1
|
ATP13A3 facilitates polyamine transport in human pancreatic cancer cells. Sci Rep 2022; 12:4045. [PMID: 35260637 PMCID: PMC8904813 DOI: 10.1038/s41598-022-07712-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/18/2022] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study is to provide an increased understanding of the molecular mechanisms responsible for mammalian polyamine transport, a process that has been a long-standing 'black box' for the polyamine field. Here, we describe how ATP13A3, a P-type ATPase, functions as a polyamine transporter in response to different polyamine stimuli and polyamine-targeted therapies in highly proliferating pancreatic cancer cells. We assessed the expression, cellular localization and the response of the human ATP13A3 protein to polyamine treatments in different pancreatic cancer cell lines using Western blot and immunofluorescence microscopy. Using CRISPR mutagenesis and radiolabeled polyamine uptake assays, we investigated the role of ATP13A3 protein in polyamine transport. Highly metastatic cancer cells with high polyamine import express higher levels of the full-length ATP13A3 compared to cells with slow proliferation and low import activity. Highlighting its role in polyamine trafficking, the localization of ATP13A3 is altered in the presence of polyamine stimuli and polyamine-targeted therapies in these cells. Using CRISPR mutagenesis, we demonstrate that the first membrane-associated domain of this protein is critical and indispensable for its function as a spermidine and spermine transporter in cells. Further analysis of existing databases revealed that pancreatic cancer patients with high expression of ATP13A3 have decreased overall survival consistent with the role of intracellular polyamines in supporting tumor growth. Our studies shed light on the mysterious polyamine transport process in human cells and clearly establishes ATP13A3 as an intrinsic component of the spermidine and spermine transport system in humans.
Collapse
|
2
|
Lek SM, Li K, Tan QX, Shannon NB, Ng WH, Hendrikson J, Tan JWS, Lim HJ, Chen Y, Koh KKN, Skanthakumar T, Kwang XL, Chong FT, Leong HS, Tay G, Putri NE, Lim TKH, Hwang JSG, Ang MK, Tan DSW, Tan NC, Tan HK, Kon OL, Soo KC, Iyer NG, Ong CAJ. Pairing a prognostic target with potential therapeutic strategy for head and neck cancer. Oral Oncol 2020; 111:105035. [PMID: 33091845 DOI: 10.1016/j.oraloncology.2020.105035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We have previously identified and validated a panel of molecular prognostic markers (ATP13A3, SSR3, and ANO1) for Head and Neck Squamous Cell Carcinoma (HNSCC). The aim of this study was to investigate the consequence of ATP13A3 dysregulation on signaling pathways, to aid in formulating a therapeutic strategy targeting ATP13A3-overexpressing HNSCC. MATERIALS AND METHODS Gene Set Enrichment Analysis (GSEA) was performed on HNSCC microarray expression data (Internal local dataset [n = 92], TCGA [n = 232], EMBL [n = 81]) to identify pathways associated with high expression of ATP13A3. Validation was performed using immunohistochemistry (IHC) on tissue microarrays (TMAs) of head and neck cancers (n = 333), staining for ATP13A3 and phosphorylated Aurora kinase A (phospho-T288). Short interfering RNA was used to knockdown ATP13A3 expression in patient derived HNSCC cell lines. Protein expression of ATP13A3 and Aurora kinase A was then assessed by immunoblotting. RESULTS GSEA identified Aurora kinase pathway to be associated with high expression of ATP13A3 (p = 0.026). The Aurora kinase pathway was also associated with a trend towards poor prognosis and tumor aggressiveness (p = 0.086, 0.094, respectively). Furthermore, the immunohistochemical staining results revealed a significant association between Aurora kinase activity and high ATP13A3 expression (p < 0.001). Knockdown of ATP13A3 in human head and neck cell lines showed decrease in Aurora kinase A levels. CONCLUSION Tumors with high ATP13A3 are associated with high Aurora kinase activity. This suggests a potential therapeutic role of Aurora kinase inhibitors in a subset of poor prognosis HNSCC patients with overexpression of ATP13A3.
