jejuni DksA-like protein mutant exhibited a decreased ability to invade intestinal cells and induce release of interleukin-8 from intestinal cells. These results suggest that the DksA-like protein plays an important regulatory role in diverse metabolic events and the virulence of C. jejuni.
Collapse
|
11
|
Lautier T, Nasser W. The DNA nucleoid-associated protein Fis co-ordinates the expression of the main virulence genes in the phytopathogenic bacterium Erwinia chrysanthemi. Mol Microbiol 2007; 66:1474-90. [PMID: 18028311 DOI: 10.1111/j.1365-2958.2007.06012.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Erwinia chrysanthemi strain 3937 is a necrotrophic bacterial plant pathogen. Pectinolytic enzymes and, in particular, pectate lyases (Pels) play a key role in soft rot symptoms but the efficient colonization of plants by E. chrysanthemi requires additional factors. These factors include the harpin HrpN, the cellulase Cel5, proteases (Prts), flagellar proteins and the Sap system, involved in the detoxification of plant antimicrobial peptides. HrpN and flagellum are mostly involved in the early steps of infection whereas the degradative enzymes (Pels, Cel5, Prts) are mainly required in the advanced stages. Production of these virulence factors is tightly regulated by environmental conditions. This report shows that the nucleoid-associated protein Fis plays a pivotal role in the expression of the main virulence genes. Its production is regulated in a growth phase-dependent manner and is under negative autoregulation. An E. chrysanthemi fis mutant displays a reduced motility and expression of hrpN, prtC and the sap operon. In contrast, the expression of the cel5 gene is increased in this mutant. Furthermore, the induction of the Pel activity is delayed and increased during the stationary growth phase in the fis mutant. Most of these controls occur through a direct effect because purified Fis binds to the promoter regions of fis, hrpN, sapA, cel5 and fliC. Moreover, potassium permanganate footprinting and in vitro transcription assays have revealed that Fis prevents transcription initiation at the fis promoter and also transcript elongation from the cel5 promoter. Finally, the fis mutant has a decreased virulence. These results suggest a co-ordinated regulation by Fis of virulence factors involved in certain key steps of infection, early (asymptomatic) and advanced (symptomatic) phases.
Collapse
Affiliation(s)
- Thomas Lautier
- Université de Lyon, F-69003, France; Université Lyon 1, F-69622, France; INSA-Lyon, Villeurbanne, F-69621, France; CNRS, UMR 5240, Unité Microbiologie Adaptation et Pathogénie, F-69622, France
| | | |
Collapse
|
12
|
O Cróinín T, Dorman CJ. Expression of the Fis protein is sustained in late-exponential- and stationary-phase cultures of Salmonella enterica serovar Typhimurium grown in the absence of aeration. Mol Microbiol 2007; 66:237-51. [PMID: 17784910 DOI: 10.1111/j.1365-2958.2007.05916.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The classic expression pattern of the Fis global regulatory protein during batch culture consists of a high peak in the early logarithmic phase of growth, followed by a sharp decrease through mid-exponential growth phase until Fis is almost undetectable at the end of the exponential phase. We discovered that this pattern is contingent on the growth regime. In Salmonella enterica serovar Typhimurium cultures grown in non-aerated SPI1-inducing conditions, Fis can be detected readily in stationary phase. On the other hand, cultures grown with standard aeration showed the classic Fis expression pattern. Sustained Fis expression in non-aerated cultures was also detected in some Escherichia coli strains, but not in others. This novel pattern of Fis expression was independent of sequence differences in the fis promoter regions of Salmonella and E. coli. Instead, a clear negative correlation between the expression of the Fis protein and of the stress-and-stationary-phase sigma factor RpoS was observed in a variety of strains. An rpoS mutant displayed elevated levels of Fis and had a higher frequency of epithelial cell invasion under these growth conditions. We discuss a model whereby Fis and RpoS levels vary in response to environmental signals allowing the expression and repression of SPI1 invasion genes.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Ireland
| | | |
Collapse
|
13
|
O Cróinín T, Carroll RK, Kelly A, Dorman CJ. Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 62:869-82. [PMID: 16999831 DOI: 10.1111/j.1365-2958.2006.05416.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adaptation of bacterial pathogens to an intracellular environment requires resetting of the expression levels of a wide range of both virulence and housekeeping genes. We investigated the possibility that changes in DNA supercoiling could modulate the expression of genes known to be important in the intracellular growth of the pathogen Salmonella enterica serovar Typhimurium. Our data show that DNA becomes relaxed when Salmonella grows in murine macrophage but not in epithelial cells, indicating that DNA supercoiling plays a role in discrimination between two types of intracellular environment. The ssrA regulatory gene within the SPI-2 pathogenicity island that is required for survival in macrophage was found to be upregulated by DNA relaxation. This enhancement of expression also required the Fis nucleoid-associated protein. Manipulating the level of the Fis protein modulated both the level of DNA supercoiling and ssrA transcription. We discuss a model of bacterial intracellular adaptation in which Fis and DNA supercoiling collaborate to fine-tune virulence gene expression.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Ireland
