1
|
Nassonova ES. Pulsed field gel electrophoresis: Theory, instruments and application. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1990519x08060011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Jeon SJ, Fujiwara S, Takagi M, Fukui K, Imanaka T. Unique nucleoid structure during cell division of Thermococcus kodakaraensis KOD1. J Biosci Bioeng 2005; 91:40-3. [PMID: 16232943 DOI: 10.1263/jbb.91.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2000] [Accepted: 10/16/2000] [Indexed: 11/17/2022]
Abstract
The nucleoid structure and the partition in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 were observed by a combination of phase-contrast microscopy and fluorescence microscopy. The nucleoids occurred as rounded fluorescent foci centrally located in the cells and as differences in fluorescence intensity between exponential and stationary phases. The cellular space occupied by the nucleoid in the stationary phase was larger than that in the exponential phase. Various shapes of nucleoid in the exponential-phase cells were observed, indicating that nucleoid separation was processed under cell cycle control. The number of cells which showed distinctive division stages was counted and the proportions of dividing cells were determined. About half of the observed cells were in the replication stage. More than 40% of the counted cells possessed a fully replicated but not separated form of nucleoid. Only 8% of the total cells clearly showed visible constriction. These results suggested that the post-replication period before cell division was relatively as long as the eucaryal gap period (G2); however, the period of visible cell constriction was almost the same as that of the bacteria.
Collapse
Affiliation(s)
- S J Jeon
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
3
|
Antranikian G, Vorgias CE, Bertoldo C. Extreme environments as a resource for microorganisms and novel biocatalysts. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 96:219-62. [PMID: 16566093 DOI: 10.1007/b135786] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The steady increase in the number of newly isolated extremophilic microorganisms and the discovery of their enzymes by academic and industrial institutions underlines the enormous potential of extremophiles for application in future biotechnological processes. Enzymes from extremophilic microorganisms offer versatile tools for sustainable developments in a variety of industrial application as they show important environmental benefits due to their biodegradability, specific stability under extreme conditions, improved use of raw materials and decreased amount of waste products. Although major advances have been made in the last decade, our knowledge of the physiology, metabolism, enzymology and genetics of this fascinating group of extremophilic microorganisms and their related enzymes is still limited. In-depth information on the molecular properties of the enzymes and their genes, however, has to be obtained to analyze the structure and function of proteins that are catalytically active around the boiling and freezing points of water and extremes of pH. New techniques, such as genomics, metanogenomics, DNA evolution and gene shuffling, will lead to the production of enzymes that are highly specific for countless industrial applications. Due to the unusual properties of enzymes from extremophiles, they are expected to optimize already existing processes or even develop new sustainable technologies.
Collapse
Affiliation(s)
- Garabed Antranikian
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstrasse 12, 21073 Hamburg, Germany.
| | | | | |
Collapse
|
4
|
Siddiqui MA, Yamanaka A, Hirooka K, Bamaba T, Kobayashi A, Imanaka T, Fukusaki EI, Fujiwara S. Enzymatic and structural characterization of type II isopentenyl diphosphate isomerase from hyperthermophilic archaeon Thermococcus kodakaraensis. Biochem Biophys Res Commun 2005; 331:1127-36. [PMID: 15882994 DOI: 10.1016/j.bbrc.2005.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2005] [Indexed: 11/19/2022]
Abstract
Enzymatic and thermodynamic characteristics of type II isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase (Tk-IDI) from Thermococcus kodakaraensis, which catalyzes the interconversion of IPP and DMAPP, were examined. FMN was tightly bound to Tk-IDI, and the enzyme required NADPH and Mg2+ for the isomerization in both directions. The melting temperature (Tm), the change of enthalpy (deltaH(m)), and the heat capacity change (deltaC(p)) of Tk-IDI were 88.0 degrees C, 444 kJ mol(-1), and 13.2 kJ mol(-1) K(-1), respectively, indicating that Tk-IDI is fairly thermostable. Kinetic parameters dramatically changed when the temperature crossed 80 degrees C even though its native overall structure was stably maintained up to 90 degrees C, suggesting that local conformational change would occur around 80 degrees C. This speculation was supported by the result of the circular dichroism analysis that showed the shift of the alpha-helical content occurred at 80 degrees C.
