1
|
Simoes-Barbosa A, Pinheiro J. Unconventional features in the transcription and processing of spliceosomal small nuclear RNAs in the protozoan parasite Trichomonas vaginalis. Int J Parasitol 2024; 54:257-266. [PMID: 38452964 DOI: 10.1016/j.ijpara.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Trichomonas vaginalis is a medically important protozoan parasite, and a deep-branching, evolutionarily divergent unicellular eukaryote that has conserved several key features of eukaryotic gene expression. Trichomonas vaginalis possesses a metazoan/plant-like capping apparatus, mRNAs with a cap 1 structure and spliceosomes containing the five small nuclear RNAs (snRNAs). However, in contrast to metazoan and plant snRNAs, the structurally conserved T. vaginalis snRNAs were initially identified as lacking the canonical guanosine cap nucleotide. To explain this unusual condition, we sought to investigate transcriptional and processing features of the spliceosomal snRNAs in this protist. Here, we show that T. vaginalis spliceosomal snRNA genes mostly lack typical eukaryotic promoters. In contrast to other eukaryotes, the putative TATA box in the T. vaginalis U6 snRNA gene was found to be dispensable for transcription or RNA polymerase selectivity. Moreover, U6 transcription in T. vaginalis was virtually insensitive to tagetitoxin compared with other cellular transcripts produced by the same RNA polymerase III. Most important and unexpected, snRNA transcription in T. vaginalis appears to bypass capping as we show that these transcripts retain their original 5'-triphosphate groups. In conclusion, transcription and processing of spliceosomal snRNAs in T. vaginalis deviate considerably from the conventional rules of other eukaryotes.
Collapse
Affiliation(s)
- Augusto Simoes-Barbosa
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand.
| | - Jully Pinheiro
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
González-Blanco G, García-Rivera G, Talmás-Rohana P, Orozco E, Galindo-Rosales JM, Vélez C, Salucedo-Cárdenas O, Azuara-Liceaga E, Rodríguez-Rodríguez MA, Nozaki T, Valdés J. An Unusual U2AF2 Inhibits Splicing and Attenuates the Virulence of the Human Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:888428. [PMID: 35782149 PMCID: PMC9247205 DOI: 10.3389/fcimb.2022.888428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
E. histolytica is the etiological agent of intestinal amebiasis and liver abscesses, which still poses public health threat globally. Metronidazole is the drug of choice against amebiasis. However, metronidazole-resistant amoebic clinical isolates and strains have been reported recently, challenging the efforts for amebiasis eradication. In search of alternative treatments, E. histolytica transcriptomes have shown the association of genes involved in RNA metabolism with the virulence of the parasite. Among the upregulated genes in amoebic liver abscesses are the splicing factors EhU2AF2 and a paralog of EhSF3B1. For this reason and because EhU2AF2 contains unusual KH-QUA2 (84KQ) motifs in its lengthened C-terminus domain, here we investigated how the role of EhU2AF2 in pre-mRNA processing impacts the virulence of the parasite. We found that 84KQ is involved in splicing inhibition/intron retention of several virulence and non-virulence-related genes. The 84KQ domain interacts with the same domain of the constitutive splicing factor SF1 (SF1KQ), both in solution and when SF1KQ is bound to branchpoint signal RNA probes. The 84KQ–SF1KQ interaction prevents splicing complex E to A transition, thus inhibiting splicing. Surprisingly, the deletion of the 84KQ domain in EhU2AF2 amoeba transformants increased splicing and enhanced the in vitro and in vivo virulence phenotypes. We conclude that the interaction of the 84KQ and SF1KQ domains, probably involving additional factors, tunes down Entamoeba virulence by favoring intron retention.
