1
|
Wang Y, Tan BC. Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications. PLANT COMMUNICATIONS 2025; 6:101203. [PMID: 39644091 PMCID: PMC11897456 DOI: 10.1016/j.xplc.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, playing vital roles in plant growth, development, cytoplasmic male sterility restoration, and responses to biotic and abiotic stresses. Over the last three decades, significant advances have been made in understanding the functions of PPR proteins and the primary mechanisms through which they mediate post-transcriptional processing. This review aims to summarize these advancements, highlighting the mechanisms by which PPR proteins facilitate RNA editing, intron splicing, and RNA maturation in the context of organellar gene expression. We also present the latest progress in PPR engineering and discuss its potential as a biotechnological tool. Additionally, we discuss key challenges and questions that remain in PPR research.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Wang Y, Huang ZQ, Tian KD, Li H, Xu C, Xia B, Tan BC. Multiple factors interact in editing of PPR-E+-targeted sites in maize mitochondria and plastids. PLANT COMMUNICATIONS 2024; 5:100836. [PMID: 38327059 PMCID: PMC11121751 DOI: 10.1016/j.xplc.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
RNA cytidine-to-uridine editing is essential for plant organellar gene expression. Pentatricopeptide repeat (PPR)-E+ proteins have been proposed to bind to target sites and recruit the cytidine deaminase AtDYW2, facilitated by AtNUWA. Here we analyze the function of ZmNUWA, ZmDYW2A, and ZmDYW2B and their relationships with other editing factors in maize. The zmdyw2a and zmdyw2b single mutants are normal, but the zmdyw2a::zmdyw2b and zmnuwa mutants are severely arrested in seed development. ZmNUWA, ZmDYW2A, and ZmDYW2B are dual localized in mitochondria and plastids. Loss of ZmNUWA decreases the editing at 99 mitochondrial sites and 8 plastid sites. Surprisingly, loss of ZmDYW2A:ZmDYW2B affects almost the same set of sites targeted by PPR-E+ proteins. ZmNUWA interacts with ZmDYW2A and ZmDYW2B, suggesting that ZmNUWA recruits ZmDYW2A/2B in the editing of PPR-E+-targeted sites in maize. Further protein interaction analyses show that ZmNUWA and ZmDYW2A/2B interact with ZmMORF1, ZmMORF8, ZmMORF2, and ZmMORF9 and that ZmOZ1 interacts with ZmORRM1, ZmDYW2A, ZmDYW2B, ZmMORF8, and ZmMORF9. These results suggest that the maize mitochondrial PPR-E+ editosome contains PPR-E+, ZmDYW2A/2B, ZmNUWA, and ZmMORF1/8, whereas the plastid PPR-E+ editosome is composed of PPR-E+, ZmDYW2A/2B, ZmNUWA, ZmMORF2/8/9, ZmORRM1, and ZmOZ1.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zi-Qin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Kai-Di Tian
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hao Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bingyujie Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Wang Y, Li H, Huang ZQ, Ma B, Yang YZ, Xiu ZH, Wang L, Tan BC. Maize PPR-E proteins mediate RNA C-to-U editing in mitochondria by recruiting the trans deaminase PCW1. THE PLANT CELL 2023; 35:529-551. [PMID: 36200865 PMCID: PMC9806569 DOI: 10.1093/plcell/koac298] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/11/2022] [Indexed: 05/24/2023]
Abstract
RNA C-to-U editing in organelles is essential for plant growth and development; however, the underlying mechanism is not fully understood. Here, we report that pentatricopeptide repeat (PPR)-E subclass proteins carry out RNA C-to-U editing by recruiting the trans deaminase PPR motifs, coiled-coil, and DYW domain-containing protein 1 (PCW1) in maize (Zea mays) mitochondria. Loss-of-function of bZIP and coiled-coil domain-containing PPR 1 (bCCP1) or PCW1 arrests seed development in maize. bCCP1 encodes a bZIP and coiled-coil domain-containing PPR protein, and PCW1 encodes an atypical PPR-DYW protein. bCCP1 is required for editing at 66 sites in mitochondria and PCW1 is required for editing at 102 sites, including the 66 sites that require bCCP1. The PCW1-mediated editing sites are exclusively associated with PPR-E proteins. bCCP1 interacts with PCW1 and the PPR-E protein Empty pericarp7 (EMP7). Two multiple organellar RNA editing factor (MORF) proteins, ZmMORF1 and ZmMORF8, interact with PCW1, EMP7, and bCCP1. ZmMORF8 enhanced the EMP7-PCW1 interaction in a yeast three-hybrid assay. C-to-U editing at the ccmFN-1553 site in maize required EMP7, bCCP1, and PCW1. These results suggest that PPR-E proteins function in RNA editing by recruiting the trans deaminase PCW1 and bCCP1, and MORF1/8 assist this recruitment through protein-protein interactions.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hao Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zi-Qin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bing Ma
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhi-Hui Xiu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Le Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
4
|
Mohammed T, Firoz A, Ramadan AM. RNA Editing in Chloroplast: Advancements and Opportunities. Curr Issues Mol Biol 2022; 44:5593-5604. [PMID: 36421663 PMCID: PMC9688838 DOI: 10.3390/cimb44110379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 07/25/2023] Open
Abstract
Many eukaryotic and prokaryotic organisms employ RNA editing (insertion, deletion, or conversion) as a post-transcriptional modification mechanism. RNA editing events are common in these organelles of plants and have gained particular attention due to their role in the development and growth of plants, as well as their ability to cope with abiotic stress. Owing to rapid developments in sequencing technologies and data analysis methods, such editing sites are being accurately predicted, and many factors that influence RNA editing are being discovered. The mechanism and role of the pentatricopeptide repeat protein family of proteins in RNA editing are being uncovered with the growing realization of accessory proteins that might help these proteins. This review will discuss the role and type of RNA editing events in plants with an emphasis on chloroplast RNA editing, involved factors, gaps in knowledge, and future outlooks.