Collapse
Affiliation(s)
- Masood Ahmed Siddiqui
- Department of Bioscience, Nanobiotechnology Research Center, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Fujiwara S, Yamanaka A, Hirooka K, Kobayashi A, Imanaka T, Fukusaki EI. Temperature-dependent modulation of farnesyl diphosphate/geranylgeranyl diphosphate synthase from hyperthermophilic archaea. Biochem Biophys Res Commun 2005; 325:1066-74. [PMID: 15541397 DOI: 10.1016/j.bbrc.2004.10.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Indexed: 11/24/2022]
Abstract
Enzyme characteristics of trans-prenyl diphosphate synthase (Tk-IdsA) from Thermococcus kodakaraensis, which catalyzes the consecutive trans-condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate, were examined. Product analysis revealed that Tk-IdsA is a bifunctional enzyme, farnesyl diphosphate (FPP, C(15))/geranylgeranyl diphosphate (GGPP, C(20)) synthase, and mainly yields both C(15) and C(20). The FPP/GGPP product ratio increases with the rise of the reaction temperature. The kinetic parameters obtained at 70 and 90 degrees C demonstrated that the rise of the temperature elevates the k(0) value for the C(10) allylic substrate to more than those for the C(5) and C(15) allylic substrates. These data suggest that Tk-IdsA contributes to adjust the membrane composition to the cell growth temperature by modulating its substrate and product specificities. Mutation study indicated that the aromatic side chain of Tyr-81 acts as a steric hindrance to terminate the chain elongation and defines the final product length.
Collapse
Affiliation(s)
- Shinsuke Fujiwara
- Department of Bioscience, Nanobiotechnology Research Center, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen Sanda, Hyogo 669-1337, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Weng L, Feng Y, Ji X, Cao S, Kosugi Y, Matsui I. Recombinant expression and characterization of an extremely hyperthermophilic archaeal histone from Pyrococcus horikoshii OT3. Protein Expr Purif 2004; 33:145-52. [PMID: 14680971 DOI: 10.1016/j.pep.2003.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 09/02/2003] [Indexed: 12/01/2022]
Abstract
A histone-like gene, PHS051 from hyperthermophilic archaeon Pyrococcus horikoshii OT3 strain, was cloned, sequenced, and expressed in Escherichia coli. The recombinant histone, HPhA, encodes a protein of 70 amino acids with a molecular weight of 7868Da. Amino acid sequence analysis of HPhA showed high homology with other archaeal histones and eukaryal core histones. The HPhA was purified to homogeneity by heat precipitation and affinity chromatography. Gel electrophoresis mobility shift assays demonstrate that the purified HPhA has high affinity to DNA. The complex of the HPhA and DNA allows DNA to be protected from cleavage by the restriction enzyme TaqI at 65 degrees C. Circular dichroism spectra reveal that the conformation of the recombinant histone HPhA becomes looser when temperatures increase from 25 to 90 degrees C. The HPhA has inherited a remarkable thermostability especially in the presence of 1M KCl and retained DNA binding activity at extreme temperature, which is consistent with our previous report about its structure stability analyzed by X-ray crystallography.
Collapse
Affiliation(s)
- Liang Weng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, PR China
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
We reflect on some of our studies on the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1 and its enzymes. The strain can grow at temperatures up to the boiling point and also represents one of the simplest forms of life. As expected, all enzymes displayed remarkable thermostability, and we have determined some of the basic principles that govern this feature. To our delight, many of the enzymes exhibited unique biochemical properties and novel structures not found in mesophilic proteins. Here, we focus on a few enzymes that are useful in application, and whose three-dimensional structures are characteristic of thermostable enzymes.
