1
|
Yuan Y, Wu S, Day PJR. Primary Sequence and Three-Dimensional Structural Comparison between Malanin and Ricin, a Type II Ribosome-Inactivating Protein. Toxins (Basel) 2024; 16:440. [PMID: 39453216 PMCID: PMC11510761 DOI: 10.3390/toxins16100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Malanin is a new type II ribosome-inactivating protein (RIP) purified from Malania oleifera, a rare, endangered tree is only found in the southwest of Guangxi Province and the southeast of Yunnan Province, China. The gene coding sequence of malanin was found from the cDNA library of M. oleifera seeds by employing the ten N-terminal amino acid sequences of malanin, DYPKLTFTTS for chain-A and DETXTDEEFN (X was commonly C) for chain-B. The results showed a 65% amino acid sequence homology between malanin and ricin by DNAMAN 9.0 software, the active sites of the two proteins were consistent, and the four disulfide bonds were in the same positions. The primary sequence and three-dimensional structures of malanin and ricin are likely to be very similar. Our studies suggest that the mechanism of action of malanin is expected to be analogous to ricin, indicating that it is a member of the type II ribosome-inactivating proteins. This result lays the foundation for further study of the anti-tumor activities of malanin, and for the application of malanin as a therapeutic agent against cancers.
Collapse
Affiliation(s)
- Yan Yuan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Shuxiao Wu
- TELI College, Beijing Institute of Technology, Beijing 100081, China;
| | - Philip J. R. Day
- The Manchester Institute of Biotechnology, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, UK
- The Medical Faculty, University of Cape Town, Rondebosch 7925, South Africa
| |
Collapse
|
2
|
Lapadula WJ, Ayub MJ. Ribosome Inactivating Proteins from an evolutionary perspective. Toxicon 2017; 136:6-14. [PMID: 28651991 DOI: 10.1016/j.toxicon.2017.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023]
Abstract
Ribosome Inactivating Proteins (RIPs) are rRNA N-glycosidases that inhibit protein synthesis through the elimination of a single adenine residue from 28S rRNA. Many of these toxins have been characterized in depth from a biochemical and molecular point of view. In addition, their potential use in medicine as highly selective toxins is being explored. In contrast, the evolutionary history of RIP encoding genes has remained traditionally underexplored. In recent years, accumulation of large genomic data has fueled research on this issue and revealed unexpected information about the origin and evolution of RIP toxins. In this review we summarize the current evidence available on the occurrence of different evolutionary mechanisms (gene duplication and losses, horizontal gene transfer, synthesis de novo and domain combination) involved in the evolution of the RIP gene family. Finally, we propose a revised nomenclature for RIP genes based on their evolutionary history.
Collapse
Affiliation(s)
- Walter Jesús Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
3
|
|
4
|
Population-level variation of the preproricin gene contradicts expectation of neutral equilibrium for generalist plant defense toxins. Toxicon 2010; 55:1475-83. [PMID: 20211195 DOI: 10.1016/j.toxicon.2010.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 03/01/2010] [Indexed: 11/28/2022]
Abstract
The preproricin gene encodes ricin, the highly toxic, type II ribosome-inactivating protein of castor bean (Ricinus communis L.). As a generalist plant defense gene, preproricin is expected to exhibit population-level variation consistent with the neutral equilibrium model and to comprise few functionally different alleles. We first test the hypothesis that the preproricin gene family should comprise six to eight members by searching the publicly available draft genome sequence of R. communis and analyzing its ricin-like loci. We then test the neutral equilibrium expectation for the preproricin gene by characterizing its allelic variation among 25 geographically diverse castor bean plants. We confirm the presence of six ricin-like loci that share with the preproricin gene 62.9-96.3% nucleotide identity and intact A-chains. DNA sequence variation among the preproricin haplotypes significantly rejects tests of the neutral equilibrium model. Replacement mutations preserve the 12 amino acids known to affect catalytic and electrostatic interactions of the native protein toxin, which suggests functional divergence among alleles has been minimal. Nucleotide polymorphism is maintained by purifying selection (omega < 0.3) yet includes an excess of rare silent mutations greater than predicted by the neutral equilibrium model. Development of robust detection methods for ricin contamination must account for the presence of these other ricin-like molecules and should leverage the specificity provided by the numerous single nucleotide polymorphisms in the preproricin gene.
