1
|
Kroll F, Dimitriadis A, Campbell T, Darwent L, Collinge J, Mead S, Vire E. Prion protein gene mutation detection using long-read Nanopore sequencing. Sci Rep 2022; 12:8284. [PMID: 35585119 PMCID: PMC9117325 DOI: 10.1038/s41598-022-12130-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
Prion diseases are fatal neurodegenerative conditions that affect humans and animals. Rapid and accurate sequencing of the prion gene PRNP is paramount to human prion disease diagnosis and for animal surveillance programmes. Current methods for PRNP genotyping involve sequencing of small fragments within the protein-coding region. The contribution of variants in the non-coding regions of PRNP including large structural changes is poorly understood. Here, we used long-range PCR and Nanopore sequencing to sequence the full length of PRNP, including its regulatory region, in 25 samples from blood and brain of individuals with inherited or sporadic prion diseases. Nanopore sequencing detected the same variants as identified by Sanger sequencing, including repeat expansions/deletions. Nanopore identified additional single-nucleotide variants in the non-coding regions of PRNP, but no novel structural variants were discovered. Finally, we explored somatic mosaicism of PRNP's octapeptide repeat region, which is a hypothetical cause of sporadic prion disease. While we found changes consistent with somatic mutations, we demonstrate that they may have been generated by the PCR. Our study illustrates the accuracy of Nanopore sequencing for rapid and field prion disease diagnosis and highlights the need for single-molecule sequencing methods for the detection of somatic mutations.
Collapse
Affiliation(s)
- François Kroll
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Athanasios Dimitriadis
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Tracy Campbell
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Lee Darwent
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - John Collinge
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF, UK.
| | - Emmanuelle Vire
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| |
Collapse
|
2
|
Gene expression and epigenetic markers of prion diseases. Cell Tissue Res 2022; 392:285-294. [PMID: 35307791 PMCID: PMC10113299 DOI: 10.1007/s00441-022-03603-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
Epigenetics, meaning the variety of mechanisms underpinning gene regulation and chromatin states, plays a key role in normal development as well as in disease initiation and progression. Epigenetic mechanisms like alteration of DNA methylation, histone modifications, and non-coding RNAs, have been proposed as biomarkers for diagnosis, classification, or monitoring of responsiveness to treatment in many diseases. In prion diseases, the profound associations with human aging, the effects of cell type and differentiation on in vitro susceptibility, and recently identified human risk factors, all implicate causal epigenetic mechanisms. Here, we review the current state of the art of epigenetics in prion diseases and its interaction with genetic determinants. In particular, we will review recent advances made by several groups in the field profiling DNA methylation and microRNA expression in mammalian prion diseases and the potential for these discoveries to be exploited as biomarkers.
Collapse
|
3
|
Tumor resistance to radiotherapy is triggered by an ATM/TAK1-dependent-increased expression of the cellular prion protein. Oncogene 2021; 40:3460-3469. [PMID: 33767435 DOI: 10.1038/s41388-021-01746-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 02/02/2023]
Abstract
In solid cancers, high expression of the cellular prion protein (PrPC) is associated with stemness, invasiveness, and resistance to chemotherapy, but the role of PrPC in tumor response to radiotherapy is unknown. Here, we show that, in neuroblastoma, breast, and colorectal cancer cell lines, PrPC expression is increased after ionizing radiation (IR) and that PrPC deficiency increases radiation sensitivity and decreases radiation-induced radioresistance in tumor cells. In neuroblastoma cells, IR activates ATM that triggers TAK1-dependent phosphorylation of JNK and subsequent activation of the AP-1 transcription factor that ultimately increases PRNP promoter transcriptional activity through an AP-1 binding site in the PRNP promoter. Importantly, we show that this ATM-TAK1-PrPC pathway mediated radioresistance is activated in all tumor cell lines studied and that pharmacological inhibition of TAK1 activity recapitulates the effects of PrPC deficiency. Altogether, these results unveil how tumor cells activate PRNP to acquire resistance to radiotherapy and might have implications for therapeutic targeting of solid tumors radioresistance.
Collapse
|
4
|
Tau Protein as a New Regulator of Cellular Prion Protein Transcription. Mol Neurobiol 2020; 57:4170-4186. [PMID: 32683652 DOI: 10.1007/s12035-020-02025-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Cellular prion protein (PrPC) is largely responsible for transmissible spongiform encephalopathies (TSEs) when it becomes the abnormally processed and protease resistant form PrPSC. Physiological functions of PrPC include protective roles against oxidative stress and excitotoxicity. Relevantly, PrPC downregulates tau levels, whose accumulation and modification are a hallmark in the advance of Alzheimer's disease (AD). In addition to the accumulation of misfolded proteins, in the initial stages of AD-affected brains display both increased reactive oxygen species (ROS) markers and levels of PrPC. However, the factors responsible for the upregulation of PrPC are unknown. Thus, the aim of this study was to uncover the different molecular actors promoting PrPC overexpression. In order to mimic early stages of AD, we used β-amyloid-derived diffusible ligands (ADDLs) and tau cellular treatments, as well as ROS generation, to elucidate their particular roles in human PRNP promoter activity. In addition, we used specific chemical inhibitors and site-specific mutations of the PRNP promoter sequence to analyze the contribution of the main transcription factors involved in PRNP transcription under the analyzed conditions. Our results revealed that tau is a new modulator of PrPC expression independently of ADDL treatment and ROS levels. Lastly, we discovered that the JNK/c-jun-AP-1 pathway is involved in increased PRNP transcription activity by tau but not in the promoter response to ROS.