Collapse
Affiliation(s)
- Sze Min Lek
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Ke Li
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Qiu Xuan Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Nicholas B Shannon
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Wai Har Ng
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Josephine Hendrikson
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Joey W S Tan
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Hui Jun Lim
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Yudong Chen
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Kelvin K N Koh
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Thakshayeni Skanthakumar
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Xue Lin Kwang
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Fui Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Gerald Tay
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Natascha Ekawati Putri
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Jacqueline S G Hwang
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Mei Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Ngian Chye Tan
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Hiang Khoon Tan
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - Oi Lian Kon
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Khee Chee Soo
- SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; SingHealth Duke-NUS Head and Neck Centre, SingHealth, 1 Hospital Drive, Block 3 Basement 1, Singapore 169608, Singapore.
| | - Chin-Ann J Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore; SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.
| |
Collapse
|
3
|
Drag M, Hansen MB, Kadarmideen HN. Systems genomics study reveals expression quantitative trait loci, regulator genes and pathways associated with boar taint in pigs. PLoS One 2018; 13:e0192673. [PMID: 29438444 PMCID: PMC5811030 DOI: 10.1371/journal.pone.0192673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/29/2018] [Indexed: 01/14/2023] Open
Abstract
Boar taint is an offensive odour and/or taste from a proportion of non-castrated male pigs caused by skatole and androstenone accumulation during sexual maturity. Castration is widely used to avoid boar taint but is currently under debate because of animal welfare concerns. This study aimed to identify expression quantitative trait loci (eQTLs) with potential effects on boar taint compounds to improve breeding possibilities for reduced boar taint. Danish Landrace male boars with low, medium and high genetic merit for skatole and human nose score (HNS) were slaughtered at ~100 kg. Gene expression profiles were obtained by RNA-Seq, and genotype data were obtained by an Illumina 60K Porcine SNP chip. Following quality control and filtering, 10,545 and 12,731 genes from liver and testis were included in the eQTL analysis, together with 20,827 SNP variants. A total of 205 and 109 single-tissue eQTLs associated with 102 and 58 unique genes were identified in liver and testis, respectively. By employing a multivariate Bayesian hierarchical model, 26 eQTLs were identified as significant multi-tissue eQTLs. The highest densities of eQTLs were found on pig chromosomes SSC12, SSC1, SSC13, SSC9 and SSC14. Functional characterisation of eQTLs revealed functions within regulation of androgen and the intracellular steroid hormone receptor signalling pathway and of xenobiotic metabolism by cytochrome P450 system and cellular response to oestradiol. A QTL enrichment test revealed 89 QTL traits curated by the Animal Genome PigQTL database to be significantly overlapped by the genomic coordinates of cis-acting eQTLs. Finally, a subset of 35 cis-acting eQTLs overlapped with known boar taint QTL traits. These eQTLs could be useful in the development of a DNA test for boar taint but careful monitoring of other overlapping QTL traits should be performed to avoid any negative consequences of selection.