Collapse
Affiliation(s)
- Taimyiah Mohammed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed M. Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza 12619, Egypt
| |
Collapse
|
5
|
Genome-wide investigation and functional analysis of RNA editing sites in wheat. PLoS One 2022; 17:e0265270. [PMID: 35275970 PMCID: PMC8916659 DOI: 10.1371/journal.pone.0265270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Wheat is an important cereal and half of the world population consumed it. Wheat faces environmental stresses and different techniques (CRISPR, gene silencing, GWAS, etc.) were used to enhance its production but RNA editing (RESs) is not fully explored in wheat. RNA editing has a special role in controlling environmental stresses. The genome-wide identification and functional characterization of RESs in different types of wheat genotypes was done. We employed six wheat genotypes by RNA-seq analyses to achieve RESs. The findings revealed that RNA editing events occurred on all chromosomes equally. RNA editing sites were distributed randomly and 10–12 types of RESs were detected in wheat genotypes. Higher number of RESs were detected in drought-tolerant genotypes. A-to-I RNA editing (2952, 2977, 1916, 2576, 3422, and 3459) sites were also identified in six wheat genotypes. Most of the genes were found to be engaged in molecular processes after a Gene Ontology analysis. PPR (pentatricopeptide repeat), OZ1 (organelle zinc-finger), and MORF/RIP gene expression levels in wheat were also examined. Normal growth conditions diverge gene expression of these three different gene families, implying that normal growth conditions for various genotypes can modify RNA editing events and have an impact on gene expression levels. While the expression of PPR genes was not change. We used Variant Effect Predictor (VEP) to annotate RNA editing sites, and Local White had the highest RESs in the CDS region of the protein. These findings will be useful for prediction of RESs in other crops and will be helpful in drought tolerance development in wheat.
Collapse
|
6
|
Wang Y, Liu XY, Huang ZQ, Li YY, Yang YZ, Sayyed A, Sun F, Gu ZQ, Wang X, Tan BC. PPR-DYW Protein EMP17 Is Required for Mitochondrial RNA Editing, Complex III Biogenesis, and Seed Development in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:693272. [PMID: 34394147 PMCID: PMC8357149 DOI: 10.3389/fpls.2021.693272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/01/2021] [Indexed: 05/31/2023]
Abstract
The conversion of cytidines to uridines (C-to-U) at specific sites in mitochondrial and plastid transcripts is a post-transcriptional processing event that is important to the expression of organellar genes. Pentatricopeptide repeat (PPR) proteins are involved in this process. In this study, we report the function of a previously uncharacterized PPR-DYW protein, Empty pericarp17 (EMP17), in the C-to-U editing and kernel development in maize. EMP17 is targeted to mitochondria. The loss-function of EMP17 arrests maize kernel development, abolishes the editing at ccmF C -799 and nad2-677 sites, and reduces the editing at ccmF C -906 and -966 sites. The absence of editing causes amino acid residue changes in CcmFC-267 (Ser to Pro) and Nad2-226 (Phe to Ser), respectively. As CcmFC functions in cytochrome c (Cytc) maturation, the amount of Cytc and Cytc 1 protein is drastically reduced in emp17, suggesting that the CcmFC-267 (Ser to Pro) change impairs the CcmFC function. As a result, the assembly of complex III is strikingly decreased in emp17. In contrast, the assembly of complex I appears less affected, suggesting that the Nad2-226 (Phe to Ser) change may have less impact on Nad2 function. Together, these results indicate that EMP17 is required for the C-to-U editing at several sites in mitochondrial transcripts, complex III biogenesis, and seed development in maize.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xin-Yuan Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zi-Qin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Yan Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhi-Qun Gu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Ceriotti LF, Roulet ME, Sanchez-Puerta MV. Plastomes in the holoparasitic family Balanophoraceae: Extremely high AT content, severe gene content reduction, and two independent genetic code changes. Mol Phylogenet Evol 2021; 162:107208. [PMID: 34029719 DOI: 10.1016/j.ympev.2021.107208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
The transition to a heterotrophic lifestyle in angiosperms is characterized by convergent evolutionary changes. Plastid genome remodeling includes dramatic functional and physical reductions with the highest degrees observed in fully heterotrophic plants. Genes related to photosynthesis are generally absent or pseudogenized, while a few genes related to other metabolic processes that take place within the plastid are almost invariably maintained. The family Balanophoraceae consists of root holoparasites that present reduced plastid genomes with an extraordinarily elevated AT content and the single genetic code change ever documented in land plant plastomes (the stop codon TAG now codes for tryptophan). Here, we studied the plastomes of Lophophytum leandri and Ombrophytum subterraneum (Balanophoraceae) that showed the remarkable absence of the gene trnE, a highly biased nucleotide composition, and an independent genetic code change (the standard stop codon TGA codes for tryptophan). This is the second genetic code change identified in land plant plastomes. Analysis of the transcriptome of Lophophytum indicated that the entire C5 pathway typical of plants is conserved despite the lack of trnE in its plastome. A hypothetical model of plastome evolution in the Balanophoraceae is presented.
Collapse
Affiliation(s)
- Luis Federico Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina.
| |
Collapse
|
8
|
Hall ND, Zhang H, Mower JP, McElroy JS, Goertzen LR. The Mitochondrial Genome of Eleusine indica and Characterization of Gene Content within Poaceae. Genome Biol Evol 2020; 12:3684-3697. [PMID: 31665327 PMCID: PMC7145533 DOI: 10.1093/gbe/evz229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Plant mitochondrial (mt) genome assembly provides baseline data on size, structure, and gene content, but resolving the sequence of these large and complex organelle genomes remains challenging due to fragmentation, frequent recombination, and transfers of DNA from neighboring plastids. The mt genome for Eleusine indica (Poaceae: goosegrass) is comprehensibly analyzed here, providing key reference data for an economically significant invasive species that is also the maternal parent of the allotetraploid crop Finger millet (Eleusine coracana). The assembled E. indica genome contains 33 protein coding genes, 6 rRNA subunits, 24 tRNA, 8 large repetitive regions 15 kb of transposable elements across a total of 520,691 bp. Evidence of RNA editing and loss of rpl2, rpl5, rps14, rps11, sdh4, and sdh3 genes is evaluated in the context of an updated survey of mt genomic gene content across the grasses through an analysis of publicly available data. Hypothesized patterns of Poaceae mt gene loss are examined in a phylogenetic context to clarify timing, showing that rpl2 was transferred to the nucleus from the mitochondrion prior to the origin of the PACMAD clade.