Collapse
Affiliation(s)
- Gretter González-Blanco
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Patricia Talmás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Ester Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - José Manuel Galindo-Rosales
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Cristina Vélez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Odila Salucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, Mexico
| | - Mario Alberto Rodríguez-Rodríguez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Tomoyoshi Nozaki
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
- *Correspondence: Jesús Valdés,
| |
Collapse
|
3
|
Kangussu-Marcolino MM, Morgado P, Manna D, Yee H, Singh U. Development of a CRISPR/Cas9 system in Entamoeba histolytica: proof of concept. Int J Parasitol 2021; 51:193-200. [PMID: 33264648 PMCID: PMC7880892 DOI: 10.1016/j.ijpara.2020.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
The protozoan parasite Entamoeba histolytica is an important human pathogen and a leading parasitic cause of death on a global scale. The lack of molecular tools for genome editing hinders the study of important biological functions of this parasite. Due to its versatility, the CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 system has been successfully used to induce site-specific genomic alterations, including in protozoan parasites. In this study, we optimised CRISPR-Cas9 for use as a genetic tool in E. histolytica. We chose a single plasmid approach containing both guide RNA (gRNA) and Cas9 nuclease expression cassettes. The amebic U6 promoter was used to drive the expression of the gRNA and its expression was confirmed by Northern blot analysis. Stable transfectant cell lines were obtained using a destabilising domain of dihydrofolate reductase fused to myc-tagged Cas9 (ddCas9). With this system, we were able to induce ddCas9 expression 16 h following treatment with the small molecule ligand trimethoprim (TMP). Stable cell lines expressing ddCas9 and Luc-gRNA or non-specific (NS)-gRNA were transiently transfected with a plasmid containing a mutated luciferase gene (pDeadLuc) targeted by Luc-gRNA and another plasmid with a truncated luciferase gene (pDonorLuc) to restore luciferase expression and consequent activity. We observed that luminescence signal increased for the cell line expressing Luc-gRNA, suggesting that homologous recombination was facilitated by Cas9 activity. This evidence is supported by the presence of chimeric DNA detected by PCR and confirmed by sequencing of the resulting repaired DNA obtained by homologous recombination. We believe this represents the first report of a CRISPR/Cas9 system use in Entamoeba and provides evidence that this genome editing approach can be useful for genetic studies in this early branching eukaryote.
Collapse
Affiliation(s)
- Monica Mendes Kangussu-Marcolino
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Pedro Morgado
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Dipak Manna
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Heather Yee
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Upinder Singh
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University, Grant Building, S-143, 300 Pasteur Drive, Stanford, CA 94305, United States; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
4
|
Mendoza-Figueroa MS, Alfonso-Maqueira EE, Vélez C, Azuara-Liceaga EI, Zárate S, Villegas-Sepúlveda N, Saucedo-Cárdenas O, Valdés J. Postsplicing-Derived Full-Length Intron Circles in the Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:255. [PMID: 30123775 PMCID: PMC6085484 DOI: 10.3389/fcimb.2018.00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Noncoding circular RNAs are widespread in the tree of life. Particularly, intron-containing circular RNAs which apparently upregulate their parental gene expression. Entamoeba histolytica, the causative agent of dysentery and liver abscesses in humans, codes for several noncoding RNAs, including circular ribosomal RNAs, but no intron containing circular RNAs have been described to date. Divergent RT-PCR and diverse molecular approaches, allowed us to detect bona fide full-length intronic circular RNA (flicRNA) molecules. Self-splicing reactions, RNA polymerase II inhibition with Actinomycin D, and second step of splicing-inhibition with boric acid showed that the production of flicRX13 (one of the flicRNAs found in this work, and our test model) depends on mRNA synthesis and pre-mRNA processing instead of self-splicing. To explore the cues and factors involved in flicRX13 biogenesis in vivo, splicing assays were carried out in amoeba transformants where splicing factors and Dbr1 (intron lariat debranching enzyme 1) were silenced or overexpressed, or where Rabx13 wild-type and mutant 5'ss (splice site) and branch site minigene constructs were overexpressed. Whereas SF1 (splicing factor 1) is not involved, the U2 auxiliary splicing factor, Dbr1, and the GU-rich 5'ss are involved in postsplicing flicRX13 biogenesis, probably by Dbr1 stalling, in a similar fashion to the formation of ciRNAs (circular intronic RNAs), but with distinctive 5'-3'ss ligation points. Different from the reported functions of ciRNAs, the 5'ss GU-rich element of flicRX13 possibly interacts with transcription machinery to silence its own gene in cis. Furthermore, introns of E. histolytica virulence-related genes are also processed as flicRNAs.