Collapse
Affiliation(s)
- Markus Drag
- Section of Anatomy, Biochemistry and Physiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mathias B. Hansen
- Section of Anatomy, Biochemistry and Physiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Haja N. Kadarmideen
- Section of Anatomy, Biochemistry and Physiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Section of Systems Genomics, Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
4
|
Lambie EJ, Tieu PJ, Lebedeva N, Church DL, Conradt B. CATP-6, a C. elegans ortholog of ATP13A2 PARK9, positively regulates GEM-1, an SLC16A transporter. PLoS One 2013; 8:e77202. [PMID: 24130856 PMCID: PMC3793975 DOI: 10.1371/journal.pone.0077202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/06/2013] [Indexed: 11/27/2022] Open
Abstract
In previous work, we found that gain-of-function mutations that hyperactivate GEM-1 (an SLC16A transporter protein) can bypass the requirement for GON-2 (a TRPM channel protein) during the initiation of gonadogenesis in C. elegans. Consequently, we proposed that GEM-1 might function as part of a Mg2+ uptake pathway that functions in parallel to GON-2. In this study, we report that CATP-6, a C. elegans ortholog of the P5B ATPase, ATP13A2 (PARK9), is necessary for gem-1 gain-of-function mutations to suppress the effects of gon-2 inactivation. One possible explanation for this observation is that GEM-1 serves to activate CATP-6, which then functions as a Mg2+ transporter. However, we found that overexpression of GEM-1 can alleviate the requirement for CATP-6 activity, suggesting that CATP-6 probably acts as a non-essential upstream positive regulator of GEM-1. Our results are consistent with the notion that P5B ATPases govern intracellular levels of Mg2+ and/or Mn2+ by regulating the trafficking of transporters and other proteins associated with the plasma membrane.
Collapse
Affiliation(s)
- Eric J. Lambie
- Department of Cell and Developmental Biology, Ludwig-Maximillians-University, Munich, Planegg-Martinsried, Germany
- * E-mail:
| | - Pamela J. Tieu
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Nadja Lebedeva
- Department of Cell and Developmental Biology, Ludwig-Maximillians-University, Munich, Planegg-Martinsried, Germany
| | - Diane L. Church
- Parkinson's Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Barbara Conradt
- Department of Cell and Developmental Biology, Ludwig-Maximillians-University, Munich, Planegg-Martinsried, Germany
- CIPS Center for Integrated Protein Science, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
5
|
Sørensen DM, Møller AB, Jakobsen MK, Jensen MK, Vangheluwe P, Buch-Pedersen MJ, Palmgren MG. Ca2+ induces spontaneous dephosphorylation of a novel P5A-type ATPase. J Biol Chem 2012; 287:28336-48. [PMID: 22730321 DOI: 10.1074/jbc.m112.387191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
P5 ATPases constitute the least studied group of P-type ATPases, an essential family of ion pumps in all kingdoms of life. Although P5 ATPases are present in every eukaryotic genome analyzed so far, they have remained orphan pumps, and their biochemical function is obscure. We show that a P5A ATPase from barley, HvP5A1, locates to the endoplasmic reticulum and is able to rescue knock-out mutants of P5A genes in both Arabidopsis thaliana and Saccharomyces cerevisiae. HvP5A1 spontaneously forms a phosphorylated reaction cycle intermediate at the catalytic residue Asp-488, whereas, among all plant nutrients tested, only Ca(2+) triggers dephosphorylation. Remarkably, Ca(2+)-induced dephosphorylation occurs at high apparent [Ca(2+)] (K(i) = 0.25 mM) and is independent of the phosphatase motif of the pump and the putative binding site for transported ligands located in M4. Taken together, our results rule out that Ca(2+) is a transported substrate but indicate the presence of a cytosolic low affinity Ca(2+)-binding site, which is conserved among P-type pumps and could be involved in pump regulation. Our work constitutes the first characterization of a P5 ATPase phosphoenzyme and points to Ca(2+) as a modifier of its function.
Collapse
Affiliation(s)
- Danny Mollerup Sørensen
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | |
Collapse
|
6
|
Sørensen DM, Buch-Pedersen MJ, Palmgren MG. Structural divergence between the two subgroups of P5 ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:846-55. [PMID: 20416272 DOI: 10.1016/j.bbabio.2010.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/09/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Evolution of P5 type ATPases marks the origin of eukaryotes but still they remain the least characterized pumps in the superfamily of P-type ATPases. Phylogenetic analysis of available sequences suggests that P5 ATPases should be divided into at least two subgroups, P5A and P5B. P5A ATPases have been identified in the endoplasmic reticulum and seem to have basic functions in protein maturation and secretion. P5B ATPases localize to vacuolar/lysosomal or apical membranes and in animals play a role in hereditary neuronal diseases. Here we have used a bioinformatical approach to identify differences in the primary sequences between the two subgroups. P5A and P5B ATPases appear have a very different membrane topology from other P-type ATPases with two and one, respectively, additional transmembrane segments inserted in the N-terminal end. Based on conservation of residues in the transmembrane region, the two P5 subgroups most likely have different substrate specificities although these cannot be predicted from their sequences. Furthermore, sequence differences between P5A and P5B ATPases are identified in the catalytic domains that could influence key kinetic properties differentially. Together these findings indicate that P5A and P5B ATPases are structurally and functionally different.