Collapse
Affiliation(s)
- Tadayuki Imanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
8
|
|
9
|
Lee HS, Kim MS, Cho HS, Kim JI, Kim TJ, Choi JH, Park C, Lee HS, Oh BH, Park KH. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem 2002; 277:21891-7. [PMID: 11923309 DOI: 10.1074/jbc.m201623200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over 20 enzymes denoted as cyclomaltodextrinase, maltogenic amylase, or neopullulanase that share 40-86% sequence identity with each other are found in public data bases. These enzymes are distinguished from typical alpha-amylases by containing a novel N-terminal domain and exhibiting preferential substrate specificities for cyclomaltodextrins (CDs) over starch. In this research field, a great deal of confusion exists regarding the features distinguishing the three groups of enzymes from one another. Although a different enzyme code has been assigned to each of the three different enzyme names, even a single differentiating enzymatic property has not been documented in the literature. On the other hand, an outstanding question related to this issue concerns the structural basis for the preference of these enzymes for CDs. To clarify the confusion and to address this question, we have determined the structures of two enzymes, one from alkalophilic Bacillus sp. I-5 and named cyclomaltodextrinase and the other from a Thermus species and named maltogenic amylase. The structure of the Bacillus enzyme reveals a dodecameric assembly composed of six copies of the dimer, which is the structural and functional unit of the Thermus enzyme and an enzyme named neopullulanase. The structure of the Thermus enzyme in complex with beta-CD led to the conclusion that Trp47, a well conserved N-terminal domain residue, contributes greatly to the preference for beta-CD. The common dimer formation through the novel N-terminal domain, which contributes to the preference for CDs by lining the active-site cavity, convincingly indicates that the three groups of enzymes are not different enough to preserve the different names and enzyme codes.
Collapse
Affiliation(s)
- Hee-Seob Lee
- National Creative Research Initiative Center for Biomolecular Recognition, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Extremophlic microorganisms have developed a variety of molecular strategies in order to survive in harsh conditions. For the utilization of natural polymeric substrates such as starch, a number of extremophiles, belonging to different taxonomic groups, produce amylolytic enzymes. This class of enzyme is important not only for the study of biocatalysis and protein stability at extreme conditions but also for the many biotechnological opportunities they offer. In this review, we report on the different molecular properties of thermostable archaeal and bacterial enzymes including alpha-amylase, alpha-glucosidase, glucoamylase, pullulanase, and cyclodextrin glycosyltransferase. Comparison of the primary sequence of the pyrococcal pullulanase with other members of the glucosyl hydrolase family revealed that significant differences are responsible for the mode of action of these enzymes.
Collapse
Affiliation(s)
- Costanzo Bertoldo
- Technical University Hamburg-Harburg, Institute of Technical Microbiology, Kasernenstrasse 12, 21073, Hamburg, Germany
| | | |
Collapse
|
11
|
FUJIWARA SHINSUKE. Extremophiles: Developments of Their Special Functions and Potential Resources. J Biosci Bioeng 2002. [DOI: 10.1263/jbb.94.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Takagi M, Kai Y, Imanaka T. Methylguanine methyltransferase from Thermococcus kodakaraensis KOD1. Methods Enzymol 2001; 334:239-48. [PMID: 11398466 DOI: 10.1016/s0076-6879(01)34472-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- M Takagi
- Department of Biotechnology, Osaka University Graduate School of Engineering, Osaka 565-0871, Japan
| | | | | |
Collapse
|
13
|
Hashimoto H, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Inoue T, Kai Y. Crystal structure of DNA polymerase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. J Mol Biol 2001; 306:469-77. [PMID: 11178906 DOI: 10.1006/jmbi.2000.4403] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of family B DNA polymerase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 (KOD DNA polymerase) was determined. KOD DNA polymerase exhibits the highest known extension rate, processivity and fidelity. We carried out the structural analysis of KOD DNA polymerase in order to clarify the mechanisms of those enzymatic features. Structural comparison of DNA polymerases from hyperthermophilic archaea highlighted the conformational difference in Thumb domains. The Thumb domain of KOD DNA polymerase shows an "opened" conformation. The fingers subdomain possessed many basic residues at the side of the polymerase active site. The residues are considered to be accessible to the incoming dNTP by electrostatic interaction. A beta-hairpin motif (residues 242-249) extends from the Exonuclease (Exo) domain as seen in the editing complex of the RB69 DNA polymerase from bacteriophage RB69. Many arginine residues are located at the forked-point (the junction of the template-binding and editing clefts) of KOD DNA polymerase, suggesting that the basic environment is suitable for partitioning of the primer and template DNA duplex and for stabilizing the partially melted DNA structure in the high-temperature environments. The stabilization of the melted DNA structure at the forked-point may be correlated with the high PCR performance of KOD DNA polymerase, which is due to low error rate, high elongation rate and processivity.