Collapse
|
5
|
Megra BW, Eugenin EA, Berman JW. Inflammatory mediators reduce surface PrP c on human BMVEC resulting in decreased barrier integrity. J Transl Med 2018; 98:1347-1359. [PMID: 29959417 PMCID: PMC6163073 DOI: 10.1038/s41374-018-0090-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
The cellular prion protein (PrPc) is a surface adhesion molecule expressed at junctions of various cell types including brain microvascular endothelial cells (BMVEC) that are important components of the blood-brain barrier (BBB). PrPc is involved in several physiological processes including regulation of epithelial cell barrier function and monocyte migration across BMVEC. BBB dysfunction and disruption are significant events in central nervous system (CNS) inflammatory processes including HIV neuropathogenesis. Tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) are two inflammatory factors that have been implicated in the processes that affect BBB integrity. To examine the effect of inflammation on PrPc expression in BMVEC, we used these mediators and found that TNF-α and VEGF decrease surface PrPc on primary human BMVEC. We also showed that these factors decrease total PrPc protein as well as mRNA, indicating that they regulate expression of this protein by de novo synthesis. To determine the effect of PrPc loss from the surface of BMVEC on barrier integrity, we used small hairpin RNAs to knockdown PrPc. We found that the absence of PrPc from BMVEC causes increased permeability as determined by a fluorescein isothiocyanate (FITC)-dextran permeability assay. This suggests that cell surface PrPc is essential for endothelial monolayer integrity. To determine the mechanism by which PrPc downregulation leads to increased permeability of an endothelial monolayer, we examined changes in expression and localization of tight junction proteins, occludin and claudin-5, and found that decreased PrPc leads to decreased total and membrane-associated occludin and claudin-5. We propose that an additional mechanism by which inflammatory factors affect endothelial monolayer permeability is by decreasing cell-associated PrPc. This increase in permeability may have subsequent consequences that lead to CNS damage.
Collapse
Affiliation(s)
- Bezawit W. Megra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Eliseo A. Eugenin
- Public Health Research Institute (PHRI), Newark, NJ 07103,Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ 07103
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
6
|
Abstract
The cellular prion protein, PrPC, is a small, cell surface glycoprotein with a function that is currently somewhat ill defined. It is also the key molecule involved in the family of neurodegenerative disorders called transmissible spongiform encephalopathies, which are also known as prion diseases. The misfolding of PrPC to a conformationally altered isoform, designated PrPTSE, is the main molecular process involved in pathogenesis and appears to precede many other pathologic and clinical manifestations of disease, including neuronal loss, astrogliosis, and cognitive loss. PrPTSE is also believed to be the major component of the infectious "prion," the agent responsible for disease transmission, and preparations of this protein can cause prion disease when inoculated into a naïve host. Thus, understanding the biochemical and biophysical properties of both PrPC and PrPTSE, and ultimately the mechanisms of their interconversion, is critical if we are to understand prion disease biology. Although entire books could be devoted to research pertaining to the protein, herein we briefly review the state of knowledge of prion biochemistry, including consideration of prion protein structure, function, misfolding, and dysfunction.
Collapse
Affiliation(s)
- Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom; Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Andrew R Castle
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
8
|
Luman contributes to brefeldin A-induced prion protein gene expression by interacting with the ERSE26 element. Sci Rep 2017; 7:42285. [PMID: 28205568 PMCID: PMC5304227 DOI: 10.1038/srep42285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023] Open
Abstract
The cellular prion protein (PrP) is essential for transmissible prion diseases, but its exact physiological function remains unclear. Better understanding the regulation of the human prion protein gene (PRNP) expression can provide insight into this elusive function. Spliced XBP1 (sXBP1) was recently shown to mediate endoplasmic reticulum (ER) stress-induced PRNP expression. In this manuscript, we identify Luman, a ubiquitous, non-canonical unfolded protein response (UPR), as a novel regulator of ER stress-induced PRNP expression. Luman activity was transcriptionally and proteolytically activated by the ER stressing drug brefeldin A (BFA) in human neurons, astrocytes, and breast cancer MCF-7 cells. Over-expression of active cleaved Luman (ΔLuman) increased PrP levels, while siRNA-mediated Luman silencing decreased BFA-induced PRNP expression. Site-directed mutagenesis and chromatin immunoprecipitation demonstrated that ΔLuman regulates PRNP expression by interacting with the ER stress response element 26 (ERSE26). Co-over-expression and siRNA-mediated silencing experiments showed that sXBP1 and ΔLuman both up-regulate ER stress-induced PRNP expression. Attempts to understand the function of PRNP up-regulation by Luman excluded a role in atorvastatin-induced neuritogenesis, ER-associated degradation, or proteasomal inhibition-induced cell death. Overall, these results refine our understanding of ER stress-induced PRNP expression and function.
Collapse
|
9
|
Misiewicz M, Déry MA, Foveau B, Jodoin J, Ruths D, LeBlanc AC. Identification of a novel endoplasmic reticulum stress response element regulated by XBP1. J Biol Chem 2013; 288:20378-91. [PMID: 23737521 DOI: 10.1074/jbc.m113.457242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Understanding the regulatory mechanisms mediating PRNP gene expression is highly relevant to elucidating normal cellular prion protein (PrP) function(s) and the transmissibility of prion protein neurodegenerative diseases. Here, luciferase reporter assays showed that an endoplasmic reticulum stress element (ERSE)-like element, CCAAT-N26-CCACG in the human PRNP promoter, is regulated by ER stress and X-box-binding protein 1 (XBP1) but not by activating transcription factor 6 α (ATF6α). Bioinformatics identified the ERSE-26 motif in 37 other human genes in the absence of canonical ERSE sites except for three genes. Several of these genes are associated with a synaptic function or are involved in oxidative stress. Brefeldin A, tunicamycin, and thapsigargin ER stressors induced gene expression of PRNP and four randomly chosen ERSE-26-containing genes, ERLEC1, GADD45B, SESN2, and SLC38A5, in primary human neuron cultures or in the breast carcinoma MCF-7 cell line, although the level of the response depends on the gene analyzed, the genetic background of the cells, the cell type, and the ER stressor. Overexpression of XBP1 increased, whereas siRNA knockdown of XBP1 considerably reduced, PRNP and ERLEC1 mRNA levels in MCF-7 cells. Taken together, these results identify a novel ER stress regulator, which implicates the ER stress response in previously unrecognized cellular functions.
