1
|
Wang X, Lin P, Shen Q, Feng X, Xu S, Zhang Q, Liu Y, Ren C, Yong D, Duan Q, Huo L, Zhang Y, Li G, Fu J, Li R. A highly efficient heterologous expression platform to facilitate the production of microbial natural products in Streptomyces. Microb Cell Fact 2025; 24:105. [PMID: 40369635 PMCID: PMC12076808 DOI: 10.1186/s12934-025-02722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Heterologous expression in Streptomyces provides a platform for mining natural products (NPs) encoded by cryptic biosynthetic gene clusters (BGCs) of bacteria. The BGCs are first engineered in hosts with robust recombineering systems, such as Escherichia coli, followed by expression in optimized heterologous hosts, such as Streptomyces, with defined metabolic backgrounds. RESULTS We developed a highly efficient heterologous expression platform, named Micro-HEP (microbial heterologous expression platform), that uses versatile E. coli strains capable of both modification and conjugation transfer of foreign BGCs and optimized chassis Streptomyces strain for expression. The stability of repeat sequences in these E. coli strains was superior to that of the commonly used conjugative transfer system E. coli ET12567 (pUZ8002). For optimizing expression of foreign BGCs, the chassis strain S. coelicolor A3(2)-2023 was generated by deleting four endogenous BGCs followed by introducing multiple recombinase-mediated cassette exchange (RMCE) sites in the S. coelicolor A3(2) chromosome. Additionally, modular RMCE cassettes (Cre-lox, Vika-vox, Dre-rox, and phiBT1-attP) were constructed for integrating BGCs into the chassis strain. Micro-HEP was tested using BGCs for the anti-fibrotic compound xiamenmycin and griseorhodins. Two to four copies of the xim BGC were integrated by RMCE, with increasing copy number associated with increasing yield of xiamenmycin. The grh BGC was also efficiently expressed, and the new compound griseorhodin H was identified. CONCLUSION We demonstrated that our Micro-HEP system enables the efficient expression of foreign BGCs, facilitating the discovery of new NPs and increasing yields.
Collapse
Affiliation(s)
- Xiuling Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ping Lin
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Qiyao Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xueyan Feng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Shouying Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qijun Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Cailing Ren
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Daojing Yong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qiong Duan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ruijuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
2
|
Rezaei S, Moncada-Restrepo M, Leng S, Chambers JW, Leng F. Synthesizing unmodified, supercoiled circular DNA molecules in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634800. [PMID: 39896529 PMCID: PMC11785245 DOI: 10.1101/2025.01.24.634800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Supercoiled (Sc) circular DNA, such as plasmids, has shown therapeutic potential since the 1990s, but is limited by bacterial modifications, unnecessary DNA sequences, and contaminations that may trigger harmful responses. To overcome these challenges, we have developed two novel scalable biochemical methods to synthesize unmodified Sc circular DNA. Linear DNA with two loxP sites in the same orientation is generated via PCR or rolling circle amplification. Cre recombinase then converts this linear DNA into relaxed circular DNA. After T5 exonuclease removes unwanted linear DNA, topoisomerases are employed to generate Sc circular DNA. We have synthesized EGFP-FL, a 2,002 bp mini-circular DNA carrying essential EGFP expression elements. EGFP-FL transfected human HeLa and mouse C2C12 cells with much higher efficiency than E. coli-derived plasmids. These new biochemical methods can produce unmodified Sc circular DNA, in length from 196 base pairs to several kilobases and in quantities from micrograms to milligrams, providing a promising platform for diverse applications.