Collapse
Affiliation(s)
- Nathan D Hall
- Department of Biological Sciences, Auburn University
| | - Hui Zhang
- Department of Crop, Soil and Environmental Sciences, Auburn University
| | - Jeffrey P Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | | | | |
Collapse
|
9
|
Small ID, Schallenberg-Rüdinger M, Takenaka M, Mireau H, Ostersetzer-Biran O. Plant organellar RNA editing: what 30 years of research has revealed. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1040-1056. [PMID: 31630458 DOI: 10.1111/tpj.14578] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 05/21/2023]
Abstract
The central dogma in biology defines the flow of genetic information from DNA to RNA to protein. Accordingly, RNA molecules generally accurately follow the sequences of the genes from which they are transcribed. This rule is transgressed by RNA editing, which creates RNA products that differ from their DNA templates. Analyses of the RNA landscapes of terrestrial plants have indicated that RNA editing (in the form of C-U base transitions) is highly prevalent within organelles (that is, mitochondria and chloroplasts). Numerous C→U conversions (and in some plants also U→C) alter the coding sequences of many of the organellar transcripts and can also produce translatable mRNAs by creating AUG start sites or eliminating premature stop codons, or affect the RNA structure, influence splicing and alter the stability of RNAs. RNA-binding proteins are at the heart of post-transcriptional RNA expression. The C-to-U RNA editing process in plant mitochondria involves numerous nuclear-encoded factors, many of which have been identified as pentatricopeptide repeat (PPR) proteins that target editing sites in a sequence-specific manner. In this review we report on major discoveries on RNA editing in plant organelles, since it was first documented 30 years ago.
Collapse
Affiliation(s)
- Ian D Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
10
|
Ding S, Liu XY, Wang HC, Wang Y, Tang JJ, Yang YZ, Tan BC. SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152992. [PMID: 31234031 DOI: 10.1016/j.jplph.2019.152992] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The recently identified PPR-E+/NVWA/DYW2 RNA editing complex provides insights into the mechanism of RNA editing in higher plant organelles. However, whether the complex works together with the previously identified editing factors RIPs/MORFs is unclear. In this paper, we identified a maize Smk6 gene, which encodes a mitochondrion-targeted PPR-E+protein with E1 and E2 domains at the C terminus. Loss of Smk6 function affects the C-to-U editing at nad1-740, nad4L-110, nad7-739, and mttB-138,139 sites, impairs mitochondrial activity and blocks embryogenesis and endosperm development. Genetic and molecular analysis indicated that SMK6 is the maize ortholog of the Arabidopsis SLO2, which is a component of the PPR-E+/NVWA/DYW2 editing complex. However, yeast two-hybrid analyses did not detect any interaction between SMK6 and any of the mitochondrion-targeted RIPs/MORFs, suggesting that RIPs/MORFs may not be a component of PPR-E+/NVWA/DYW2 RNA editing complex. Further analyses are required to provide evidence that RIP/MORFs and SMK6 do not physically interact in vivo.
Collapse
Affiliation(s)
- Shuo Ding
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hong-Chun Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiao-Jiao Tang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
11
|
Wang Y, Liu XY, Yang YZ, Huang J, Sun F, Lin J, Gu ZQ, Sayyed A, Xu C, Tan BC. Empty Pericarp21 encodes a novel PPR-DYW protein that is required for mitochondrial RNA editing at multiple sites, complexes I and V biogenesis, and seed development in maize. PLoS Genet 2019; 15:e1008305. [PMID: 31374076 PMCID: PMC6693784 DOI: 10.1371/journal.pgen.1008305] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/14/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023] Open
Abstract
C-to-U editing is an important event in post-transcriptional RNA processing, which converts a specific cytidine (C)-to-uridine (U) in transcripts of mitochondria and plastids. Typically, the pentatricopeptide repeat (PPR) protein, which specifies the target C residue by binding to its upstream sequence, is involved in the editing of one or a few sites. Here we report a novel PPR-DYW protein EMP21 that is associated with editing of 81 sites in maize. EMP21 is localized in mitochondria and loss of the EMP21 function severely inhibits the embryogenesis and endosperm development in maize. From a scan of 35 mitochondrial transcripts produced by the Emp21 loss-of-function mutant, the C-to-U editing was found to be abolished at five sites (nad7-77, atp1-1292, atp8-437, nad3-275 and rps4-870), while reduced at 76 sites in 21 transcripts. In most cases, the failure to editing resulted in the translation of an incorrect residue. In consequence, the mutant became deficient with respect to the assembly and activity of mitochondrial complexes I and V. As six of the decreased editing sites in emp21 overlap with the affected editing sites in emp5-1, and the editing efficiency at rpl16-458 showed a substantial reduction in the emp21-1 emp5-4 double mutant compared with the emp21-1 and emp5-4 single mutants, we explored their interaction. A yeast two hybrid assay suggested that EMP21 does not interact with EMP5, but both EMP21 and EMP5 interact with ZmMORF8. Together, these results indicate that EMP21 is a novel PPR-DYW protein required for the editing of ~17% of mitochondrial target Cs, and the editing process may involve an interaction between EMP21 and ZmMORF8 (and probably other proteins).