Collapse
Affiliation(s)
- María S Mendoza-Figueroa
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eddy E Alfonso-Maqueira
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cristina Vélez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Elisa I Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Selene Zárate
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Nicolás Villegas-Sepúlveda
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico.,División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
5
|
Torres-Cifuentes DM, Galindo-Rosales JM, Saucedo-Cárdenas O, Valdés J. The Entamoeba histolytica Syf1 Homolog Is Involved in the Splicing of AG-Dependent and AG-Independent Transcripts. Front Cell Infect Microbiol 2018; 8:229. [PMID: 30038900 PMCID: PMC6046404 DOI: 10.3389/fcimb.2018.00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 02/04/2023] Open
Abstract
Syf1 is a tetratricopeptide repeat (TPR) protein implicated in transcription elongation, spliceosome conformation, mRNA nuclear-cytoplasmic export and transcription-coupled DNA repair. Recently, we identified the spliceosomal components of the human parasite Entamoeba histolytica, among them is EhSyf. Molecular predictions confirmed that EhSyf contains 15 type 1 TPR tandem α-antiparallel array motifs. Amoeba transformants carrying plasmids overexpressing HA-tagged or EhSyf silencing plasmids were established to monitor the impact of EhSyf on the splicing of several test Entamoeba transcripts. EhSyf Entamoeba transformants efficiently silenced or overexpressed the proteins in the nucleus. The overexpression or absence of EhSyf notably enhanced or blocked splicing of transcripts irrespective of the strength of their 3′ splice site. Finally, the absence of EhSyf negatively affected the transcription of an intron-less transcript. Altogether our data suggest that EhSyf is a bona fide Syf1 ortholog involved in transcription and splicing.
Collapse
Affiliation(s)
- Diana M Torres-Cifuentes
- RNA Laboratory, Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José M Galindo-Rosales
- RNA Laboratory, Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico.,División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Jesús Valdés
- RNA Laboratory, Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
6
|
Valdés-Flores J, López-Rosas I, López-Camarillo C, Ramírez-Moreno E, Ospina-Villa JD, Marchat LA. Life and Death of mRNA Molecules in Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:199. [PMID: 29971219 PMCID: PMC6018208 DOI: 10.3389/fcimb.2018.00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 02/05/2023] Open
Abstract
In eukaryotic cells, the life cycle of mRNA molecules is modulated in response to environmental signals and cell-cell communication in order to support cellular homeostasis. Capping, splicing and polyadenylation in the nucleus lead to the formation of transcripts that are suitable for translation in cytoplasm, until mRNA decay occurs in P-bodies. Although pre-mRNA processing and degradation mechanisms have usually been studied separately, they occur simultaneously and in a coordinated manner through protein-protein interactions, maintaining the integrity of gene expression. In the past few years, the availability of the genome sequence of Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, coupled to the development of the so-called "omics" technologies provided new opportunities for the study of mRNA processing and turnover in this pathogen. Here, we review the current knowledge about the molecular basis for splicing, 3' end formation and mRNA degradation in amoeba, which suggest the conservation of events related to mRNA life throughout evolution. We also present the functional characterization of some key proteins and describe some interactions that indicate the relevance of cooperative regulatory events for gene expression in this human parasite.
Collapse
Affiliation(s)
- Jesús Valdés-Flores
- Departamento de Bioquímica, CINVESTAV, Ciudad de Mexico, Mexico City, Mexico
| | - Itzel López-Rosas
- CONACyT Research Fellow – Colegio de Postgraduados Campus Campeche, Campeche, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México Ciudad de Mexico, Mexico City, Mexico
| | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| | - Juan D. Ospina-Villa
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| | - Laurence A. Marchat
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| |
Collapse
|
7
|
Valdés J, Nozaki T, Sato E, Chiba Y, Nakada-Tsukui K, Villegas-Sepúlveda N, Winkler R, Azuara-Liceaga E, Mendoza-Figueroa MS, Watanabe N, Santos HJ, Saito-Nakano Y, Galindo-Rosales JM. Proteomic analysis of Entamoeba histolytica in vivo assembled pre-mRNA splicing complexes. J Proteomics 2014; 111:30-45. [PMID: 25109466 DOI: 10.1016/j.jprot.2014.