| | | | | | | |
Collapse
|
14
|
Shi L, Adkins JN, Coleman JR, Schepmoes AA, Dohnkova A, Mottaz HM, Norbeck AD, Purvine SO, Manes NP, Smallwood HS, Wang H, Forbes J, Gros P, Uzzau S, Rodland KD, Heffron F, Smith RD, Squier TC. Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identification of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. J Biol Chem 2006; 281:29131-40. [PMID: 16893888 DOI: 10.1074/jbc.m604640200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To evade host resistance mechanisms, Salmonella enterica serovar Typhimurium (STM), a facultative intracellular pathogen, must alter its proteome following macrophage infection. To identify new colonization and virulence factors that mediate STM pathogenesis, we have isolated STM cells from RAW 264.7 macrophages at various time points following infection and used a liquid chromatography-mass spectrometry-based proteomic approach to detect the changes in STM protein abundance. Because host resistance to STM infection is strongly modulated by the expression of a functional host-resistant regulator, i.e. natural resistance-associated macrophage protein 1 (Nramp1, also called Slc11a1), we have also examined the effects of Nramp1 activity on the changes of STM protein abundances. A total of 315 STM proteins have been identified from isolated STM cells, which are largely housekeeping proteins whose abundances remain relatively constant during the time course of infection. However, 39 STM proteins are strongly induced after infection, suggesting their involvement in modulating colonization and infection. Of the 39 induced proteins, 6 proteins are specifically modulated by Nramp1 activity, including STM3117, as well as STM3118-3119 whose time-dependent abundance changes were confirmed using Western blot analysis. Deletion of the gene encoding STM3117 resulted in a dramatic reduction in the ability of STM to colonize wild-type RAW 264.7 macrophages, demonstrating a critical involvement of STM3117 in promoting the replication of STM inside macrophages. The predicted function common for STM3117-3119 is biosynthesis and modification of the peptidoglycan layer of the STM cell wall.
Collapse
Affiliation(s)
- Liang Shi
- Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pelosi L, Kühn L, Guetta D, Garin J, Geiselmann J, Lenski RE, Schneider D. Parallel changes in global protein profiles during long-term experimental evolution in Escherichia coli. Genetics 2006; 173:1851-69. [PMID: 16702438 PMCID: PMC1569701 DOI: 10.1534/genetics.105.049619] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 05/11/2006] [Indexed: 02/06/2023] Open
Abstract
Twelve populations of Escherichia coli evolved in and adapted to a glucose-limited environment from a common ancestor. We used two-dimensional protein electrophoresis to compare two evolved clones, isolated from independently derived populations after 20,000 generations. Exceptional parallelism was detected. We compared the observed changes in protein expression profiles with previously characterized global transcription profiles of the same clones; this is the first time such a comparison has been made in an evolutionary context where these changes are often quite subtle. The two methodologies exhibited some remarkable similarities that highlighted two different levels of parallel regulatory changes that were beneficial during the evolution experiment. First, at the higher level, both methods revealed extensive parallel changes in the same global regulatory network, reflecting the involvement of beneficial mutations in genes that control the ppGpp regulon. Second, both methods detected expression changes of identical gene sets that reflected parallel changes at a lower level of gene regulation. The protein profiles led to the discovery of beneficial mutations affecting the malT gene, with strong genetic parallelism across independently evolved populations. Functional and evolutionary analyses of these mutations revealed parallel phenotypic decreases in the maltose regulon expression and a high level of polymorphism at this locus in the evolved populations.
Collapse
Affiliation(s)
- Ludovic Pelosi
- Laboratoire Adaptation et Pathogénie des Microorganismes, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Lim S, Kim B, Choi HS, Lee Y, Ryu S. Fis is required for proper regulation of ssaG expression in Salmonella enterica serovar Typhimurium. Microb Pathog 2006; 41:33-42. [PMID: 16777370 DOI: 10.1016/j.micpath.2006.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 02/27/2006] [Accepted: 05/14/2006] [Indexed: 12/21/2022]
Abstract
Salmonella pathogenicity island 2 (SPI2) encodes a type III secretion system (TTSS) necessary for bacterial survival and replication in intracellular environment of host cells. SPI2 genes are transcribed preferentially after Salmonella enters the host cells. Transcriptional regulation of ssaG encoding the component of SPI2-TTSS apparatus was studied in vivo and in vitro. Fis, one of the major components of bacterial nucleoid, activated the stationary phase-specific expression of ssaG when Salmonella was grown in LB media. Gel-shift and footprinting analysis showed Fis bound to four distinct sites of the ssaG promoter region with different affinities. All four Fis-binding sites were required for timely transcription activation of ssaG after Salmonella entered macrophage cells. Gentamicin protection experiments using bacteria grown to stationary phase prior to infection showed that the ability of the fis mutant strain to replicate within the RAW264.7 macrophage cells was lower than the wild type. These observations confirm that Fis plays an important role in regulations of SPI2 as well as SPI1 for an efficient regulation of the virulence genes.