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xin-Yuan Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jishan Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Qun Gu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Bian J, Deng P, Zhan H, Wu X, Nishantha MDLC, Yan Z, Du X, Nie X, Song W. Transcriptional Dynamics of Grain Development in Barley ( Hordeum vulgare L.). Int J Mol Sci 2019; 20:E962. [PMID: 30813307 PMCID: PMC6412674 DOI: 10.3390/ijms20040962] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 11/29/2022] Open
Abstract
Grain development, as a vital process in the crop's life cycle, is crucial for determining crop quality and yield. However, the molecular basis and regulatory network of barley grain development is not well understood at present. Here, we investigated the transcriptional dynamics of barley grain development through RNA sequencing at four developmental phases, including early prestorage phase (3 days post anthesis (DPA)), late prestorage or transition phase (8 DPA), early storage phase (13 DPA), and levels off stages (18 DPA). Transcriptome profiling found that pronounced shifts occurred in the abundance of transcripts involved in both primary and secondary metabolism during grain development. The transcripts' activity was decreased during maturation while the largest divergence was observed between the transitions from prestorage phase to storage phase, which coincided with the physiological changes. Furthermore, the transcription factors, hormone signal transduction-related as well as sugar-metabolism-related genes, were found to play a crucial role in barley grain development. Finally, 4771 RNA editing events were identified in these four development stages, and most of the RNA editing genes were preferentially expressed at the prestore stage rather than in the store stage, which was significantly enriched in "essential" genes and plant hormone signal transduction pathway. These results suggested that RNA editing might act as a 'regulator' to control grain development. This study systematically dissected the gene expression atlas of barley grain development through transcriptome analysis, which not only provided the potential targets for further functional studies, but also provided insights into the dynamics of gene regulation underlying grain development in barley and beyond.
Collapse
Affiliation(s)
- Jianxin Bian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haoshuang Zhan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaotong Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Mutthanthirige D L C Nishantha
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhaogui Yan
- Huazhong Agricultural University, Wuhan 430070, China.
| | - Xianghong Du
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Joint Research Center for Agriculture Research in Arid Areas, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Dixit S, Henderson JC, Alfonzo JD. Multi-Substrate Specificity and the Evolutionary Basis for Interdependence in tRNA Editing and Methylation Enzymes. Front Genet 2019; 10:104. [PMID: 30838029 PMCID: PMC6382703 DOI: 10.3389/fgene.2019.00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
Among tRNA modification enzymes there is a correlation between specificity for multiple tRNA substrates and heteromultimerization. In general, enzymes that modify a conserved residue in different tRNA sequences adopt a heterodimeric structure. Presumably, such changes in the oligomeric state of enzymes, to gain multi-substrate recognition, are driven by the need to accommodate and catalyze a particular reaction in different substrates while maintaining high specificity. This review focuses on two classes of enzymes where the case for multimerization as a way to diversify molecular recognition can be made. We will highlight several new themes with tRNA methyltransferases and will also discuss recent findings with tRNA editing deaminases. These topics will be discussed in the context of several mechanisms by which heterodimerization may have been achieved during evolution and how these mechanisms might impact modifications in different systems.
Collapse
Affiliation(s)
| | | | - Juan D. Alfonzo
- Department of Microbiology, The Ohio State Biochemistry Program, The Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Soprano AS, Smetana JHC, Benedetti CE. Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:344-353. [PMID: 29222070 DOI: 10.1016/j.bbagrm.2017.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022]
Abstract
The field of tRNA biology, encompassing the functional and structural complexity of tRNAs, has fascinated scientists over the years and is continuously growing. Besides their fundamental role in protein translation, new evidence indicates that tRNA-derived molecules also regulate gene expression and protein synthesis in all domains of life. This review highlights some of the recent findings linking tRNA transcription and modification with plant cell growth and response to pathogens. In fact, mutations in proteins directly involved in tRNA synthesis and modification most often lead to pleiotropic effects on plant growth and immunity. As plants need to optimize and balance their energy and nutrient resources towards growth and defense, regulatory pathways that play a central role in integrating tRNA transcription and protein translation with cell growth control and organ development, such as the auxin-TOR signaling pathway, also influence the plant immune response against pathogens. As a consequence, distinct pathogens employ an array of effector molecules including tRNA fragments to target such regulatory pathways to exploit the plant's translational capacity, gain access to nutrients and evade defenses. An example includes the RNA polymerase III repressor MAF1, a conserved component of the TOR signaling pathway that controls ribosome biogenesis and tRNA synthesis required for plant growth and which is targeted by a pathogen effector molecule to promote disease. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Adriana Santos Soprano
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| |
Collapse
|
15
|
Hackett JB, Lu Y. Whole-transcriptome RNA-seq, gene set enrichment pathway analysis, and exon coverage analysis of two plastid RNA editing mutants. PLANT SIGNALING & BEHAVIOR 2017; 12:e1312242. [PMID: 28387567 PMCID: PMC5501230 DOI: 10.1080/15592324.2017.1312242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 06/02/2023]
Abstract
In land plants, plastid and mitochondrial RNAs are subject to post-transcriptional C-to-U RNA editing. T-DNA insertions in the ORGANELLE RNA RECOGNITION MOTIF PROTEIN6 gene resulted in reduced photosystem II (PSII) activity and smaller plant and leaf sizes. Exon coverage analysis of the ORRM6 gene showed that orrm6-1 and orrm6-2 are loss-of-function mutants. Compared to other ORRM proteins, ORRM6 affects a relative small number of RNA editing sites. Sanger sequencing of reverse transcription-PCR products of plastid transcripts revealed 2 plastid RNA editing sites that are substantially affected in the orrm6 mutants: psbF-C77 and accD-C794. The psbF gene encodes the β subunit of cytochrome b559, an essential component of PSII. The accD gene encodes the β subunit of acetyl-CoA carboxylase, a protein required in plastid fatty acid biosynthesis. Whole-transcriptome RNA-seq demonstrated that editing at psbF-C77 is nearly absent and the editing extent at accD-C794 was significantly reduced. Gene set enrichment pathway analysis showed that expression of multiple gene sets involved in photosynthesis, especially photosynthetic electron transport, is significantly upregulated in both orrm6 mutants. The upregulation could be a mechanism to compensate for the reduced PSII electron transport rate in the orrm6 mutants. These results further demonstrated that Organelle RNA Recognition Motif protein ORRM6 is required in editing of specific RNAs in the Arabidopsis (Arabidopsis thaliana) plastid.