Collapse
Affiliation(s)
- Michael Misiewicz
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Déry MA, Jodoin J, Ursini-Siegel J, Aleynikova O, Ferrario C, Hassan S, Basik M, LeBlanc AC. Endoplasmic reticulum stress induces PRNP prion protein gene expression in breast cancer. Breast Cancer Res 2013; 15:R22. [PMID: 23497519 PMCID: PMC3672785 DOI: 10.1186/bcr3398] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 03/01/2013] [Indexed: 01/11/2023] Open
Abstract
Introduction High prion protein (PrP) levels are associated with breast, colon and gastric cancer resistance to treatment and with a poor prognosis for the patients. However, little is known about the underlying molecular mechanism(s) regulating human PrP gene (PRNP) expression in cancers. Because endoplasmic reticulum (ER) stress is associated with solid tumors, we investigated a possible regulation of PRNP gene expression by ER stress. Methods Published microarray databases of breast cancer tissues and breast carcinoma cell lines were analyzed for PrP mRNA and ER stress marker immunoglobulin heavy chain binding protein (BiP) levels. Breast cancer tissue microarrays (TMA) were immunostained for BiP and PrP. Breast carcinoma MCF-7, MDA-MB-231, HS578T and HCC1500 cells were treated with three different ER stressors - Brefeldin A, Tunicamycin, Thapsigargin - and levels of PrP mRNA or protein assessed by RT-PCR and Western blot analyses. A human PRNP promoter-luciferase reporter was used to assess transcriptional activation by ER stressors. Site-directed mutagenesis identified the ER stress response elements (ERSE). Chromatin immunoprecipitation (ChIP) analyses were done to identify the ER stress-mediated transcriptional regulators. The role of cleaved activating transcription factor 6α (ΔATF6α) and spliced X-box protein-1 (sXBP1) in PRNP gene expression was assessed with over-expression or silencing techniques. The role of PrP protection against ER stress was assessed with PrP siRNA and by using Prnp null cell lines. Results We find that mRNA levels of BiP correlated with PrP transcript levels in breast cancer tissues and breast carcinoma cell lines. PrP mRNA levels were enriched in the basal subtype and were associated with poor prognosis in breast cancer patients. Higher PrP and BiP levels correlated with increasing tumor grade in TMA. ER stress was a positive regulator of PRNP gene transcription in MCF-7 cells and luciferase reporter assays identified one ER stress response element (ERSE) conserved among primates and rodents and three primate-specific ERSEs that regulated PRNP gene expression. Among the various transactivators of the ER stress-regulated unfolded protein response (UPR), ATF6α and XBP1 transactivated PRNP gene expression, but the ability of these varied in different cell types. Functionally, PrP delayed ER stress-induced cell death. Conclusions These results establish PRNP as a novel ER stress-regulated gene that could increase survival in breast cancers.
Collapse
|
11
|
Transcriptional regulation of specific protein 1 (SP1) by hypoxia-inducible factor 1 alpha (HIF-1α) leads to PRNP expression and neuroprotection from toxic prion peptide. Biochem Biophys Res Commun 2012; 429:93-8. [PMID: 23131565 DOI: 10.1016/j.bbrc.2012.10.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 10/25/2012] [Indexed: 01/22/2023]
Abstract
Our previous study demonstrated that hypoxia-inducible factor-1 (HIF-1)-mediated neuroprotective effects are related to cellular prion protein (PrPc) gene (PRNP) regulation under hypoxic conditions. However, the mechanism of HIF-1α-mediated PRNP gene regulation in prion-mediated neurodegenerative disorders is not clear. Transcription factor specific protein 1 (SP1) is necessary for PRNP transcription initiation, and SP1 gene expression is regulated through HIF-1α activation under hypoxic conditions. Thus, we hypothesized that HIF-1α-mediated neuroprotection is related to the SP1 transcription pathway as a result of PRNP gene regulation. Inhibition of SP1 expression blocked the HIF-1α-mediated protective effect against prion-mediated neurotoxicity. Also, knockdown of HIF-1α induced downregulation of SP1 expression and sensitivity to prion-mediated neurotoxicity, whereas upregulation of SP1 transcriptional activity lead to protection against prion-mediated neuron cell death and PRNP gene expression even in HIF-1α depleted cells. This report is the first study demonstrating that HIF-1α-mediated SP1 expression regulates PrPc transcription, and upregulation of SP1 induced by HIF-1α plays a key role in protection from prion-mediated neurotoxicity. These studies suggest that transcription factor SP1 may be involved in the pathogenesis of prion diseases and also may be a potential therapeutic option for neurodegeneration caused by the pathological prion protein, PrPsc.
Collapse
|
12
|
Urso E, Manno D, Serra A, Buccolieri A, Rizzello A, Danieli A, Acierno R, Salvato B, Maffia M. Role of the cellular prion protein in the neuron adaptation strategy to copper deficiency. Cell Mol Neurobiol 2012; 32:989-1001. [PMID: 22362149 PMCID: PMC11498592 DOI: 10.1007/s10571-012-9815-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/07/2012] [Indexed: 01/15/2023]
Abstract
Copper transporter 1 (CTR1), cellular prion protein (PrP(C)), natural resistance-associated macrophage protein 2 (NRAMP2) and ATP7A proteins control the cell absorption and efflux of copper (Cu) ions in nervous tissues upon physiological conditions. Little is known about their regulation under reduced Cu availability, a condition underlying the onset of diffused neurodegenerative disorders. In this study, rat neuron-like cells were exposed to Cu starvation for 48 h. The activation of Caspase-3 enzymes and the impairment of Cu,Zn superoxide dismutase (Cu,Zn SOD) activity depicted the initiation of a pro-apoptotic program, preliminary to the appearance of the morphological signs of apoptosis. The transcriptional response related to Cu transport proteins has been investigated. Notably, PrP(C) transcript and protein levels were consistently elevated upon Cu deficiency. The CTR1 protein amount was stable, despite a two-fold increase in the transcript amount, meaning the activation of post-translational regulatory mechanisms. NRAMP2 and ATP7A expressions were unvaried. The up-regulated PrP(C) has been demonstrated to enhance the cell Cu uptake ability by about 50% with respect to the basal transport, and so sustain the Cu delivery to the Cu,Zn SOD cuproenzymes. Conclusively, the study suggests a pivotal role for PrP(C) in the cell adaptation to Cu limitation through a direct activity of ion uptake. In this view, the PrP(C) accumulation observed in several cancer cell lines could be interpreted as a molecular marker of cell Cu deficiency and a potential target of therapeutic interventions against disorders caused by metal imbalances.