Collapse
Affiliation(s)
- H Hashimoto
- Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Hashimoto H, Inoue T, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Kai Y. Hyperthermostable protein structure maintained by intra and inter-helix ion-pairs in archaeal O6-methylguanine-DNA methyltransferase. J Mol Biol 1999; 292:707-16. [PMID: 10497033 DOI: 10.1006/jmbi.1999.3100] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crystal structure of O6-methylguanine-DNA methyltransferase (EC 2.1.1.63) of hyperthermophilic archaeon Pyrococcuskodakaraensis strain KOD1 (Pk -MGMT) was determined by single isomorphous replacement method with anomalous scattering (SIRAS) at 1.8 A resolution. The archaeal protein is extremely thermostable and repairs alkylated DNA by suicidal alkyl transfer from guanine O6 to its own cysteine residue. Archaea constitute the third primary kingdom of living organisms, sharing characteristics with procaryotic and eucaryotic cells. They live in various extreme environments and are thought to include the most ancient organisms on the earth. Structural studies on hyperthermophilic archaeal proteins reveal the structural features essential for stability under the extreme environments in which these organisms live, and will provide the structural basis required for stabilizing various mesophilic proteins for industrial applications. Here, we report the crystal structure of Pk-MGMT and structural comparison of Pk-MGMT and methyltransferase homologue from Escherichia coli (AdaC, C-terminal fragment of Ada protein). Analyses of solvent-accessible surface area (SASA) reveals a large discrepancy between Pk-MGMT and AdaC with respect to the property of the ASA. In the Pk-MGMT structure, the intra-helix ion-pairs contribute to reinforce stability of alpha-helices. The inter-helix ion-pairs exist in the interior of Pk-MGMT and stabilize internal packing of tertiary structure. Furthermore, structural features of helix cappings, intra and inter-helix ion-pairs are found around the active-site structure in Pk-MGMT.
Collapse
Affiliation(s)
- H Hashimoto
- Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Higashibata H, Fujiwara S, Takagi M, Imanaka T. Analysis of DNA compaction profile and intracellular contents of archaeal histones from Pyrococcus kodakaraensis KOD1. Biochem Biophys Res Commun 1999; 258:416-24. [PMID: 10329402 DOI: 10.1006/bbrc.1999.0533] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two histone genes, hpkA and hpkB, from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 strain were cloned, sequenced, and expressed in Escherichia coli cells. Both hpkA and hpkB genes encoded a protein of 67 amino acids, however they possessed the different molecular weight (HpkA, 7,378:HpkB, 7,167). Deduced amino acid sequences of HpkA and HpkB were homologous to other archaeal histones and eucaryal core histones (H2A, H4). Gel mobility shift assays by purified proteins demonstrated that HpkB possessed higher affinity to DNA and more extensive ability to compact DNA than HpkA. HpkB prevented double stranded DNA from thermal denaturation in less amount than HpkA in vitro. In order to investigate intracellular contents of HpkA and HpkB in KOD1 cells, immunoblot analysis was performed by using anti-HpkA antisera obtained from immunized BALB/c mice, showing that HpkA was less abundantly expressed than HpkB in KOD1 cells. These results suggest that HpkB plays a major role to protect double stranded DNA from thermal denaturation in vivo.
Collapse
Affiliation(s)
- H Higashibata
- Graduate School of Engineering, Osaka University, 2-1, Suita, 565-0871, Japan
| | | | | | | |
Collapse
|
17
|
Izumi M, Fujiwara S, Takagi M, Kanaya S, Imanaka T. Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: analysis of an ATPase-deficient mutant enzyme. Appl Environ Microbiol 1999; 65:1801-5. [PMID: 10103287 PMCID: PMC91257 DOI: 10.1128/aem.65.4.1801-1805.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cpkA gene encoding a second (alpha) subunit of archaeal chaperonin from Pyrococcus kodakaraensis KOD1 was cloned, sequenced, and expressed in Escherichia coli. Recombinant CpkA was studied for chaperonin functions in comparison with CpkB (beta subunit). The effect on decreasing the insoluble form of proteins was examined by coexpressing CpkA or CpkB with CobQ (cobyric acid synthase from P. kodakaraensis) in E. coli. The results indicate that both CpkA and CpkB effectively decrease the amount of the insoluble form of CobQ. Both CpkA and CpkB possessed the same ATPase activity as other bacterial and eukaryal chaperonins. The ATPase-deficient mutant proteins CpkA-D95K and CpkB-D95K were constructed by changing conserved Asp95 to Lys. Effect of the mutation on the ATPase activity and CobQ solubilization was examined. Neither mutant exhibited ATPase activity in vitro. Nevertheless, they decreased the amount of the insoluble form of CobQ by coexpression as did wild-type CpkA and CpkB. These results implied that both CpkA and CpkB could assist protein folding for nascent protein in E. coli without requiring energy from ATP hydrolysis.