Collapse
Affiliation(s)
- Justin B. Hackett
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
16
|
Ichinose M, Sugita M. RNA Editing and Its Molecular Mechanism in Plant Organelles. Genes (Basel) 2016; 8:genes8010005. [PMID: 28025543 PMCID: PMC5295000 DOI: 10.3390/genes8010005] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
RNA editing by cytidine (C) to uridine (U) conversions is widespread in plant mitochondria and chloroplasts. In some plant taxa, “reverse” U-to-C editing also occurs. However, to date, no instance of RNA editing has yet been reported in green algae and the complex thalloid liverworts. RNA editing may have evolved in early land plants 450 million years ago. However, in some plant species, including the liverwort, Marchantia polymorpha, editing may have been lost during evolution. Most RNA editing events can restore the evolutionarily conserved amino acid residues in mRNAs or create translation start and stop codons. Therefore, RNA editing is an essential process to maintain genetic information at the RNA level. Individual RNA editing sites are recognized by plant-specific pentatricopeptide repeat (PPR) proteins that are encoded in the nuclear genome. These PPR proteins are characterized by repeat elements that bind specifically to RNA sequences upstream of target editing sites. In flowering plants, non-PPR proteins also participate in multiple RNA editing events as auxiliary factors. C-to-U editing can be explained by cytidine deamination. The proteins discovered to date are important factors for RNA editing but a bona fide RNA editing enzyme has yet to be identified.
Collapse
Affiliation(s)
- Mizuho Ichinose
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
17
|
Betat H, Long Y, Jackman JE, Mörl M. From end to end: tRNA editing at 5'- and 3'-terminal positions. Int J Mol Sci 2014; 15:23975-98. [PMID: 25535083 PMCID: PMC4284800 DOI: 10.3390/ijms151223975] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 01/29/2023] Open
Abstract
During maturation, tRNA molecules undergo a series of individual processing steps, ranging from exo- and endonucleolytic trimming reactions at their 5'- and 3'-ends, specific base modifications and intron removal to the addition of the conserved 3'-terminal CCA sequence. Especially in mitochondria, this plethora of processing steps is completed by various editing events, where base identities at internal positions are changed and/or nucleotides at 5'- and 3'-ends are replaced or incorporated. In this review, we will focus predominantly on the latter reactions, where a growing number of cases indicate that these editing events represent a rather frequent and widespread phenomenon. While the mechanistic basis for 5'- and 3'-end editing differs dramatically, both reactions represent an absolute requirement for generating a functional tRNA. Current in vivo and in vitro model systems support a scenario in which these highly specific maturation reactions might have evolved out of ancient promiscuous RNA polymerization or quality control systems.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany.
| |
Collapse
|
18
|
Hammani K, Giegé P. RNA metabolism in plant mitochondria. TRENDS IN PLANT SCIENCE 2014; 19:380-9. [PMID: 24462302 DOI: 10.1016/j.tplants.2013.12.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/11/2013] [Accepted: 12/19/2013] [Indexed: 05/02/2023]
Abstract
Mitochondria are essential for the eukaryotic cell and are derived from the endosymbiosis of an α-proteobacterial ancestor. Compared to other eukaryotes, RNA metabolism in plant mitochondria is complex and combines bacterial-like traits with novel features that evolved in the host cell. These complex RNA processes are regulated by families of nucleus-encoded RNA-binding proteins. Transcription is particularly relaxed and is initiated from multiple promoters covering the entire genome. The variety of RNA precursors accumulating in mitochondria highlights the importance of post-transcriptional processes to determine the size and abundance of transcripts. Here we review RNA metabolism in plant mitochondria, from RNA transcription to translation, with a special focus on their unique features that are controlled by trans-factors.
Collapse
Affiliation(s)
- Kamel Hammani
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Philippe Giegé
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
19
|
Zhou W, Karcher D, Bock R. Importance of adenosine-to-inosine editing adjacent to the anticodon in an Arabidopsis alanine tRNA under environmental stress. Nucleic Acids Res 2013; 41:3362-72. [PMID: 23355609 PMCID: PMC3597679 DOI: 10.1093/nar/gkt013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In all organisms, transfer RNAs (tRNAs) undergo extensive post-transcriptional modifications. Although base modifications in the anticodon are known to alter decoding specificity or improve decoding accuracy, much less is known about the functional relevance of modifications in other positions of tRNAs. Here, we report the identification of an A-to-I tRNA editing enzyme that modifies the tRNA-Ala(AGC) in the model plant Arabidopsis thaliana. The enzyme is homologous to Tad1p, a yeast tRNA-specific adenosine deaminase, and it selectively deaminates the adenosine in the position 3'-adjacent to the anticodon (A37) to inosine. We show that the AtTAD1 protein is exclusively localized in the nucleus. The tad1 loss-of-function mutants isolated in Arabidopsis show normal accumulation of the tRNA-Ala(AGC), suggesting that the loss of the I37 modification does not affect tRNA stability. The tad1 knockout mutants display no discernible phenotype under standard growth conditions, but produce less biomass under environmental stress conditions. Our results provide the first evidence in support of a physiological relevance of the A37-to-I modification in eukaryotes.
Collapse
Affiliation(s)
| | | | - Ralph Bock
- *To whom correspondence should be addressed. Tel: +49 3315 67 8700; Fax: +49 3315 67 8701;
| |
Collapse
|
20
|
Lavrov DV, Pett W, Voigt O, Wörheide G, Forget L, Lang BF, Kayal E. Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. Mol Biol Evol 2012; 30:865-80. [PMID: 23223758 DOI: 10.1093/molbev/mss274] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges (phylum Porifera) are a large and ancient group of morphologically simple but ecologically important aquatic animals. Although their body plan and lifestyle are relatively uniform, sponges show extensive molecular and genetic diversity. In particular, mitochondrial genomes from three of the four previously studied classes of Porifera (Demospongiae, Hexactinellida, and Homoscleromorpha) have distinct gene contents, genome organizations, and evolutionary rates. Here, we report the mitochondrial genome of Clathrina clathrus (Calcinea, Clathrinidae), a representative of the fourth poriferan class, the Calcarea, which proves to be the most unusual. Clathrina clathrus mitochondrial DNA (mtDNA) consists of six linear chromosomes 7.6-9.4 kb in size and encodes at least 37 genes: 13 protein codings, 2 ribosomal RNAs (rRNAs), and 24 transfer RNAs (tRNAs). Protein genes include atp9, which has now been found in all major sponge lineages, but no atp8. Our analyses further reveal the presence of a novel genetic code that involves unique reassignments of the UAG codons from termination to tyrosine and of the CGN codons from arginine to glycine. Clathrina clathrus mitochondrial rRNAs are encoded in three (srRNA) and ≥6 (lrRNA) fragments distributed out of order and on several chromosomes. The encoded tRNAs contain multiple mismatches in the aminoacyl acceptor stems that are repaired posttranscriptionally by 3'-end RNA editing. Although our analysis does not resolve the phylogenetic position of calcareous sponges, likely due to their high rates of mitochondrial sequence evolution, it confirms mtDNA as a promising marker for population studies in this group. The combination of unusual mitochondrial features in C. clathrus redefines the extremes of mtDNA evolution in animals and further argues against the idea of a "typical animal mtDNA."