Collapse
|
5
|
Kawade K, Masuda K. Transcriptional control of two ribosome-inactivating protein genes expressed in spinach (Spinacia oleracea) embryos. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:327-334. [PMID: 19195903 DOI: 10.1016/j.plaphy.2008.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 11/14/2008] [Accepted: 12/29/2008] [Indexed: 05/27/2023]
Abstract
SoRIP1 and SoRIP2 are ribosome-inactivating protein (RIP: EC 3.2.2.22) genes identified in spinach (Spinacia oleracea). They are differentially expressed in a development-dependent manner during spinach somatic embryogenesis. Here, we isolated genomic clones of SoRIP1 and SoRIP2. These two RIP genes have different genomic organization. Phylogenetic analysis of predicted amino acid sequences of RIPs in Caryophyllales plants revealed that they are divided into two major subfamilies, corresponding to SoRIP1 and SoRIP2. To gain further insight into the transcriptional control of SoRIP1 and SoRIP2, we obtained their 5'-flanking sequences by inverse PCR. Comparison of two 5'-flanking sequences revealed the characteristic cis elements in each region that confer differential transcriptional control. In the 5'-flanking region of SoRIP1, we found several motifs with functions related to embryonic development. The 5'-flanking region of SoRIP2 contains some defense-responsive motifs. Expression of SoRIP1 was detected in various tissues. In particular, SoRIP1 was highly expressed in the early immature fruits, and immunohistochemistry showed that SoRIP1 accumulated in the peripheral region of the immature embryo, with weaker expression in internal cells. During fruit development, the expression of SoRIP2 was low. However, the accumulation of SoRIP2 was conspicuous in the epidermis of the immature embryo. The expression of SoRIP2, but not SoRIP1, in leaves was induced by salicylic acid treatment. This differential transcriptional regulation of SoRIP1 and SoRIP2 suggests that the corresponding proteins may have different functions, one being related to embryonic development and the other to embryo defense.
Collapse
|
6
|
Azzi A, Wang T, Zhu DW, Zou YS, Liu WY, Lin SX. Crystal structure of native cinnamomin isoform III and its comparison with other ribosome inactivating proteins. Proteins 2009; 74:250-5. [DOI: 10.1002/prot.22251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Kawade K, Ishizaki T, Masuda K. Differential expression of ribosome-inactivating protein genes during somatic embryogenesis in spinach (Spinacia oleracea). PHYSIOLOGIA PLANTARUM 2008; 134:270-281. [PMID: 18494862 DOI: 10.1111/j.1399-3054.2008.01129.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Root segments from spinach (Spinacia oleracea L. cv. Jiromaru) seedlings form embryogenic callus (EC) that responded to exogenous GA(3) by accumulating a 31-kDa glycoprotein [BP31 or S. oleracea ribosome-inactivating protein (EC 3.2.2.22) (SoRIP1)] in association with the expression of embryogenic potential. Microsequencing of this protein revealed significant similarity with type 1 RIPs. We identified cDNAs for SoRIP1 and S. oleracea RIP2 (SoRIP2), a novel RIP having a consensus shiga/ricin toxic domain and performed a comparative analysis of the expression of SoRIPs during somatic embryogenesis. Western blotting and quantitative polymerase chain reaction analyses revealed that the expression of SoRIP1 in calli increased remarkably in association with the acquisition of embryogenic potential, although the expression in somatic embryos decreased moderately with their development. However, the expression of SoRIP2 in calli remained low and constant but increased markedly with the development of somatic embryos. Treatment of callus with GA(3) and/or ABA for 24 h, or with ABA for a longer period, failed to stimulate the expression of either gene. Immunohistochemistry showed that SoRIP1 preferentially accumulated in the proembryos and peripheral meristem of somatic embryos early in development. Appreciable expression of SoRIP2 was not detected in the callus, but intense expression was found in the epidermis of somatic embryos. These results suggest that the expression of spinach RIP genes is differentially regulated in a development-dependent fashion during somatic embryogenesis in spinach.