Collapse
Affiliation(s)
- Emanuela Urso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP Lecce-Monteroni, 73100 Lecce, Italy
| | - Daniela Manno
- Department of Material Sciences, University of Salento, SP Lecce-Monteroni, 73100 Lecce, Italy
| | - Antonio Serra
- Department of Material Sciences, University of Salento, SP Lecce-Monteroni, 73100 Lecce, Italy
| | - Alessandro Buccolieri
- Department of Material Sciences, University of Salento, SP Lecce-Monteroni, 73100 Lecce, Italy
| | - Antonia Rizzello
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP Lecce-Monteroni, 73100 Lecce, Italy
| | - Antonio Danieli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP Lecce-Monteroni, 73100 Lecce, Italy
| | - Raffaele Acierno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP Lecce-Monteroni, 73100 Lecce, Italy
| | - Benedetto Salvato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
13
|
Cissé M, Duplan E, Guillot-Sestier MV, Rumigny J, Bauer C, Pagès G, Orzechowski HD, Slack BE, Checler F, Vincent B. The extracellular regulated kinase-1 (ERK1) controls regulated alpha-secretase-mediated processing, promoter transactivation, and mRNA levels of the cellular prion protein. J Biol Chem 2011; 286:29192-29206. [PMID: 21586567 DOI: 10.1074/jbc.m110.208249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The α-secretases A disintegrin and metalloprotease 10 (ADAM10) and ADAM17 trigger constitutive and regulated processing of the cellular prion protein (PrP(c)) yielding N1 fragment. The latter depends on protein kinase C (PKC)-coupled M1/M3 muscarinic receptor activation and subsequent phosphorylation of ADAM17 on its intracytoplasmic threonine 735. Here we show that regulated PrP(c) processing and ADAM17 phosphorylation and activation are controlled by the extracellular-regulated kinase-1/MAP-ERK kinase (ERK1/MEK) cascade. Thus, reductions of ERK1 or MEK activities by dominant-negative analogs, pharmacological inhibition, or genetic ablation all impair N1 secretion, whereas constitutively active proteins increase N1 recovery in the conditioned medium. Interestingly, we also observed an ERK1-mediated enhanced expression of PrP(c). We demonstrate that the ERK1-associated increase in PrP(c) promoter transactivation and mRNA levels involve transcription factor AP-1 as a downstream effector. Altogether, our data identify ERK1 as an important regulator of PrP(c) cellular homeostasis and indicate that this kinase exerts a dual control of PrP(c) levels through transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Moustapha Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Eric Duplan
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Marie-Victoire Guillot-Sestier
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Joaquim Rumigny
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Charlotte Bauer
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France
| | - Gilles Pagès
- Institute of Developmental Biology and Cancer, Unité Mixte de Recherche, 6543 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Centre Antoine Lacassagne, 06189 Nice, France
| | - Hans-Dieter Orzechowski
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitaetsmedizin Berlin, Campus Mitte, Luisenstrasse 10-11, 10117 Berlin, Germany, and
| | - Barbara E Slack
- Boston University School of Medicine, Boston, Massachusetts 02118
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France,.
| | - Bruno Vincent
- Institut de Pharmacologie Moléculaire et Cellulaire and Institut de Neuro-Médecine Moléculaire, Unité Mixte de Recherche, 6097 Centre National de la Recherche Scientifique/Université de Nice-Sophia-Antipolis, Equipe labellisée Fondation pour la Recherche Médicale, 660 route des lucioles, Sophia-Antipolis, 06560 Valbonne, France,.
| |
Collapse
|
14
|
Bishop MT, Pennington C, Heath CA, Will RG, Knight RSG. PRNP variation in UK sporadic and variant Creutzfeldt Jakob disease highlights genetic risk factors and a novel non-synonymous polymorphism. BMC MEDICAL GENETICS 2009; 10:146. [PMID: 20035629 PMCID: PMC2806268 DOI: 10.1186/1471-2350-10-146] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 12/26/2009] [Indexed: 12/03/2022]
Abstract
Background Genetic analysis of the human prion protein gene (PRNP) in suspect cases of Creutzfeldt-Jakob disease (CJD) is necessary for accurate diagnosis and case classification. Previous publications on the genetic variation at the PRNP locus have highlighted the presence of numerous polymorphisms, in addition to the well recognised one at codon 129, with significant variability between geographically distinct populations. It is therefore of interest to consider their influence on susceptibility or the clinico-pathological disease phenotype. This study aimed to characterise the frequency and effect of PRNP open reading frame polymorphisms other than codon 129 in both disease and control samples sourced from the United Kingdom population. Methods DNA was extracted from blood samples and genetic data obtained by full sequence analysis of the prion protein gene or by restriction fragment length polymorphism analysis using restriction enzymes specific to the gene polymorphism under investigation. Results 147 of 166 confirmed cases of variant CJD (vCJD) in the UK have had PRNP codon 129 genotyping and all are methionine homozygous at codon 129; 118 have had full PRNP gene sequencing. Of the latter, 5 cases have shown other polymorphic loci: at codon 219 (2, 1.69%), at codon 202 (2, 1.69%), and a 24 bp deletion in the octapeptide repeat region (1, 0.85%). E219K and D202D were not found in sporadic CJD (sCJD) cases and therefore may represent genetic risk factors for vCJD. Genetic analysis of 309 confirmed UK sCJD patients showed codon 129 genotype frequencies of MM: 59.5% (n = 184), MV: 21.4% (n = 66), and VV: 19.1% (n = 59). Thirteen (4.2%) had the A117A polymorphism, one of which also had the P68P polymorphism, four (1.3%) had a 24 bp deletion, and a single patient had a novel missense variation at codon 167. As the phenotype of this latter case is similar to sCJD and in the absence of a family history of CJD, it is unknown whether this is a form of genetic CJD, or simply a neutral polymorphism. Conclusions This analysis of PRNP genetic variation in UK CJD patients is the first to show a comprehensive comparison with healthy individuals (n = 970) from the same population, who were genotyped for the three most common variations (codon 129, codon 117, and 24 bp deletion). These latter two genetic variations were equally frequent in UK sCJD or vCJD cases and a normal (healthy blood donor) UK population.