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Iowa, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Paris Z, Fleming IMC, Alfonzo JD. Determinants of tRNA editing and modification: avoiding conundrums, affecting function. Semin Cell Dev Biol 2011; 23:269-74. [PMID: 22024020 DOI: 10.1016/j.semcdb.2011.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/04/2011] [Accepted: 10/12/2011] [Indexed: 11/12/2022]
Abstract
In all organisms tRNAs play the essential role of connecting the genetic information found in DNA with the protein synthesis machinery ensuring fidelity during translation. Following transcription tRNAs undergo a number of processing events including numerous post-transcriptional modifications that render a tRNA molecule fully functional. The effects of some modifications go beyond simply affecting tRNA structure and can alter the meaning of the tRNA. This review will summarize the current state of the tRNA editing field, highlighting how editing affects tRNA structure and function in various organisms. It will also discuss recent data that hints at connections between editing and modification that may be exploited by cells to modulate a tRNA's role in translation.
Collapse
Affiliation(s)
- Zdeněk Paris
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
22
|
Su AAH, Randau L. A-to-I and C-to-U editing within transfer RNAs. BIOCHEMISTRY (MOSCOW) 2011; 76:932-7. [DOI: 10.1134/s0006297911080098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Segovia R, Pett W, Trewick S, Lavrov DV. Extensive and evolutionarily persistent mitochondrial tRNA editing in Velvet Worms (phylum Onychophora). Mol Biol Evol 2011; 28:2873-81. [PMID: 21546355 DOI: 10.1093/molbev/msr113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial genomes of onychophorans (velvet worms) present an interesting problem: Some previous studies reported them lacking several transfer RNA (tRNA) genes, whereas others found that all their tRNA genes were present but severely reduced. To resolve this discrepancy, we determined complete mitochondrial DNA (mtDNA) sequences of the onychophorans Oroperipatus sp. and Peripatoides sympatrica as well as cDNA sequences from 14 and 10 of their tRNAs, respectively. We show that tRNA genes in these genomes are indeed highly reduced and encode truncated molecules, which are restored to more conventional structures by extensive tRNA editing. During this editing process, up to 34 nucleotides are added to the tRNA sequences encoded in Oroperipatus sp. mtDNA, rebuilding the aminoacyl acceptor stem, the TΨC arm, and in some extreme cases, the variable arm and even a part of the anticodon stem. The editing is less extreme in P. sympatrica in which at least a part of the TΨC arm is always encoded in mtDNA. When the entire TΨC arm is added de novo in Oroperipatus sp., the sequence of this arm is either identical or similar among different tRNA species, yet the sequences show substantial variation for each tRNA. These observations suggest that the arm is rebuilt, at least in part, by a template-independent mechanism and argue against the alternative possibility that tRNA genes or their parts are imported from the nucleus. By contrast, the 3' end of the aminoacyl acceptor stem is likely restored by a template-dependent mechanism. The extreme tRNA editing reported here has been preserved for >140 My as it was found in both extant families of onychophorans. Furthermore, a similar type of tRNA editing may be present in several other groups of arthropods, which show a high degree of tRNA gene reduction in their mtDNA.
Collapse
Affiliation(s)
- Romulo Segovia
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, USA
| | | | | | | |
Collapse
|
24
|
Bermudez-Santana C, Attolini CSO, Kirsten T, Engelhardt J, Prohaska SJ, Steigele S, Stadler PF. Genomic organization of eukaryotic tRNAs. BMC Genomics 2010; 11:270. [PMID: 20426822 PMCID: PMC2888827 DOI: 10.1186/1471-2164-11-270] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/28/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Surprisingly little is known about the organization and distribution of tRNA genes and tRNA-related sequences on a genome-wide scale. While tRNA gene complements are usually reported in passing as part of genome annotation efforts, and peculiar features such as the tandem arrangements of tRNA gene in Entamoeba histolytica have been described in some detail, systematic comparative studies are rare and mostly restricted to bacteria. We therefore set out to survey the genomic arrangement of tRNA genes and pseudogenes in a wide range of eukaryotes to identify common patterns and taxon-specific peculiarities. RESULTS In line with previous reports, we find that tRNA complements evolve rapidly and tRNA gene and pseudogene locations are subject to rapid turnover. At phylum level, the distributions of the number of tRNA genes and pseudogenes numbers are very broad, with standard deviations on the order of the mean. Even among closely related species we observe dramatic changes in local organization. For instance, 65% and 87% of the tRNA genes and pseudogenes are located in genomic clusters in zebrafish and stickleback, resp., while such arrangements are relatively rare in the other three sequenced teleost fish genomes. Among basal metazoa, Trichoplax adherens has hardly any duplicated tRNA gene, while the sea anemone Nematostella vectensis boasts more than 17000 tRNA genes and pseudogenes. Dramatic variations are observed even within the eutherian mammals. Higher primates, for instance, have 616 +/- 120 tRNA genes and pseudogenes of which 17% to 36% are arranged in clusters, while the genome of the bushbaby Otolemur garnetti has 45225 tRNA genes and pseudogenes of which only 5.6% appear in clusters. In contrast, the distribution is surprisingly uniform across plant genomes. Consistent with this variability, syntenic conservation of tRNA genes and pseudogenes is also poor in general, with turn-over rates comparable to those of unconstrained sequence elements. Despite this large variation in abundance in Eukarya we observe a significant correlation between the number of tRNA genes, tRNA pseudogenes, and genome size. CONCLUSIONS The genomic organization of tRNA genes and pseudogenes shows complex lineage-specific patterns characterized by an extensive variability that is in striking contrast to the extreme levels of sequence-conservation of the tRNAs themselves. The comprehensive analysis of the genomic organization of tRNA genes and pseudogenes in Eukarya provides a basis for further studies into the interplay of tRNA gene arrangements and genome organization in general.
