1
|
Mahmood S, Kumar M, Kumari P, Mahapatro GK, Banerjee N, Sarin NB. Novel insecticidal chitinase from the insect pathogen Xenorhabdus nematophila. Int J Biol Macromol 2020; 159:394-401. [PMID: 32422264 DOI: 10.1016/j.ijbiomac.2020.05.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/28/2022]
Abstract
Xenorhabdus nematophila strain ATCC 19061 is an insect pathogen that produces various protein toxins which intoxicate and kill its larval host. In the present study, we have described the cloning, expression and characterization of a 76-kDa chitinase protein of X. nematophila. A 1.9 kb DNA sequence encoding the chitinase gene was PCR amplified and cloned. Further, the chitinase protein was expressed in Escherichia coli and purified by using affinity chromatography. Two highly conserved domains were identified GH18 and ChiA. The purified chitinase protein showed chitobiosidase activity, β-N-acetylglucosaminidase and endochitinase activity, when enzyme activity was measured using respective substrates. The purified chitinase protein was found to be orally toxic to the larvae of a major crop pest, Helicoverpa armigera when fed to the larvae mixed with artificial diet. It also had adverse effect on the growth and development of the surviving larvae. Surviving larvae showed 9-fold reduction in weight, as a result the transformation of larvae into pupae was adversely affected. Our results demonstrated that the chitinase protein of X. nematophila has insecticidal property and can prove to be a potent candidate for pest control in plants.
Collapse
Affiliation(s)
- Saquib Mahmood
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mukesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Punam Kumari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gagan Kumar Mahapatro
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Nirupama Banerjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Martínez-Zavala SA, Barboza-Pérez UE, Hernández-Guzmán G, Bideshi DK, Barboza-Corona JE. Chitinases of Bacillus thuringiensis: Phylogeny, Modular Structure, and Applied Potentials. Front Microbiol 2020; 10:3032. [PMID: 31993038 PMCID: PMC6971178 DOI: 10.3389/fmicb.2019.03032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
The most important bioinsecticide used worldwide is Bacillus thuringiensis and its hallmark is a rich variety of insecticidal Cry protein, many of which have been genetically engineered for expression in transgenic crops. Over the past 20 years, the discovery of other insecticidal proteins and metabolites synthesized by B. thuringiensis, including chitinases, antimicrobial peptides, vegetative insecticidal proteins (VIP), and siderophores, has expanded the applied value of this bacterium for use as an antibacterial, fungicidal, and nematicidal resource. These properties allow us to view B. thuringiensis not only as an entity for the production of a particular metabolite, but also as a multifaceted microbial factory. In particular, chitinases of B. thuringiensis are secreted enzymes that hydrolyze chitin, an abundant molecule in the biosphere, second only to cellulose. The observation that chitinases increase the insecticidal activity of Cry proteins has stimulated further study of these enzymes produced by B. thuringiensis. Here, we provide a review of a subset of our knowledge of B. thuringiensis chitinases as it relates to their phylogenetic relationships, regulation of expression, biotechnological potential for controlling entomopathogens, fungi, and nematodes, and their use in generating chitin-derived oligosaccharides (ChOGs) that possess antibacterial activities against a number of clinically significant bacterial pathogens. Recent advances in the structural organization of these enzymes are also discussed, as are our perspective for future studies.
Collapse
Affiliation(s)
- Sheila A Martínez-Zavala
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico
| | - Uriel E Barboza-Pérez
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gustavo Hernández-Guzmán
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico.,Department of Biological Sciences, California Baptist University, Riverside, CA, United States
| | - Dennis K Bideshi
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.,Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico
| | - José E Barboza-Corona
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico.,Department of Biological Sciences, California Baptist University, Riverside, CA, United States
| |
Collapse
|
3
|
A novel alkaline surfactant-stable keratinase with superior feather-degrading potential based on library screening strategy. Int J Biol Macromol 2017; 95:404-411. [DOI: 10.1016/j.ijbiomac.2016.11.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 11/22/2022]
|
4
|
Industrial Applications of Fungal Chitinases: An Update. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
5
|
Sha L, Shao E, Guan X, Huang Z. Purification and partial characterization of intact and truncated chitinase from Bacillus thuringiensis HZP7 expressed in Escherichia coli. Biotechnol Lett 2015; 38:279-84. [PMID: 26463368 DOI: 10.1007/s10529-015-1970-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/30/2015] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To ascertain the effect of chitin-binding domain (ChBD) and fibronectin type III domain (FN3) on the characterization of the intact chitinase from Bacillus thuringiensis. RESULTS An intact chitinase gene (chi74) from B. thuringiensis HZP7 and its truncated genes (chi54, chi63 and chi66) were expressed in Escherichia coli BL21. The expression products were analyzed after purification. All chitinases were active from pH 4-7.5 and from 20 to 80 °C with identical optimal: pH 5.5 and 60 °C. The activity of colloid chitin degradation for Chi74 was the highest, followed by Chi66, Chi63 and Chi54. Ag(+) reduced the activity of Chi74, Chi54, Chi63 and Chi66, but Mg(2+) enhanced them. The effect of Ag(+) and Mg(2+) was more significant on the activity of Chi54 than on the activities of Chi63, Chi66 and Chi74. CONCLUSION ChBDChi74 and FN3Chi74 domains play a role in exerting enzymatic activity and can improve the stability of chitinase.