Collapse
Affiliation(s)
- Danny Mollerup Sørensen
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | |
Collapse
|
7
|
Heinick A, Urban K, Roth S, Spies D, Nunes F, Phanstiel O, Liebau E, Lüersen K. Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. FASEB J 2009; 24:206-17. [PMID: 19762559 DOI: 10.1096/fj.09-135889] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Physiological polyamines are required in various biological processes. In the current study, we used norspermidine, a structural analog of the natural polyamine spermidine, to investigate polyamine uptake in the model organism Caenorhabditis elegans. Norspermidine was found to have two remarkable effects: it is toxic for the nematode, without affecting its food, Escherichia coli; and it hampers RNA interference. By characterizing a norspermidine-resistant C. elegans mutant strain that has been isolated in a genetic screen, we demonstrate that both effects, as well as the uptake of a fluorescent polyamine-conjugate, depend on the transporter protein CATP-5, a novel P(5B)-type ATPase. To our knowledge, CATP-5 represents the first P(5)-type ATPase that is associated with the plasma membrane, being expressed in the apical membrane of intestinal cells and the excretory cell. Moreover, genetic interaction studies using C. elegans polyamine synthesis mutants indicate that CATP-5 has a function redundant to polyamine synthesis and link reduced polyamine levels to retarded postembryonic development, reduced brood size, shortened life span, and small body size. We suggest that CATP-5 represents a crucial component of the pharmacologically important polyamine transport system, the molecular nature of which has not been identified so far in metazoa.
Collapse
Affiliation(s)
- Alexander Heinick
- Institute for Animal Physiology, Westfalian Wilhelms University, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Liovic M, Lee B, Tomic-Canic M, D'Alessandro M, Bolshakov VN, Lane EB. Dual-specificity phosphatases in the hypo-osmotic stress response of keratin-defective epithelial cell lines. Exp Cell Res 2008; 314:2066-75. [PMID: 18410923 DOI: 10.1016/j.yexcr.2008.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/24/2008] [Accepted: 02/26/2008] [Indexed: 01/31/2023]
Abstract
Although mutations in intermediate filament proteins cause many human disorders, the detailed pathogenic mechanisms and the way these mutations affect cell metabolism are unclear. In this study, selected keratin mutations were analysed for their effect on the epidermal stress response. Expression profiles of two keratin-mutant cell lines from epidermolysis bullosa simplex patients (one severe and one mild) were compared to a control keratinocyte line before and after challenge with hypo-osmotic shock, a common physiological stress that transiently distorts cell shape. Fewer changes in gene expression were found in cells with the severely disruptive mutation (55 genes altered) than with the mild mutation (174 genes) or the wild type cells (261 genes) possibly due to stress response pre-activation in these cells. We identified 16 immediate-early genes contributing to a general cell response to hypo-osmotic shock, and 20 genes with an altered expression pattern in the mutant keratin lines only. A number of dual-specificity phosphatases (MKP-1, MKP-2, MKP-3, MKP-5 and hVH3) are differentially regulated in these cells, and their downstream targets p-ERK and p-p38 are significantly up-regulated in the mutant keratin lines. Our findings strengthen the case for the expression of mutant keratin proteins inducing physiological stress, and this intrinsic stress may affect the cell responses to secondary stresses in patients' skin.