Collapse
Affiliation(s)
- Kensuke Kawade
- Laboratory of Plant Functional Biology, Department of Agrobiology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | |
Collapse
|
8
|
Wang T, Zou YS, Zhu DW, Azzi A, Liu WY, Lin SX. Cinnamomin: separation, crystallization and preliminary X-ray diffraction study. Amino Acids 2007; 34:239-43. [PMID: 17404804 DOI: 10.1007/s00726-006-0490-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 12/08/2006] [Indexed: 10/23/2022]
Abstract
Cinnamomin from Cinnamonum camphora seeds, a type II ribosome-inactivating protein that interferes with protein biosynthesis in mammalian cells, can induce the apoptosis of carcinoma cells and be used as an insecticide. A rapid and improved method has been developed for the extraction and purification of cinnamomin from camphora seed. Purification of cinnamomin is achieved with two successive steps of hydrophobic interaction chromatography carried out on a fast protein liquid chromatography (FPLC) system. Crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion method. A complete data set at 2.8 A resolution has been collected. Data indexation and refinement indicate that the crystal is orthorhombic with space group P2(1)2(1)2(1) and unit cell dimensions a = 52.39 A, b = 126.33 A, c = 161.45 A. There are two molecules per asymmetric unit. Initial phasing by molecular replacement method yielded a solution, which will contribute to the structure determination. A molecular model will further the understanding of the mechanism of cinnamomin function. The latter will be combined with bio-informatics to facilitate the medical and other applications of cinnamomin.
Collapse
Affiliation(s)
- T Wang
- Structural Biology Platform, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Wang BZ, Zou WG, Liu WY, Liu XY. The lower cytotoxicity of cinnamomin (a type II RIP) is due to its B-chain. Arch Biochem Biophys 2006; 451:91-6. [PMID: 16762311 DOI: 10.1016/j.abb.2006.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 04/10/2006] [Accepted: 04/10/2006] [Indexed: 11/23/2022]
Abstract
The cytotoxicity of intact cinnamomin (a type II ribosome-inactivating protein, RIP) and the RNA N-glycosidase activity of cinnamomin A-chain have been studied and compared with those of ricin. Cinnamomin A-chain exhibits a similar RNA N-glycosidase activity in inhibiting in vitro protein synthesis compared with that of ricin, whereas the cytotoxicity to BA/F3beta cells of intact cinnamomin is markedly lower than intact ricin. In order to demonstrate that it is the B-chains of the two RIPs that bear the difference in cytotoxicity, two hybrid RIPs are prepared from the purified A-/B-chains of cinnamomin and ricin by the disulfide exchange reaction. It has been found that hybrid RIP constructed from cinnamomin A-chain and ricin B-chain is more toxic to BA/F3beta cells than the native cinnamomin, and equivalent to the native ricin. However, the cytotoxicity to BA/F3beta cells of the hybrid RIP constructed from the ricin A-chain and cinnamomin B-chain is lower than ricin, equivalent to the native cinnamomin. Furthermore, the bound amounts of two B-chains on the cell surface are determined by the method of direct cellular ELISA and Scatchard analysis of the binding of the two B-chains indicates that cinnamomin and ricin share similar binding sites with different affinity.