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/27/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED The genome of the human intestinal parasite Entamoeba histolytica contains nearly 3000 introns and bioinformatic predictions indicate that major and minor spliceosomes occur in Entamoeba. However, except for the U2-, U4-, U5- and U6 snRNAs, no other splicing factor has been cloned and characterized. Here, we HA-tagged cloned the snRNP component U1A and assessed its expression and nuclear localization. Because the snRNP-free U1A form interacts with polyadenylate-binding protein, HA-U1A immunoprecipitates could identify early and late splicing complexes. Avoiding Entamoeba's endonucleases and ensuring the precipitation of RNA-binding proteins, parasite cultures were UV cross-linked prior to nuclear fraction immunoprecipitations with HA antibodies, and precipitates were subjected to tandem mass spectrometry (MS/MS) analyses. To discriminate their nuclear roles (chromatin-, co-transcriptional-, splicing-related), MS/MS analyses were carried out with proteins eluted with MS2-GST-sepharose from nuclear extracts of an MS2 aptamer-tagged Rabx13 intron amoeba transformant. Thus, we probed thirty-six Entamoeba proteins corresponding to 32 cognate splicing-specific factors, including 13 DExH/D helicases required for all stages of splicing, and 12 different splicing-related helicases were identified also. Furthermore 50 additional proteins, possibly involved in co-transcriptional processes were identified, revealing the complexity of co-transcriptional splicing in Entamoeba. Some of these later factors were not previously found in splicing complex analyses. BIOLOGICAL SIGNIFICANCE Numerous facts about the splicing of the nearly 3000 introns of the Entamoeba genome have not been unraveled, particularly the splicing factors and their activities. Considering that many of such introns are located in metabolic genes, the knowledge of the splicing cues has the potential to be used to attack or control the parasite. We have found numerous new splicing-related factors which could have therapeutic benefit. We also detected all the DExH/A RNA helicases involved in splicing and splicing proofreading control. Still, Entamoeba is very inefficient in splicing fidelity, thus we may have found a possible model system to study these processes.
Collapse
Affiliation(s)
- Jesús Valdés
- Departament of Biochemistry, CINVESTAV, México D.F., Mexico.
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Emi Sato
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoko Chiba
- University of Tsukuba, Graduate School of Life and Environmental Sciences, Tsukuba, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Robert Winkler
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | | | | | - Natsuki Watanabe
- University of Tsukuba, Graduate School of Life and Environmental Sciences, Tsukuba, Japan
| | - Herbert J Santos
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; University of Tsukuba, Graduate School of Life and Environmental Sciences, Tsukuba, Japan; Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
8
|
Huntley DM, Pandis I, Butcher SA, Ackers JP. Bioinformatic analysis of Entamoeba histolytica SINE1 elements. BMC Genomics 2010; 11:321. [PMID: 20497534 PMCID: PMC2996970 DOI: 10.1186/1471-2164-11-321] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasive amoebiasis, caused by infection with the human parasite Entamoeba histolytica remains a major cause of morbidity and mortality in some less-developed countries. Genetically E. histolytica exhibits a number of unusual features including having approximately 20% of its genome comprised of repetitive elements. These include a number of families of SINEs - non-autonomous elements which can, however, move with the help of partner LINEs. In many eukaryotes SINE mobility has had a profound effect on gene expression; in this study we concentrated on one such element - EhSINE1, looking in particular for evidence of recent transposition. RESULTS EhSINE1s were detected in the newly reassembled E. histolytica genome by searching with a Hidden Markov Model developed to encapsulate the key features of this element; 393 were detected. Examination of their sequences revealed that some had an internal structure showing one to four 26-27 nt repeats. Members of the different classes differ in a number of ways and in particular those with two internal repeats show the properties expected of fairly recently transposed SINEs - they are the most homogeneous in length and sequence, they have the longest (i.e. the least decayed) target site duplications and are the most likely to show evidence (in a cDNA library) of active transcription. Furthermore we were able to identify 15 EhSINE1s (6 pairs and one triplet) which appeared to be identical or very nearly so but inserted into different sites in the genome; these provide good evidence that if mobility has now ceased it has only done so very recently. CONCLUSIONS Of the many families of repetitive elements present in the genome of E. histolytica we have examined in detail just one - EhSINE1. We have shown that there is evidence for waves of transposition at different points in the past and no evidence that mobility has entirely ceased. There are many aspects of the biology of this parasite which are not understood, in particular why it is pathogenic while the closely related species E. dispar is not, the great genetic diversity found amongst patient isolates and the fact, which may be related, that only a small proportion of those infected develop clinical invasive amoebiasis. Mobile genetic elements, with their ability to alter gene expression may well be important in unravelling these puzzles.