Collapse
Affiliation(s)
- Sangyong Lim
- Radiation Food Science & Biotechnology Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Korea
| | | | | | | | | |
Collapse
|
17
|
Drake RR, Deng Y, Schwegler EE, Gravenstein S. Proteomics for biodefense applications: progress and opportunities. Expert Rev Proteomics 2005; 2:203-13. [PMID: 15892565 PMCID: PMC7105753 DOI: 10.1586/14789450.2.2.203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The increasing threat of bioterrorism and continued emergence of new infectious diseases has driven a major resurgence in biomedical research efforts to develop improved treatments, diagnostics and vaccines, as well as increase the fundamental understanding of the host immune response to infectious agents. The availability of multiple mass spectrometry platforms combined with multidimensional separation technologies and microbial genomic databases provides an unprecedented opportunity to develop these much needed resources. An overview of current proteomic strategies applied to microbes and viruses considered potential bioterrorism agents is presented. The emerging area of immunoproteomics as applied to the development of new vaccine targets is also summarized. These powerful research approaches can generate a multitude of potential new protein targets; however, translating these proteomic discoveries to useful counter-bioterrorism products will require large collaborative research efforts across multiple basic science and clinical disciplines. A translational proteomic research paradigm illustrating this approach using influenza virus as an example is discussed.
Collapse
Affiliation(s)
- Richard R Drake
- Scientific Center for Biodefense, Center for Biomedical ProteomicsDepartment of Microbiology & Molecular Cell BiologyEastern Virginia Medical School700 W. OlneyNorfolk, VA 23507USATel.: +1 757 446 5656Fax: +1 757 624 2255
| | - Yuping Deng
- Glennan Center for Geriatrics & GerontologyDepartment of Internal MedicineEastern Virginia Medical School700 W. OlneyNorfolk, VA 23507USATel.: +1 757 446 7335Fax: +1 757 446 7049
| | - E Ellen Schwegler
- Center for Biomedical ProteomicsDepartment of Microbiology & Molecular Cell BiologyEastern Virginia Medical School825 Fairfax Ave.Norfolk, VA 23507USATel.: +1 757 446 5760Fax: +1 757 624 2255
| | - Stefan Gravenstein
- Glennan Center for Geriatrics & GerontologyDepartment of Internal MedicineEastern Virginia Medical School825 Fairfax Ave.Norfolk, VA 23507USATel.: +1 757 446 7040Fax: +1 757 446 7049
| |
Collapse
|
18
|
Kelly A, Goldberg MD, Carroll RK, Danino V, Hinton JCD, Dorman CJ. A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology (Reading) 2004; 150:2037-2053. [PMID: 15256548 DOI: 10.1099/mic.0.27209-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fis is a key DNA-binding protein involved in nucleoid organization and modulation of many DNA transactions, including transcription in enteric bacteria. The regulon of genes whose expression is influenced by Fis inSalmonella entericaserovar Typhimurium (S. typhimurium) has been defined by DNA microarray analysis. These data suggest that Fis plays a central role in coordinating the expression of both metabolic and type III secretion factors. The genes that were most strongly up-regulated by Fis were those involved in virulence and located in the pathogenicity islands SPI-1, SPI-2, SPI-3 and SPI-5. Similarly, motility and flagellar genes required Fis for full expression. This was shown to be a direct effect as purified Fis protein bound to the promoter regions of representative flagella and SPI-2 genes. Genes contributing to aspects of metabolism known to assist the bacterium during survival in the mammalian gut were also Fis-regulated, usually negatively. This category included components of metabolic pathways for propanediol utilization, biotin synthesis, vitamin B12transport, fatty acids and acetate metabolism, as well as genes for the glyoxylate bypass of the tricarboxylic acid cycle. Genes found to be positively regulated by Fis included those for ethanolamine utilization. The data reported reveal the central role played by Fis in coordinating the expression of both housekeeping and virulence factors required byS. typhimuriumduring life in the gut lumen or during systemic infection of host cells.
Collapse
Affiliation(s)
- Arlene Kelly
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Martin D Goldberg
- Molecular Microbiology Group, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Ronan K Carroll
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Vittoria Danino
- Molecular Microbiology Group, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Jay C D Hinton
- Molecular Microbiology Group, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|