Collapse
Affiliation(s)
- Mirjana Liovic
- National Institute of Chemistry, Ljubljana, Slovenia; CRUK Cell Structure Research Group, University of Dundee College of Life Sciences, MSI/WTB Complex, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Furune T, Hashimoto K, Ishiguro J. Characterization of a fission yeast P5-type ATPase homologue that is essential for Ca2+/Mn2+ homeostasis in the absence of P2-type ATPases. Genes Genet Syst 2008; 83:373-81. [DOI: 10.1266/ggs.83.373] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Takahiro Furune
- Department of Biology, Faculty of Science and Engineering, Konan University
| | - Kentaro Hashimoto
- Department of Biology, Faculty of Science and Engineering, Konan University
| | - Junpei Ishiguro
- Department of Biology, Faculty of Science and Engineering, Konan University
| |
Collapse
|
10
|
Affiliation(s)
- Fred G Silva
- The United States and Canadian Academy of Pathology, Emory University and the Medical college of Georgia, Augusta, GA 30909, USA.
| |
Collapse
|
11
|
Roy S, Khanna S, Yeh PE, Rink C, Malarkey WB, Kiecolt-Glaser J, Laskowski B, Glaser R, Sen CK. Wound site neutrophil transcriptome in response to psychological stress in young men. Gene Expr 2005; 12:273-87. [PMID: 16358416 PMCID: PMC6009119 DOI: 10.3727/000000005783992025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Communication between the central nervous and the immune system occurs through chemical messengers secreted by nerve cells, endocrine organs, or immune cells. Psychological stressors can disrupt these networks. We have previously observed that disruption of the neuroendocrine immune system adversely influences a broad range of physiological processes including wound healing. Migration of neutrophils to the wound site is an early event that induces a transcriptional activation program, which regulates cellular fate and function, and promotes wound healing. In this study, we have sought to identify stress-sensitive transcripts in wound site neutrophils. A skin blister model was used to collect wound fluid and wound site neutrophils from four young men, experiencing or not examination stress. Self-reported stress was recorded using the Beck Depression Inventory. Stress decreased growth hormone levels at the wound site and was related to impaired wound healing in all subjects. High density microarray analyses were performed using RNA from wound site neutrophils. Results show that psychological stress had an overall suppressive effect on the neutrophil transcriptome. Of the 22,283 transcripts screened, 0.5% were downregulated whereas only under 0.3% were induced by stress in all four out of four subjects. Functionally, stress tilted the genomic balance towards genes encoding proteins responsible for cell cycle arrest, death, and inflammation. Further effort to gain a more comprehensive understanding of the functional significance of such behavior-genome interaction is warranted.
Collapse
Affiliation(s)
- Sashwati Roy
- *Laboratory of Molecular Medicine, Department of Surgery, Davis Heart & Lung Research Institute and Ohio State Comprehensive Wound Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Savita Khanna
- *Laboratory of Molecular Medicine, Department of Surgery, Davis Heart & Lung Research Institute and Ohio State Comprehensive Wound Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Pier-En Yeh
- †Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Cameron Rink
- *Laboratory of Molecular Medicine, Department of Surgery, Davis Heart & Lung Research Institute and Ohio State Comprehensive Wound Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - William B. Malarkey
- †Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
- ‡Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA
- §Department of Psychiatry, The Ohio State University Medical Center, Columbus, OH 43210, USA
- ¶Ohio State Institute for Behavioral Medicine Research, The Ohio State University Medical Center, Columbus, OH 43210, USA
- #Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Janice Kiecolt-Glaser
- §Department of Psychiatry, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Bryon Laskowski
- †Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Ronald Glaser
- †Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
- ¶Ohio State Institute for Behavioral Medicine Research, The Ohio State University Medical Center, Columbus, OH 43210, USA
- #Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Chandan K. Sen
- *Laboratory of Molecular Medicine, Department of Surgery, Davis Heart & Lung Research Institute and Ohio State Comprehensive Wound Center, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|