Collapse
Affiliation(s)
- Derek M Huntley
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | |
Collapse
|
9
|
Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica. BMC Microbiol 2009; 9:38. [PMID: 19222852 PMCID: PMC2652455 DOI: 10.1186/1471-2180-9-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 02/17/2009] [Indexed: 12/15/2022] Open
Abstract
Background Entamoeba histolytica is an intestinal protozoan parasite of humans. The genome has been sequenced, but the study of individual gene products has been hampered by the lack of the ability to generate gene knockouts. We chose to test the use of RNA interference to knock down gene expression in Entamoeba histolytica. Results An episomal vector-based system, using the E. histolytica U6 promoter to drive expression of 29-basepair short hairpin RNAs, was developed to target protein-encoding genes in E. histolytica. The short hairpin RNAs successfully knocked down protein levels of all three unrelated genes tested with this system: Igl, the intermediate subunit of the galactose- and N-acetyl-D-galactosamine-inhibitable lectin; the transcription factor URE3-BP; and the membrane binding protein EhC2A. Igl levels were reduced by 72%, URE3-BP by 89%, and EhC2A by 97%. Conclusion Use of the U6 promoter to drive expression of 29-basepair short hairpin RNAs is effective at knocking down protein expression for unrelated genes in Entamoeba histolytica, providing a useful tool for the study of this parasite.
Collapse
|
10
|
Chen XS, White WTJ, Collins LJ, Penny D. Computational identification of four spliceosomal snRNAs from the deep-branching eukaryote Giardia intestinalis. PLoS One 2008; 3:e3106. [PMID: 18769729 PMCID: PMC2518118 DOI: 10.1371/journal.pone.0003106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 08/11/2008] [Indexed: 11/23/2022] Open
Abstract
RNAs processing other RNAs is very general in eukaryotes, but is not clear to what extent it is ancestral to eukaryotes. Here we focus on pre-mRNA splicing, one of the most important RNA-processing mechanisms in eukaryotes. In most eukaryotes splicing is predominantly catalysed by the major spliceosome complex, which consists of five uridine-rich small nuclear RNAs (U-snRNAs) and over 200 proteins in humans. Three major spliceosomal introns have been found experimentally in Giardia; one Giardia U-snRNA (U5) and a number of spliceosomal proteins have also been identified. However, because of the low sequence similarity between the Giardia ncRNAs and those of other eukaryotes, the other U-snRNAs of Giardia had not been found. Using two computational methods, candidates for Giardia U1, U2, U4 and U6 snRNAs were identified in this study and shown by RT-PCR to be expressed. We found that identifying a U2 candidate helped identify U6 and U4 based on interactions between them. Secondary structural modelling of the Giardia U-snRNA candidates revealed typical features of eukaryotic U-snRNAs. We demonstrate a successful approach to combine computational and experimental methods to identify expected ncRNAs in a highly divergent protist genome. Our findings reinforce the conclusion that spliceosomal small-nuclear RNAs existed in the last common ancestor of eukaryotes.
Collapse
Affiliation(s)
- Xiaowei Sylvia Chen
- Allan Wilson Centre for Molecular Ecology and Evolution, IMBS, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
11
|
Davis CA, Brown MPS, Singh U. Functional characterization of spliceosomal introns and identification of U2, U4, and U5 snRNAs in the deep-branching eukaryote Entamoeba histolytica. EUKARYOTIC CELL 2007; 6:940-8. [PMID: 17468393 PMCID: PMC1951529 DOI: 10.1128/ec.00059-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pre-mRNA splicing is essential to ensure accurate expression of many genes in eukaryotic organisms. In Entamoeba histolytica, a deep-branching eukaryote, approximately 30% of the annotated genes are predicted to contain introns; however, the accuracy of these predictions has not been tested. In this study, we mined an expressed sequence tag (EST) library representing 7% of amoebic genes and found evidence supporting splicing of 60% of the testable intron predictions, the majority of which contain a GUUUGU 5' splice site and a UAG 3' splice site. Additionally, we identified several splice site misannotations, evidence for the existence of 30 novel introns in previously annotated genes, and identified novel genes through uncovering their spliced ESTs. Finally, we provided molecular evidence for the E. histolytica U2, U4, and U5 snRNAs. These data lay the foundation for further dissection of the role of RNA processing in E. histolytica gene expression.