Collapse
Affiliation(s)
- Matthew T Bishop
- National CJD Surveillance Unit, University of Edinburgh, Bryan Matthews Building, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | | | | | | | |
Collapse
|
15
|
Wright JA, McHugh PC, Stockbridge M, Lane S, Kralovicova S, Brown DR. Activation and repression of prion protein expression by key regions of intron 1. Cell Mol Life Sci 2009; 66:3809-20. [PMID: 19756378 PMCID: PMC11115799 DOI: 10.1007/s00018-009-0154-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Expression of the prion protein is necessary for infection with prion diseases. Altered expression levels may play an important role in susceptibility to infection. Therefore, understanding the mechanisms that regulate prion protein expression is of great importance. It was previously shown that expression of the prion protein is to some degree regulated by an alternative promoter within intron 1. Studies using GFP and luciferase reporter systems were undertaken to determine key sites for the repression and activation of expression of the prion protein driven by intron 1. We identified a region within intron 1 sufficient to drive prion protein expression. Our findings highlight two potential repressor regions. Both regions have binding sites for the known repressor Hes-1. Hes-1 overexpression caused a dramatic decrease in PrP protein expression. Additionally, we have identified Atox-1 as a transcription factor that upregulates prion protein expression. These findings clearly indicate that intron 1 plays a key role in regulation of prion protein expression levels.
Collapse
Affiliation(s)
- Josephine A. Wright
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - Patrick C. McHugh
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - Mark Stockbridge
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - Samantha Lane
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - Silvia Kralovicova
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
16
|
Taheny MJ, Izkhakov N, Vostrov AA, Quitschke WW. Two adjacent nuclear factor-binding domains activate expression from the human PRNP promoter. BMC Res Notes 2009; 2:178. [PMID: 19740434 PMCID: PMC2751769 DOI: 10.1186/1756-0500-2-178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/09/2009] [Indexed: 01/15/2023] Open
Abstract
Background The transmissible spongiform encephalopathies (TSEs) comprise a group of fatal degenerative neurological diseases in humans and other mammals. After infection, the cellular prion protein isoform PrPC is converted to the pathological PrPSC scrapie isoform. The continued conversion of PrPC to PrPSC requires de novo endogenous PrP synthesis for disease progression. The human prion protein gene (PRNP) promoter was therefore investigated to identify regulatory elements that could serve as targets for therapeutic intervention. Findings The human prion protein gene (PRNP) promoter from position -1593 to +134 relative to the putative transcriptional start site (+1) was analyzed by transient transfection in HeLa cells. Deletions from the 5' end between positions -1593 and -232 yielded little change in activity. A further 5' deletion at position -90 resulted in a decline in activity to a level of about 30% of the full-length value. DNase I footprinting of the region between positions -259 and +2 identified two adjacent protected domains designated as prpA (-116 to -143) and prpB (-147 to -186). Internal deletions combined with mobility shift electrophoresis and methylation interference assays indicated the presence of sequence specific nuclear factor complexes that bind to the prpA and prpB domains and activate expression from the human PRNP promoter in an additive fashion. Conclusion Results from transient transfection, DNase I footprinting, mobility shift electrophoresis, and methylation interference experiments suggest that two DNase I protected domains designated as prpA and prpB are binding sites for as yet unidentified regulatory factors that independently activate expression from the PRNP promoter.
Collapse
Affiliation(s)
- Michael J Taheny
- Department of Psychiatry and Behavioral Science, State University of New York at Stony Brook, Stony Brook, NY 11794-8101, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
The presenilin-dependent gamma-secretase processing of the beta-amyloid precursor protein (betaAPP) conditions the length of the amyloid beta peptides (Abeta) that accumulate in the senile plaques of Alzheimer's disease-affected brains. This, together with an additional presenilin-mediated epsilon-secretase cleavage, generates intracellular betaAPP-derived fragments named amyloid intracellular domains (AICDs) that regulate the transcription of several genes. We establish that presenilins control the transcription of cellular prion protein (PrP(c)) by a gamma-secretase inhibitor-sensitive and AICD-mediated process. We demonstrate that AICD-dependent control of PrP(c) involves the tumor suppressor p53. Thus, p53-deficiency abolishes the AICD-mediated control of PrP(c) transcription. Furthermore, we show that p53 directly binds to the PrP(c) promoter and increases its transactivation. Overall, our study unravels a transcriptional regulation of PrP(c) by the oncogene p53 that is directly driven by presenilin-dependent formation of AICD. Furthermore, it adds support to previous reports linking secretase activities involved in betaAPP metabolism to the physiology of PrP(c).
Collapse
|
18
|
Qin K, Zhao L, Ash RD, McDonough WF, Zhao RY. ATM-mediated Transcriptional Elevation of Prion in Response to Copper-induced Oxidative Stress. J Biol Chem 2009; 284:4582-93. [DOI: 10.1074/jbc.m808410200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Prion expression is activated by Adenovirus 5 infection and affects the adenoviral cycle in human cells. Virology 2009; 385:343-50. [PMID: 19138779 DOI: 10.1016/j.virol.2008.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/29/2008] [Accepted: 12/04/2008] [Indexed: 01/01/2023]
Abstract
The prion protein is a cell surface glycoprotein whose physiological role remains elusive, while its implication in transmissible spongiform encephalopathies (TSEs) has been demonstrated. Multiple interactions between the prion protein and viruses have been described: viruses can act as co-factors in TSEs and life cycles of different viruses have been found to be controlled by prion modulation. We present data showing that human Adenovirus 5 induces prion expression. Inactivated Adenovirus did not alter prion transcription, while variants encoding for early products did, suggesting that the prion is stimulated by an early adenoviral function. Down-regulation of the prion through RNA interference showed that the prion controls adenovirus replication and expression. These data suggest that the prion protein could play a role in the defense strategy mounted by the host during viral infection, in a cell autonomous manner. These results have implications for the study of the prion protein and of associated TSEs.