Collapse
Affiliation(s)
- Bao-Zhong Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
11
|
Fredriksson SA, Hulst AG, Artursson E, de Jong AL, Nilsson C, van Baar BLM. Forensic identification of neat ricin and of ricin from crude castor bean extracts by mass spectrometry. Anal Chem 2005; 77:1545-55. [PMID: 15762556 DOI: 10.1021/ac048756u] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein toxin ricin, which originates from the seeds of Ricinus communis plants, has been the subject of increased interest, due to its potential terrorist use. Exceptionally, this toxin is also subject to the Chemical Weapons Convention. In this paper, it is shown that mass spectrometry can be used to unambiguously verify the presence of ricin in crude toxin preparations. It is demonstrated that MALDI MS can be used for screening, either by direct analysis or by trypsin digestion and peptide mapping. Purified ricin from several varieties of R. communis was characterized by LC-ES MS(/MS). A crude ricin preparation from a single bean was similarly characterized. An LC method was set up with product ion MS/MS detection of selected marker peptides specific for ricin: T5, T7, T11, T12, and T13 from the A-chain and T3, T5, T14, T19, and T20 from the B-chain. This method was then used to unambiguously identify ricin in a crude preparation of ricin. The MALDI MS molecular weight analysis and the marker peptides LC-ES MS/MS analysis give a forensic level of identification of ricin when combined with activity testing.
Collapse
|
12
|
He WJ, Liu WY. Both N- and C-terminal regions are essential for cinnamomin A-chain to deadenylate ribosomal RNA and supercoiled double-stranded DNA. Biochem J 2004; 377:17-23. [PMID: 12952522 PMCID: PMC1223831 DOI: 10.1042/bj20030703] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 08/22/2003] [Accepted: 09/03/2003] [Indexed: 11/17/2022]
Abstract
Cinnamomin is a type II ribosome-inactivating protein and its A-chain exhibits RNA N-glycosidase activity to remove an adenine in the conserved sarcin/ricin loop of the largest RNA in ribosome, arresting protein synthesis at the elongation step. In this report, deadenylation of both rRNA and supercoiled DNA by native and recombinant cinnamomin A-chain expressed in Escherichia coli was demonstrated. However, the mutants of cinnamomin A-chain devoid of N-terminal 52 or/and C-terminal 51 amino acid residues lost both the activity of RNA N-glycosidase and the ability to release adenines from supercoiled DNA. Additionally, supercoiled DNA could not be cleaved into nicked and linear forms by these mutants. These results indicate that both N- and C-terminal regions are essential for the cinnamomin A-chain to deadenylate rRNA and supercoiled DNA. It was suggested that phosphodiester bonds in the extensively deadenylated region of supercoiled DNA would become fragile and liable to be broken spontaneously owing to the existence of tension in the supercoiled DNA.
Collapse
Affiliation(s)
- Wen-Jun He
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, People's Republic of China
| | | |
Collapse
|
13
|
Abstract
Plant ribosome-inactivating proteins (RIPs) are a group of toxic proteins that can irreversibly inactivate ribosomes by specifically removing the conserved adenine base from the "Sarcin/Ricin domain" of the 28S RNA in ribosome. Cinnamomin is a novel type II RIP isolated in our laboratory from the mature seeds of camphor tree. Besides site-specific deadenylation of the A4324 in the Sarcin/Ricin domain of rat ribosome, this protein could also release the adenine base from DNA molecules at multiple sites and from AMP, ADP, dAMP and adenosine. Furthermore, cinnamomin displays cytotoxicity to carcinoma cells and insect larvae by modifying their ribosomal RNA. These functions possessed by cinnamomin shed a new light on the possible application of cinnamomin in the field of immunotoxin design and transgenic reagents. In this review, we introduce the major recent results on cinnamomin obtained in our laboratory, including purification of this protein, characterization of its enzymatic mechanism, structure and function, gene pattern, physiological role and its biological implications in cytotoxicity.
Collapse
Affiliation(s)
- Wen-Jun He
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | |
Collapse
|