Collapse
Affiliation(s)
- Clara Bermudez-Santana
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
- Department of Biology, Universidad Nacional de Colombia. Carrera45 # 26-85 - Edificio Uriel Gutiérrez, Bogotá D.C., Colombia
| | - Camille Stephan-Otto Attolini
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
- Biostatistics and Bioinformatics unit, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Toralf Kirsten
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Jan Engelhardt
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Sonja J Prohaska
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | | | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraß 22 D-04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, D-04103 Leipzig, Germany
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
| |
Collapse
|
25
|
Miyata Y, Sugita C, Maruyama K, Sugita M. RNA editing in the anticodon of tRNA Leu (CAA) occurs before group I intron splicing in plastids of a moss Takakia lepidozioides S. Hatt. & Inoue. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:250-255. [PMID: 18304199 DOI: 10.1111/j.1438-8677.2007.00027.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
RNA editing of cytidine (C) to uridine (U) transitions occurs in plastids and mitochondria of most land plants. In this study, we amplified and sequenced the group I intron-containing tRNA Leu gene, trnL-CAA, from Takakia lepidozioides, a moss. DNA sequence analysis revealed that the T. lepidozioides tRNA Leu gene consisted of a 35-bp 5' exon, a 469-bp group I intron and a 50-bp 3' exon. The intron was inserted between the first and second position of the tRNA Leu anticodon. In general, plastid tRNA Leu genes with a group I intron code for a TAA anticodon in most land plants. This strongly suggests that the first nucleotide of the CAA anticodon could be edited in T. lepidozioides plastids. To investigate this possibility, we analysed cDNAs derived from the trnL-CAA transcripts. We demonstrated that the first nucleotide C of the anticodon was edited to create a canonical UAA anticodon in T. lepidozioides plastids. cDNA sequencing analyses of the spliced or unspliced tRNA Leu transcripts revealed that, while the spliced tRNA was completely edited, editing in the unspliced tRNAs were only partial. This is the first experimental evidence that the anticodon editing of tRNA occurs before RNA splicing in plastids. This suggests that this editing is a prerequisite to splicing of pre-tRNA Leu.
Collapse
Affiliation(s)
- Y Miyata
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
26
|
|
27
|
Gaston KW, Rubio MAT, Spears JL, Pastar I, Papavasiliou FN, Alfonzo JD. C to U editing at position 32 of the anticodon loop precedes tRNA 5' leader removal in trypanosomatids. Nucleic Acids Res 2007; 35:6740-9. [PMID: 17916576 PMCID: PMC2175311 DOI: 10.1093/nar/gkm745] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In all organisms, precursor tRNAs are processed into mature functional units by post-transcriptional changes. These involve 5′ and 3′ end trimming as well as the addition of a significant number of chemical modifications, including RNA editing. The only known example of non-organellar C to U editing of tRNAs occurs in trypanosomatids. In this system, editing at position 32 of the anticodon loop of tRNAThr(AGU) stimulates, but is not required for, the subsequent formation of inosine at position 34. In the present work, we expand the number of C to U edited tRNAs to include all the threonyl tRNA isoacceptors. Notably, the absence of a naturally encoded adenosine, at position 34, in two of these isoacceptors demonstrates that A to I is not required for C to U editing. We also show that C to U editing is a nuclear event while A to I is cytoplasmic, where C to U editing at position 32 occurs in the precursor tRNA prior to 5′ leader removal. Our data supports the view that C to U editing is more widespread than previously thought and is part of a stepwise process in the maturation of tRNAs in these organisms.
Collapse
Affiliation(s)
- Kirk W Gaston
- Department of Microbiology, The Ohio State RNA Group, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
28
|
Bullerwell CE, Gray MW. In vitro characterization of a tRNA editing activity in the mitochondria of Spizellomyces punctatus, a Chytridiomycete fungus. J Biol Chem 2004; 280:2463-70. [PMID: 15546859 DOI: 10.1074/jbc.m411273200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the chytridiomycete fungus, Spizellomyces punctatus, all eight of the mitochondrially encoded tRNAs are predicted to have one or more base pair mismatches at the first three positions of their aminoacyl acceptor stems. These tRNAs are edited post-transcriptionally by replacement of the 5'-nucleotide in each mismatched pair with a nucleotide that can form a standard Watson-Crick base pair with its counterpart in the 3'-half of the stem. The type of mitochondrial tRNA editing found in S. punctatus also occurs in Acanthamoeba castellanii, a distantly related amoeboid protist. Using an S. punctatus mitochondrial extract, we have developed an in vitro assay of tRNA editing in which nucleotides are incorporated into various tRNA substrates. Experiments employing synthetic transcripts revealed that the S. punctatus tRNA editing activity incorporates nucleotides on the 5'-side of substrate tRNAs, uses the 3'-sequence as a template for incorporation, and adds nucleotides in a 3'-to-5' direction. This activity can add nucleotides to a triphosphorylated 5'-end in the absence of ATP but requires ATP to add nucleotides to a monophosphorylated 5'-end; moreover, it functions independently of the state of tRNA 3' processing. These data parallel results obtained in a previous in vitro study of A. castellanii tRNA editing, suggesting that remarkably similar activities function in the mitochondria of these two organisms. The evolutionary origins of these activities are discussed.