Collapse
|
20
|
Bellingham SA, Coleman LA, Masters CL, Camakaris J, Hill AF. Regulation of prion gene expression by transcription factors SP1 and metal transcription factor-1. J Biol Chem 2009; 284:1291-301. [PMID: 18990686 DOI: 10.1074/jbc.m804755200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are associated with the conformational conversion of the host-encoded cellular prion protein into an abnormal pathogenic isoform. Reduction in prion protein levels has potential as a therapeutic approach in treating these diseases. Key targets for this goal are factors that affect the regulation of the prion protein gene. Recent in vivo and in vitro studies have suggested a role for prion protein in copper homeostasis. Copper can also induce prion gene expression in rat neurons. However, the mechanism involved in this regulation remains to be determined. We hypothesized that transcription factors SP1 and metal transcription factor-1 (MTF-1) may be involved in copper-mediated regulation of human prion gene. To test the hypothesis, we utilized human fibroblasts that are deleted or overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. Menkes deletion fibroblasts have high intracellular copper, whereas Menkes overexpressed fibroblasts have severely depleted intracellular copper. We have utilized this system previously to demonstrate copper-dependent regulation of the Alzheimer amyloid precursor protein. Here we demonstrate that copper depletion in MNK overexpressed fibroblasts decreases cellular prion protein and PRNP gene levels. Conversely, expression of transcription factors SP1 and/or MTF-1 significantly increases prion protein levels and up-regulates prion gene expression in copper-replete MNK deletion cells. Furthermore, siRNA "knockdown" of SP1 or MTF-1 in MNK deletion cells decreases prion protein levels and down-regulates prion gene expression. These data support a novel mechanism whereby SP1 and MTF-1 act as copper-sensing transcriptional activators to regulate human prion gene expression and further support a role for the prion protein to function in copper homeostasis. Expression of the prion protein is a vital component for the propagation of prion diseases; thus SP1 and MTF-1 represent new targets in the development of key therapeutics toward modulating the expression of the cellular prion protein and ultimately the prevention of prion disease.
Collapse
Affiliation(s)
- Shayne A Bellingham
- Department of Biochemistry & Molecular Biology, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
21
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 444] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
22
|
Gains MJ, LeBlanc AC. Canadian Association of Neurosciences Review: prion protein and prion diseases: the good and the bad. Can J Neurol Sci 2007; 34:126-45. [PMID: 17598589 DOI: 10.1017/s0317167100005953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the 1700's a strange new disease affecting sheep was recognized in Europe. The disease later became known as "Scrapie" and was the first of a family of similar diseases affecting a number of species that are now known as the Transmissible Spongiform Encephalopathies (TSEs). The appearance of a new disease in humans linked to the consumption of meat products from infected cattle has stimulated widespread public concern and scientific interest in the prion protein and related diseases. Nearly 300 years after the first report, these diseases still merit the descriptor "strange". This family of diseases is characterized by a unique profile of histological changes, can be transmitted as inherited or acquired diseases, as well as apparent sporadic spontaneous generation of the disease. These diseases are believed by many, to be caused by a unique protein only infectious agent. The "prion protein" (PrPC), a term first coined by Stanley Prusiner in 1982 is crucial to the development of these diseases, apparently by acting as a substrate for an abnormal disease associated form. However, aside from being critical to the pathogenesis of the disease, the function of PrPC, which is expressed in all mammals, has defied definitive description. Several roles have been proposed on the basis of in vitro studies, however, thus far, in vivo confirmation has not been forthcoming. The biological features of PrPC also seem to be unusual. Numerous mouse models have been generated in an attempt to understand the pathogenesis of these diseases. This review summarizes the current state of histological features, the etiologic agent, the normal metabolism and the function of the prion protein, as well as the limitations of the mouse models.
Collapse
Affiliation(s)
- Malcolm J Gains
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | | |
Collapse
|
23
|
Jeong BH, Lee YJ, Kim NH, Carp RI, Kim YS. Genotype distribution of the prion protein gene (PRNP) promoter polymorphisms in Korean cattle. Genome 2007; 49:1539-44. [PMID: 17426768 DOI: 10.1139/g06-110] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, an association between bovine spongiform encephalopathy (BSE) and insertion/deletion (indel) polymorphisms in the bovine prion protein gene (PRNP) promoter region has been reported in German cattle. These PRNP polymorphisms cause changes in PRNP expression and are thought to play an important role in BSE susceptibility. BSE has been reported in British and Japanese Holstein cattle but has not been diagnosed in Hanwoo cattle (Bos taurus coreanae) up to now. These results prompted us to investigate the genotype distributions of these PRNP promoter polymorphisms in 107 Hanwoo cattle and 52 Holstein cattle and compare the results with those of previous studies. A significant difference (P=0.0249) in allele frequency of the 23 bp indel polymorphism was observed between Hanwoo and the BSE-affected German cattle previously investigated. There were no significant differences in the genotype (P=0.2095) or allele (P=0.8875) frequencies of the 12 bp indel polymorphism between Hanwoo and BSE-affected German cattle. Interestingly, the genotype and allele frequencies of the 23 bp indel polymorphism in Korean Holsteins were very similar to those previously reported for BSE-affected German cattle and healthy US cattle sires.
Collapse
Affiliation(s)
- Byung-Hoon Jeong
- Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Kyounggi-do 431-060, South Korea
| | | | | | | | | |
Collapse
|
24
|
Vollmert C, Windl O, Xiang W, Rosenberger A, Zerr I, Wichmann HE, Bickeböller H, Illig T, Kretzschmar HA. Significant association of a M129V independent polymorphism in the 5' UTR of the PRNP gene with sporadic Creutzfeldt-Jakob disease in a large German case-control study. J Med Genet 2006; 43:e53. [PMID: 17047093 PMCID: PMC2563174 DOI: 10.1136/jmg.2006.040931] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND A single nucleotide polymorphism (SNP) in the coding region of the prion protein gene (PRNP) at codon 129 has been repeatedly shown to be an associated factor to sporadic Creutzfeldt-Jakob disease (sCJD), but additional major predisposing DNA variants for sCJD are still unknown. Several previous studies focused on the characterisation of polymorphisms in PRNP and the prion-like doppel gene (PRND), generating contradictory results on relatively small sample sets. Thus, extensive studies are required for validation of the polymorphisms in PRNP and PRND. METHODS We evaluated a set of nine SNPs of PRNP and one SNP of PRND in 593 German sCJD patients and 748 German healthy controls. Genotyping was performed using MALDI-TOF mass spectrometry. RESULTS In addition to PRNP 129, we detected a significant association between sCJD and allele frequencies of six further PRNP SNPs. No significant association of PRND T174M with sCJD was shown. We observed strong linkage disequilibrium within eight adjacent PRNP SNPs, including PRNP 129. However, the association of sCJD with PRNP 1368 and PRNP 34296 appeared to be independent on the genotype of PRNP 129. We additionally identified the most common haplotypes of PRNP to be over-represented or under-represented in our cohort of patients with sCJD. CONCLUSION Our study evaluated previous findings of the association of SNPs in the PRNP and PRND genes in the largest cohorts for association study in sCJD to date, and extends previous findings by defining for the first time the haplotypes associated with sCJD in a large population of the German CJD surveillance study.