Collapse
Affiliation(s)
- M Izumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
18
|
Fujiwara S, Takagi M, Imanaka T. Archaeon Pyrococcus kodakaraensis KOD1: application and evolution. BIOTECHNOLOGY ANNUAL REVIEW 1999; 4:259-84. [PMID: 9890143 DOI: 10.1016/s1387-2656(08)70073-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Archaea is the third domain which is phylogenetically differentiated from the other two domains, bacteria and eucarya. Hyperthermophile within the archaea domain has evolved most slowly retaining many ancestral features of higher eukaryotes. Pyrococcus kodakaraensis KOD1, which grows at 95 degrees C optimally, is a newly isolated hyperthermophilc archaeon. The KOD1 strain possesses a circular genome, whose size is estimated to be approximately 2,036 kb. KOD1 enzymes involved in the genetic information processing system, such as DNA polymerase, Rec protein, aspartyl tRNA synthetase and molecular chaperonin, share features of eukaryotic enzymes. Rapid and accurate PCR method by KOD1 DNA polymerase and enzyme stabilization system by KOD1 chaperonin are also introduced in this article.
Collapse
Affiliation(s)
- S Fujiwara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | |
Collapse
|
19
|
Siddiqui MA, Fujiwara S, Takagi M, Imanaka T. Phylogenetic analysis and effect of heat on conformational change of ferredoxin from hyperthermophilic archaeon Pyrococcus sp. KOD1. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)85674-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Abd Rahman RN, Fujiwara S, Takagi M, Kanaya S, Imanaka T. Effect of heat treatment on proper oligomeric structure formation of thermostable glutamate dehydrogenase from a hyperthermophilic archaeon. Biochem Biophys Res Commun 1997; 241:646-52. [PMID: 9434762 DOI: 10.1006/bbrc.1997.7850] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural glutamate dehydrogenase (Pk-GDH) was purified from hyperthermophilic archaeon Pyrococcus sp. KOD1 to homogeneity and its activity and structure were compared with those of recombinant enzyme, which was expressed in Escherichia coli. Determination of the molecular weight of these enzymes by SDS-PAGE and gel filtration revealed that the natural enzyme was purified only as a hexameric form, whereas the recombinant enzyme was purified as both monomeric and hexameric forms. Determination of the enzymatic activities indicated that only the enzyme in a hexameric form is active. Moreover, it is noted that the specific activity of the hexameric form of the recombinant enzyme is much lower than that of the natural enzyme and that circular dichroism spectra of these enzymes are distinctly different from each other. These results suggest that the structure of the hexameric form of the recombinant enzyme with low specific activity (Type I) is different from that of the natural enzyme with high specific activity (Type II). Upon heat treatment (80 degrees C, 15 min), the Type I structure was effectively converted to Type II structure and the specific activity of the enzyme was increased by 2.6-fold. Likewise, upon heat treatment (70 degrees C for 15 min), the inactive monomeric form of the recombinant enzyme was at least partially associated with the hexameric form. These results indicate that high temperature plays an important role for proper folding and oligomerization of Pk-GDH.