Collapse
Affiliation(s)
- Charles E Bullerwell
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | |
Collapse
|
29
|
Laforest MJ, Bullerwell CE, Forget L, Lang BF. Origin, evolution, and mechanism of 5' tRNA editing in chytridiomycete fungi. RNA (NEW YORK, N.Y.) 2004; 10:1191-1199. [PMID: 15247432 PMCID: PMC1370609 DOI: 10.1261/rna.7330504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 04/30/2004] [Indexed: 05/24/2023]
Abstract
5' tRNA editing has been demonstrated to occur in the mitochondria of the distantly related rhizopod amoeba Acanthamoeba castellanii and the chytridiomycete fungus Spizellomyces punctatus. In these organisms, canonical tRNA structures are restored by removing mismatched nucleotides at the first three 5' positions and replacing them with nucleotides capable of forming Watson-Crick base pairs with their 3' counterparts. This form of editing seems likely to occur in members of Amoebozoa other than A. castellanii, as well as in members of Heterolobosea. Evidence for 5' tRNA editing has not been found to date, however, in any other fungus including the deeply branching chytridiomycete Allomyces macrogynus. We predicted that a similar form of tRNA editing would occur in members of the chytridiomycete order Monoblepharidales based on the analysis of complete mitochondrial tRNA complements. This prediction was confirmed by analysis of tRNA sequences using a tRNA circularization/RT-PCR-based approach. The presence of partially and completely unedited tRNAs in members of the Monoblepharidales suggests the involvement of a 5'-to-3' exonuclease rather than an endonuclease in removing the three 5' nucleotides from a tRNA substrate. Surprisingly, analysis of the mtDNA of the chytridiomycete Rhizophydium brooksianum, which branches as a sister group to S. punctatus in molecular phylogenies, did not suggest the presence of editing. This prediction was also confirmed experimentally. The absence of tRNA editing in R. brooksianum raises the possibility that 5' tRNA editing may have evolved twice independently within Chytridiomycota, once in the lineage leading to S. punctatus and once in the lineage leading to the Monoblepharidales.
Collapse
Affiliation(s)
- Marie-Josée Laforest
- Département de Biochimie, Université de Montréal, 2900, Boulevard Edouard Montpetit, C.P. 6128, Succursale Centre-Ville, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
30
|
Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 2004; 74:1303-8. [PMID: 15108122 PMCID: PMC1182096 DOI: 10.1086/421530] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 04/01/2004] [Indexed: 11/03/2022] Open
Abstract
Mitochondrial myopathy and sideroblastic anemia (MLASA) is a rare, autosomal recessive oxidative phosphorylation disorder specific to skeletal muscle and bone marrow. Linkage analysis and homozygosity testing of two families with MLASA localized the candidate region to 1.2 Mb on 12q24.33. Sequence analysis of each of the six known genes in this region, as well as four putative genes with expression in bone marrow or muscle, identified a homozygous missense mutation in the pseudouridine synthase 1 gene (PUS1) in all patients with MLASA from these families. The mutation is the only amino acid coding change in these 10 genes that is not a known polymorphism, and it is not found in 934 controls. The amino acid change affects a highly conserved amino acid, and appears to be in the catalytic center of the protein, PUS1p. PUS1 is widely expressed, and quantitative expression analysis of RNAs from liver, brain, heart, bone marrow, and skeletal muscle showed elevated levels of expression in skeletal muscle and brain. We propose deficient pseudouridylation of mitochondrial tRNAs as an etiology of MLASA. Identification of the pathophysiologic pathways of the mutation in these families may shed light on the tissue specificity of oxidative phosphorylation disorders.
Collapse
Affiliation(s)
- Yelena Bykhovskaya
- Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, and Medical Genetics Birth Defects Center, Cedars-Sinai Medical Center, Los Angeles; and Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| | - Kari Casas
- Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, and Medical Genetics Birth Defects Center, Cedars-Sinai Medical Center, Los Angeles; and Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| | - Emebet Mengesha
- Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, and Medical Genetics Birth Defects Center, Cedars-Sinai Medical Center, Los Angeles; and Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| | - Aida Inbal
- Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, and Medical Genetics Birth Defects Center, Cedars-Sinai Medical Center, Los Angeles; and Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| | - Nathan Fischel-Ghodsian
- Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, and Medical Genetics Birth Defects Center, Cedars-Sinai Medical Center, Los Angeles; and Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
31
|
Ahn KS, Ha U, Jia J, Wu D, Jin S. The truA gene of Pseudomonas aeruginosa is required for the expression of type III secretory genes. MICROBIOLOGY-SGM 2004; 150:539-547. [PMID: 14993303 DOI: 10.1099/mic.0.26652-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Invasive strains of Pseudomonas aeruginosa can cause rapid host cell apoptosis by injecting the type III effector molecule ExoS. A transposon insertional mutant bank of P. aeruginosa was screened to identify P. aeruginosa genes that contribute to the ability of the bacteria to trigger host cell apoptosis. Several isolated mutants had disruptions in the fimV gene. A fimV mutant was unable to induce the expression of exoS, exoT and exsA genes under type III inducing conditions, thus exhibiting a defect in type III protein secretion. Furthermore, this mutant was defective in twitching motility, although type IV pili were present on the bacterial surface. Complementation by a fimV-containing cosmid clone restored both phenotypes to the wild-type levels. However, expression of the type III genes in the fimV mutant was not restored by the introduction of a fimV gene alone, although it restored the twitching motility. A gene downstream of fimV, encoding a tRNA pseudouridine synthase (truA) homologue, was able to complement the type III gene expression defect of the fimV mutant. Thus fimV and truA form an operon and fimV mutation has a polar effect on truA. Indeed, a truA mutant is defective in type III gene expression while its twitching motility is unaffected, and a truA clone is able to complement the type III secretion defect. Pseudouridination of tRNAs is important for tRNA structure, thereby improving the fidelity of protein synthesis and helping to maintain the proper reading frame; thus the results imply that truA controls tRNAs that are critical for the translation of type III genes or their regulators.
Collapse
Affiliation(s)
- Kyung-Seop Ahn
- Immunomodulator Laboratory, Korea Institute of Bioscience and Biotechnology, Taejon 305-600, Republic of Korea
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Unhwan Ha
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Jinghua Jia
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Donghai Wu
- Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
32
|
Abstract
RNA editing, which results in the creation of RNA molecules that differ from the template from which they were made, is a highly specific process. Alterations include converting one base to another, removal of one nucleotide and substitution of another, deletion of encoded residues, and insertion of non-templated nucleotides. Such changes have marked effects on gene expression, ranging from defined amino acid changes to the de novo creation of entire open reading frames. Editing can be regulated in a developmental or tissue-specific manner, and is likely to play a role in the etiology of human disease.
Collapse
Affiliation(s)
- Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
33
|
|
34
|
|