Collapse
|
25
|
Isaacs JD, Jackson GS, Altmann DM. The role of the cellular prion protein in the immune system. Clin Exp Immunol 2006; 146:1-8. [PMID: 16968391 PMCID: PMC1809729 DOI: 10.1111/j.1365-2249.2006.03194.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2006] [Indexed: 12/31/2022] Open
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of prion diseases. However, the normal function of the protein remains unclear. The cellular isoform (PrP(C)) is expressed widely in the immune system, in haematopoietic stem cells and mature lymphoid and myeloid compartments in addition to cells of the central nervous system. It is up-regulated in T cell activation and may be expressed at higher levels by specialized classes of lymphocyte. Furthermore, antibody cross-linking of surface PrP modulates T cell activation and leads to rearrangements of lipid raft constituents and increased phosphorylation of signalling proteins. These findings appear to indicate an important but, as yet, ill-defined role in T cell function. Although PrP(-/-) mice have been reported to have only minor alterations in immune function, recent work has suggested that PrP is required for self-renewal of haematopoietic stem cells. Here, we consider the evidence for a distinctive role for PrP(C) in the immune system and what the effects of anti-prion therapeutics may be on immune function.
Collapse
Affiliation(s)
- J D Isaacs
- Human Disease Immunogenetics Group, Department of Infectious Diseases and Immunity, Imperial College London, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
26
|
Nakamitsu S, Miyazawa T, Horiuchi M, Onoe S, Ohoba Y, Kitagawa H, Ishiguro N. Sequence variation of bovine prion protein gene in Japanese cattle (Holstein and Japanese Black). J Vet Med Sci 2006; 68:27-33. [PMID: 16462113 DOI: 10.1292/jvms.68.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To assess relationships between nucleotide polymorphisms of the prion protein (PRNP) gene and susceptibility to bovine spongiform encephalopathy (BSE), we investigated polymorphisms in the open reading frame (ORF) and 2 upper regions of the PRNP gene from 2 Japanese cattle breeds: 863 healthy Holstein cattle, 6 BSE-affected Holstein cattle, and 186 healthy Japanese Black (JB) cattle. In the ORF, we found single-nucleotide polymorphisms (SNPs) at nucleotide positions 234 and 576 and found 5 or 6 copies of the octapeptide repeat, but we did not find any amino acid substitutions. In the upper region, we examined 2 sites of insertion/deletion (indel) polymorphisms: a 23-bp indel in the upper region of exon 1, and a 12-bp indel in the putative promoter region of intron 1. A previous report suggests that the 23-bp indel polymorphism is associated with susceptibility to BSE, but we did not find a difference in allele frequency between healthy and BSE-affected Holstein cattle. There were differences in allele frequency between healthy Holstein and JB cattle at the 23- and 12-bp indels and at the SNPs at nucleotide positions 234 and 576, but there was no difference in allele frequency of the octapeptide repeat. We identified a unique PRNP gene lacking a 288-bp segment (96 amino acids) in DNA samples stocked in our laboratory, but this deletion was not found in any of the 1049 cattle examined in the present study. The present results provide data about variations and distribution of the bovine PRNP gene.
Collapse
Affiliation(s)
- Satoshi Nakamitsu
- Laboratory of Veterinary Public Health, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Bandyopadhyay S, Ni J, Ruggiero A, Walshe K, Rogers MS, Chattopadhyay N, Glicksman MA, Rogers JT. A high-throughput drug screen targeted to the 5'untranslated region of Alzheimer amyloid precursor protein mRNA. ACTA ACUST UNITED AC 2006; 11:469-80. [PMID: 16928984 DOI: 10.1177/1087057106287271] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors employed a novel approach to identify therapeutics effective in Alzheimer disease (AD). The 5'untranslated region (5'UTR) of the mRNA of AD amyloid precursor protein (APP) is a significant regulator of the levels of the APP holoprotein and amyloid beta (Abeta) peptide in the central nervous system. The authors generated stable neuroblastoma SH-SY5Y transfectants that express luciferase under the translational control of the 146-nucleotide APP mRNA 5'UTR and green fluorescent protein (GFP) driven by a viral internal ribosomal entry site. Using a high-throughput screen (HTS), they screened for the effect of 110,000 compounds obtained from the library of the Laboratory for Drug Discovery on Neurodegeneration (LDDN) on the APP mRNA 5'UTR-controlled translation of the luciferase reporter. This screening yielded several nontoxic specific inhibitors of APP mRNA 5'UTR-driven luciferase that had no effect on the GFP expression in the stable SH-SY5Y transfectants. Moreover, these compounds either did not inhibit or inhibited to a much lower extent the expression of the luciferase reporter regulated by a prion protein (PrP) mRNA 5'UTR, used as an alternative mRNA structure to counterscreen APP mRNA 5'UTR in stably transfected SH-SY5Y cell lines. The hits obtained from this robust, specific, and highly quantitative HTS will be characterized to identify agents that may be developed into useful future therapeutic agents to limit APP translation and Abeta production for AD.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Neurochemistry Laboratory, Genetics and Aging Research Unit, Psychiatry Department, Massachusetts General Hospital, Boston, MA, USA, and School of Biological and Environmental Science, University College Dublin, Belfield, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Maloney B, Ge YW, Greig N, Lahiri DK. Presence of a “CAGA box” in the
APP
gene unique to amyloid plaque‐forming species and absent in all
APLP
‐1/2 genes: implications in Alzheimer's disease. FASEB J 2004; 18:1288-90. [PMID: 15208260 DOI: 10.1096/fj.03-1703fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Potentially toxic amyloid beta-peptide (Abeta) in Alzheimer's disease (AD) is generated from a family of Abeta-containing precursor proteins (APP), which is regulated via the 5'-untranslated region (5'-UTR) of its mRNA. We analyzed 5'-UTRs of the APP superfamily, including amyloid plaque-forming and non-amyloid plaque-forming species, and of prions (27 different DNA sequences). A "CAGA" sequence proximal to the "ATG" start codon was present in a location unique to APP genes of amyloid plaque-forming species and absent in all other genes surveyed. This CAGA box is immediately upstream of an interleukin-1-responsive element (acute box). In addition, the proximal CAGA box is predicted to appear on a stem-loop structure in both human and guinea pig APP mRNA. This stem-loop is part of a predicted bulge-loop that encompasses a known iron regulatory element (IRE). Electrophoretic mobility shift with segments of the APP 5'-UTR showed that a region with the proximal CAGA sequence binds nuclear proteins, and this UTR fragment is active in a reporter gene functional assay. Thus, the 5'-UTR in the human APP but not those of APP-like proteins contains a specific region that may participate in APP regulation and may determine a more general model for amyloid generation as seen in AD. The 5'-UTR of human APP contains several interesting control elements, such as an acute box element, a CAGA box, an IRE, and a transforming growth factor-beta-responsive element, that could control APP expression and provide suitable and specific drug targets for AD.