Collapse
Affiliation(s)
- R N Abd Rahman
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
21
|
Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M, Imanaka T. Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol 1997; 63:4504-10. [PMID: 9361436 PMCID: PMC168769 DOI: 10.1128/aem.63.11.4504-4510.1997] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The DNA polymerase gene from the archaeon Pyrococcus sp. strain KOD1 (KOD DNA polymerase) contains a long open reading frame of 5,013 bases that encodes 1,671 amino acid residues (GenBank accession no. D29671). Similarity analysis revealed that the DNA polymerase contained a putative 3'-5' exonuclease activity and two in-frame intervening sequences of 1,080 bp (360 amino acids; KOD pol intein-1) and 1,611 bp (537 amino acids; KOD pol intein-2), which are located in the middle of regions conserved among eukaryotic and archaeal alpha-like DNA polymerases. The mature form of the DNA polymerase gene was expressed in Escherichia coli, and the recombinant enzyme was purified and characterized. 3'-5' exonuclease activity was confirmed, and although KOD DNA polymerase's optimum temperature (75 degrees C) and mutation frequency (3.5 x 10(-3)) were similar to those of a DNA polymerase from Pyrococcus furiosus (Pfu DNA polymerase), the KOD DNA polymerase exhibited an extension rate (100 to 130 nucleotides/s) 5 times higher and a processivity (persistence of sequential nucleotide polymerization) 10 to 15 times higher than those of Pfu DNA polymerase. These characteristics enabled the KOD DNA polymerase to perform a more accurate PCR in a shorter reaction time.
Collapse
Affiliation(s)
- M Takagi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Adul Rahman RN, Jongsareejit B, Fujiwara S, Imanaka T. Characterization of recombinant glutamine synthetase from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl Environ Microbiol 1997; 63:2472-6. [PMID: 9172372 PMCID: PMC168544 DOI: 10.1128/aem.63.6.2472-2476.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The glnA gene encoding glutamine synthetase was cloned from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1, and its nucleotide sequence was determined. The glnA gene was expressed in Escherichia coli ME8459 (glnA mutant strain), and the protein was purified to homogeneity and shown to be functional in a dodecameric from (637,000 Da), exhibiting both transferase and synthetase activities. However, kinetic studies indicated that the enzyme possessed low biosynthetic activity, suggesting that the reaction was biased towards glutamate production. The optimum temperature for both activities was 60 degrees C, which was lower than the optimal growth temperature of KOD1. Recombinant KOD1 GlnA exhibited different optimum pHs depending on the reaction employed (pH 7.8 for the synthetase reaction and pH 7.2 for the transferase reaction). Of the various nucleoside triphosphates tested, GTP as well as ATP was involved in the synthetase reaction.
Collapse
Affiliation(s)
- R N Adul Rahman
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | | | |
Collapse
|
23
|
Yan Z, Fujiwara S, Kohda K, Takagi M, Imanaka T. In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl Environ Microbiol 1997; 63:785-9. [PMID: 9023959 PMCID: PMC168371 DOI: 10.1128/aem.63.2.785-789.1997] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gene encoding the beta subunit of a molecular chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1 (cpkB) was cloned, sequenced, and expressed in Escherichia coli. The cpkB gene is composed of 1,641 nucleotides, encoding a protein (546 amino acids) with a molecular mass of 59,140 Da. The enhancing effect of CpkB on enzyme stability was examined by using Saccharomyces cerevisiae alcohol dehydrogenase (ADH). Purified recombinant CpkB prevents thermal denaturation and enhances thermostability of ADH. CpkB requires ATP for its chaperonin function at a low CpkB concentration; however, CpkB functions without ATP when present in excess. In vivo chaperonin function for the solubilization of insoluble proteins was also studied by coexpressing CpkB and CobQ (cobryic acid synthase), indicating that CpkB is useful for solubilizing the insoluble proteins in vivo. These results suggest that the beta subunit plays a major role in chaperonin activity and is functional without the alpha subunit.
Collapse
Affiliation(s)
- Z Yan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | |
Collapse
|
24
|
Rashid N, Morikawa M, Imanaka T. Gene cloning and characterization of recombinant ribose phosphate pyrophosphokinase from a hyperthermophilic archaeon. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)82993-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Rahman RNZA, Fujiwara S, Imanaka T. Gene cloning and sequence analysis of cobyric acid synthase and cobalamin (5′-phosphate) synthase from hyperthermophilic archaeon Pyrococcus sp. KOD1. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)87336-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Tachibana Y, Leclere MM, Fujiwara S, Takagi M, Imanaka T. Cloning and expression of the α-amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)88812-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|