Collapse
Affiliation(s)
- Carrie A Davis
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
12
|
Sierra-Montes JM, Pereira-Simon S, Freund AV, Ruiz LM, Szmulewicz MN, Herrera RJ. A diversity of U1 small nuclear RNAs in the silk moth Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:29-39. [PMID: 12459198 DOI: 10.1016/s0965-1748(02)00164-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Variants of U1 small nuclear RNAs (snRNAs) have been previously detected in a permanent cell line (BmN) of the silk moth Bombyx mori. In this study, the existence of U1 snRNA isoforms in the silk gland (SG) of the organism is investigated. The polyploidy (approximately 200,000X the 2N somatic value) state of the B. mori silk gland cells represents a unique system to explore the potential presence and differential expression of multiple U1 variants in a normal tissue. B. mori U1-specific RT-PCR libraries from the silk gland were generated and five U1 isoforms were isolated and characterized. Nucleotide differences, structural alterations, as well as protein and RNA interaction sites were examined in these variants and compared to the previously reported isoforms from the transformed BmN cell line. In all these SG U1 variants, variant sites and inter-species differences are located in moderately conserved regions. Substitutional or compensatory changes were found in the double stranded areas and clustered in moderately conserved regions. Some of the changes generate stronger base pairing. Calculated free energy (DeltaG) values for the entire U1 snRNA secondary structures and for the individual stem/loops (I, II, III and IV) domains of the isoforms were generated and compared to determine their structural stability. Using phylogenetic analysis, an evolutionary parallelism is observed between the polymorphic sites in B. mori and variant locations found among animal and plant species.
Collapse
Affiliation(s)
- J M Sierra-Montes
- Department of Biological Sciences, OE 304, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hernández-Rivas R, Ramírez C, Guillén N, Vargas M. DNA cloning of the Entamoeba histolytica PRP6 gene: a putative U4/U6 small nuclear ribonucleoprotein particle (snRNP). Arch Med Res 2000; 31:S294-5. [PMID: 11070321 DOI: 10.1016/s0188-4409(00)00119-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- R Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Mexico City, Mexico
| | | | | | | |
Collapse
|
14
|
Fast NM, Roger AJ, Richardson CA, Doolittle WF. U2 and U6 snRNA genes in the microsporidian Nosema locustae: evidence for a functional spliceosome. Nucleic Acids Res 1998; 26:3202-7. [PMID: 9628919 PMCID: PMC147691 DOI: 10.1093/nar/26.13.3202] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The removal of introns from pre-messenger RNA is mediated by the spliceosome, a large complex composed of many proteins and five small nuclear RNAs (snRNAs). Of the snRNAs, the U6 and U2 snRNAs are the most conserved in sequence, as they interact extensively with each other and also with the intron, in several base pairings that are necessary for splicing. We have isolated and sequenced the genes encoding both U6 and U2 snRNAs from the intracellularly parasitic microsporidian Nosema locustae . Both genes are expressed. Both RNAs can be folded into secondary structures typical of other known U6 and U2 snRNAs. In addition, the N.locustae U6 and U2 snRNAs have the potential to base pair in the functional intermolecular interactions that have been characterized by extensive analyses in yeast and mammalian systems. These results indicate that the N.locustae U6 and U2 snRNAs may be functional components of an active spliceosome, even though introns have not yet been found in microsporidian genes.
Collapse
Affiliation(s)
- N M Fast
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| | | | | | | |
Collapse
|
15
|
Abstract
The small RNA database is a compilation of all the small size RNA sequences available to date, including nuclear, nucleolar, cytoplasmic and mitochondria small RNAs from eukaryotic organisms and small RNAs from prokaryotic cells as well as viruses. Currently, approximately 600 small RNA sequences are in our database. It also gives the sources of individual RNAs and their GenBank accession numbers. The small RNA database can be accessed through the WWW (World Wide Web). Our WWW URL address is: http://mbcr.bcm.tmc. edu/smallRNA/smallrna.html . The new small RNA sequences published since our last compilation are listed in this paper (Table 1).
Collapse
Affiliation(s)
- J Gu
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|