Collapse
Affiliation(s)
- Bryan Maloney
- Departments of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
29
|
Asante EA, Gowland I, Linehan JM, Mahal SP, Collinge J. Expression pattern of a mini human PrP gene promoter in transgenic mice. Neurobiol Dis 2002; 10:1-7. [PMID: 12079398 DOI: 10.1006/nbdi.2002.0486] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prion protein is central to the pathogenesis of prion diseases, although its exact function remains unclear. Although transgenic mice have been widely utilised in prion research, their PrP expression patterns have not been characterised in detail. We have studied the developmental temporal and spatial expression of a 214-bp mini human PrP promoter in transgenic mice. Transgene expression is first detected at embryonic day 12.5, a day earlier than previously reported for endogenous mouse gene by in situ hybridization. The general expression pattern closely mirrors that of the endogenous mouse PrP gene, such that this small and clearly defined transgene cassette can replace the need to use large cosmid based vectors for transgenetic modeling of human and animal prion disease.
Collapse
Affiliation(s)
- E A Asante
- MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London, WCIN 3BG, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
McCormack JE, Baybutt HN, Everington D, Will RG, Ironside JW, Manson JC. PRNP contains both intronic and upstream regulatory regions that may influence susceptibility to Creutzfeldt-Jakob Disease. Gene 2002; 288:139-46. [PMID: 12034503 DOI: 10.1016/s0378-1119(02)00466-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Prion protein (PrP) plays a central role in Creutzfeldt-Jakob Disease (CJD) and other transmissible spongiform encephalopathies (TSEs). Mutations in the protein coding region of the human PrP gene (PRNP), which have been proposed to alter the stability of the PrP protein, have been linked to a number of forms of TSE. However, the majority of CJD cases are not associated with mutations in the PRNP coding region and alternative mechanisms must therefore underlie susceptibility to these forms of CJD. Transgenic mice, that over- or under-express PrP genes, have shown a correlation between the level of PrP gene expression and the incubation time of disease. Polymorphisms that lead to alterations in human PRNP gene expression, could therefore be candidates for influencing susceptibility of an individual to CJD. In order to investigate this hypothesis, we have defined an upstream and intronic regulatory region of the PRNP gene. Sequencing of these regions in controls, sporadic CJD (sCJD) and variant CJD (vCJD) patients has identified three polymorphisms, all of which are more common in sCJD patients than controls. Our data suggests that polymorphisms in the regulatory region of the PRNP gene may be a risk factor for CJD.
Collapse
Affiliation(s)
- James E McCormack
- Neuropathogenesis Unit, Institute for Animal Health, West Mains Road, Edinburgh EH9 3JF, UK
| | | | | | | | | | | |
Collapse
|
31
|
Cabral ALB, Lee KS, Martins VR. Regulation of the cellular prion protein gene expression depends on chromatin conformation. J Biol Chem 2002; 277:5675-82. [PMID: 11739375 DOI: 10.1074/jbc.m104815200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conversion of the normal cellular prion protein (PrPc), whose physiological function is still under investigation, to an infectious form called prion is the cause of some neurodegenerative diseases. Therefore, the elucidation of PrPc gene regulation is important both to define a strategy to control the infection and to better understand PrPc function. We cloned the rat PrPc gene promoter region into a luciferase reporter vector, transfected C6 and PC-12 cells, and isolated clones with stable enzyme expression. The dependence of chromatin conformation on PrPc promoter activity was evaluated using the histone deacetylase inhibitor, trichostatin A, which was able to highly increase not only promoter activity but also PrPc mRNA and protein levels. The phorbol ester (12-O-tetradecanoylphorbol-13-acetate) and cAMP poorly induced promoter activity; retinoic acid decreased it by 50%, whereas nerve growth factor and dexamethasone had no effect. When 12-O-tetradecanoylphorbol-13-acetate or cAMP but not retinoic acid was associated with trichostatin A, a potentiation of the primary effects was observed. These new data indicate that PrPc gene regulation is highly dependent on disruption of chromatin fiber assembly, which allows some ubiquitous transcription factors accession to specific DNA elements.
Collapse
Affiliation(s)
- Ana Lucia B Cabral
- Ludwig Institute for Cancer Research, Departamento de Bioquimica, Instituto de Quimica da Universidade de São Paulo, Brazil
| | | | | |
Collapse
|
32
|
Martins VR, Linden R, Prado MAM, Walz R, Sakamoto AC, Izquierdo I, Brentani RR. Cellular prion protein: on the road for functions. FEBS Lett 2002; 512:25-8. [PMID: 11852045 DOI: 10.1016/s0014-5793(02)02291-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular prion (PrPc) is a plasma membrane glycosyphosphatidylinositol-anchored protein present in neurons but also in other cell types. Protein conservation among species suggests that PrPc may have important physiological roles. Cellular and molecular approaches have established several novel features of the regulation of PrPc expression, cellular trafficking as well as its participation in copper uptake, protection against oxidative stress, cell adhesion, differentiation, signaling and cell survival. It is therefore likely that PrPc plays pleiotropic roles in neuronal and non-neuronal cells, and as such the loss of function of PrPc may be an important component of various diseases.
Collapse
Affiliation(s)
- Vilma R Martins
- Centro de Tratamento e Pesquisa Hospital do Càncer, SP, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|