Collapse
Affiliation(s)
- Sepideh Rezaei
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Monica Moncada-Restrepo
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Sophia Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Top Biosciences, LLC, 7405 SW 157 Terrace, Palmetto Bay, FL 33157
| | - Jeremy W. Chambers
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Top Biosciences, LLC, 7405 SW 157 Terrace, Palmetto Bay, FL 33157
| |
Collapse
|
3
|
Nyerges Á, Bálint B, Cseklye J, Nagy I, Pál C, Fehér T. CRISPR-interference-based modulation of mobile genetic elements in bacteria. Synth Biol (Oxf) 2019; 4:ysz008. [PMID: 31008359 PMCID: PMC6462304 DOI: 10.1093/synbio/ysz008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/12/2022] Open
Abstract
Spontaneous mutagenesis of synthetic genetic constructs by mobile genetic elements frequently results in the rapid loss of engineered functions. Previous efforts to minimize such mutations required the exceedingly time-consuming manipulation of bacterial chromosomes and the complete removal of insertional sequences (ISes). To this aim, we developed a single plasmid-based system (pCRIS) that applies CRISPR-interference to inhibit the transposition of bacterial ISes. pCRIS expresses multiple guide RNAs to direct inactivated Cas9 (dCas9) to simultaneously silence IS1, IS3, IS5 and IS150 at up to 38 chromosomal loci in Escherichia coli, in vivo. As a result, the transposition rate of all four targeted ISes dropped to negligible levels at both chromosomal and episomal targets. Most notably, pCRIS, while requiring only a single plasmid delivery performed within a single day, provided a reduction of IS-mobility comparable to that seen in genome-scale chromosome engineering projects. The fitness cost of multiple IS-knockdown, detectable in flask-and-shaker systems was readily outweighed by the less frequent inactivation of the transgene, as observed in green fluorescent protein (GFP)-overexpression experiments. In addition, global transcriptomics analysis revealed only minute alterations in the expression of untargeted genes. Finally, the transposition-silencing effect of pCRIS was easily transferable across multiple E. coli strains. The plasticity and robustness of our IS-silencing system make it a promising tool to stabilize bacterial genomes for synthetic biology and industrial biotechnology applications.
Collapse
Affiliation(s)
- Ákos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.,Seqomics Biotechnology Ltd, Mórahalom, Hungary
| | | | - István Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.,Seqomics Biotechnology Ltd, Mórahalom, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Fehér
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
4
|
Chai R, Zhang C, Tian F, Li H, Yang Q, Song A, Qiu L. Recombination function and recombination kinetics of Escherichia coli single-stranded DNA-binding protein. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1160-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during the repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and the regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential, and, in C. crescentus, it is important for temporal gene expression, which, in turn, is required for coordinating chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage, decrease transformation frequency in certain bacteria, and decrease the stability of short direct repeats and are necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
6
|
Mao X, Wei M, Zhu C, Lu J, Gao J, Simon AJ, Shi J, Huang Q, Fan C. Real time in vitro regulation of DNA methylation using a 5-fluorouracil conjugated DNA-based stimuli-responsive platform. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2604-2609. [PMID: 23480369 DOI: 10.1021/am3033052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA methylation, catalyzed by methylases, plays a critical role in many biological processes, and many methylases have been regarded as promising targets for antimicrobial drugs. In this work, we report a stimulus responsive, self-regulating anticancer drug release platform, comprising a multifunctional DNA that upon methylation by methyltransferase (MTase) releases 5-fluorouracil (5-Fu) and in turn inhibits subsequent expression of MTase. The multifunctional DNA with anticancer drug are first methylated by DNA adenine methylation (DAM) methyltransferase (MTase) and then cut by the methylation-sensitive restriction endonuclease Dpn I. Removal of duplex from the functional DNA by the methylation/cleavage process will release the anticancer drug, resulting in inhibition of the activity of DAM in turn. Consequently, the enzyme activity of DAM MTase can be self-regulated. Furthermore, we found that the inhibition efficiency of 5-Fu significantly increase as it is functionalized with DNA.
Collapse
Affiliation(s)
- Xiuhai Mao
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcmmethyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholera and Caulobactercrescentus) adenine methylation is essential, and in C.crescentus it is important for temporal gene expression which, in turn, is required for coordination of chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage,decrease transformation frequency in certain bacteria,and decrease the stability of short direct repeats andare necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|