Collapse
Affiliation(s)
- Li Sha
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Ensi Shao
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Xiong Guan
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Zhipeng Huang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
6
|
Chen L, Jiang H, Cheng Q, Chen J, Wu G, Kumar A, Sun M, Liu Z. Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Sci Rep 2015; 5:14395. [PMID: 26400097 PMCID: PMC4585872 DOI: 10.1038/srep14395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/28/2015] [Indexed: 11/29/2022] Open
Abstract
Nematodes are known to be harmful to various crops, vegetables, plants and insects. The present study reports that, chitin upregulates the activity of chitinase (20%) and nematicidal potential (15%) of Pseudomonas aeruginosa. The chitinase gene (pachi) from P. aeruginosa was cloned, and its nematicidal activity of pachi protein against Caenorhabditis elegans was studied. The mortality rate induced by pachi increased by 6.3-fold when in association with Cry21Aa from Bacillus thuringiensis. Pachi efficiently killed C. elegans in its native state (LC50 = 387.3 ± 31.7 μg/ml), as well as in association with Cry21Aa (LC50 = 30.9 ± 4.1 μg/ml), by degrading the cuticle, egg shell and intestine in a relatively short time period of 24 h. To explore the nematidal potential of chitinase, six fusion proteins were constructed using gene engineering techniques. The CHACry showed higher activity against C. elegans than others owing to its high solubility. Notably, the CHACry showed a synergistic factor of 4.1 versus 3.5 a mixture [1:1] of pachi and Cry21Aa. The present study has identified eco-friendly biological routes (e.g., mixed proteins, fusion proteins) with potent nematicidal activity, which not only can help to prevent major crop losses but also strengthen the agro-economy and increase gross crop yield.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430 070, China
| | - Huang Jiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430 070, China
| | - Qipeng Cheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430 070, China
| | - Junpeng Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430 070, China
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ashok Kumar
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430 070, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430 070, China
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430 070, China
| |
Collapse
|
7
|
Molecular Characterization of Chitinase Genes from a Local Isolate of Serratia marcescens and Their Contribution to the Insecticidal Activity of Bacillus thuringiensis Strains. Curr Microbiol 2013; 67:499-504. [DOI: 10.1007/s00284-013-0395-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
|
8
|
Bahar AA, Sezen K, Demirbağ Z, Nalçacioğlu R. The relationship between insecticidal effects and chitinase activities of Coleopteran-originated entomopathogens and their chitinolytic profile. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0301-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Tang Y, Tong J, Zhang Y, Wang L, Hu S, Li W, Lv Y. Preliminary comparing the toxicities of the hybrid cry1Acs fused with different heterogenous genes provided guidance for the fusion expression of Cry proteins. World J Microbiol Biotechnol 2011; 28:397-400. [PMID: 22806817 DOI: 10.1007/s11274-011-0825-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/14/2011] [Indexed: 11/29/2022]
Abstract
In order to provide guidance for selecting suitable heterogenous gene that can efficiently enhance toxicity or broaden insecticidal spectrum of Cry1Ac through fusion expression, two hybrid cry1Acs fused with chitinase-encoding gene tchiB and neurotoxin gene hwtx-1 respectively were constructed and their toxicities were compared. A Bacillus thuringiensis strain harboring the cry1Ac gene in vector pHT315 was used as control. Bioassay revealed that LC(50) (after 72 h) of Cry1Ac protoxin was 41.01 μg mL(-1), while the hybrid cry1Acs fused with tchiB and hwtx-1 were 4.89 and 23.14 μg mL(-1), which were 8.23- and 1.77-fold higher than Cry1Ac protoxin in terms of relative toxicity respectively. Both fusion crystals had a higher toxicity than the original Cry1Ac protein and the toxicity of hybrid cry1Acs fused with hwtx-1 experienced a more significant increase than that fused with tchiB.
Collapse
Affiliation(s)
- Ying Tang
- College of Life Science, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Hunan Normal University, Changsha, 410081, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Vu KD, Yan S, Tyagi RD, Valéro JR, Surampalli RY. Induced production of chitinase to enhance entomotoxicity of Bacillus thuringiensis employing starch industry wastewater as a substrate. BIORESOURCE TECHNOLOGY 2009; 100:5260-5269. [PMID: 19564105 DOI: 10.1016/j.biortech.2009.03.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 05/28/2023]
Abstract
Induced production of chitinase during bioconversion of starch industry wastewater (SIW) to Bacillus thuringiensis var. kurstaki HD-1 (Btk) based biopesticides was studied in shake flask as well as in computer-controlled fermentors. SIW was fortified with different concentrations (0%; 0.05%; 0.1%; 0.2%; 0.3% w/v) of colloidal chitin and its consequences were ascertained in terms of Btk growth (total cell count and viable spore count), chitinase, protease and amylase activities and entomotoxicity. At optimum concentration of 0.2% w/v colloidal chitin, the entomotoxicity of fermented broth and suspended pellet was enhanced from 12.4x10(9) (without chitin) to 14.4x10(9) SBU/L and from 18.2x10(9) (without chitin) to 25.1x10(9) SBU/L, respectively. Further, experiments were conducted for Btk growth in a computer-controlled 15 L bioreactor using SIW as a raw material with (0.2% w/v chitin, to induce chitinase) and without fortification of colloidal chitin. It was found that the total cell count, spore count, delta-endotoxin concentration (alkaline solubilised insecticidal crystal proteins), amylase and protease activities were reduced whereas the entomotoxicity and chitinase activity was increased with chitin fortification. The chitinase activity attained a maximum value at 24 h (15 mU/ml) and entomotoxicity of suspended pellet reached highest (26.7x10(9) SBU/L) at 36 h of fermentation with chitin supplementation of SIW. In control (without chitin), the highest value of entomotoxicity of suspended pellet (20.5x10(9) SBU/L) reached at 48 h of fermentation. A quantitative synergistic action of delta-endotoxin concentration, spore concentration and chitinase activity on the entomotoxicity against spruce budworm larvae was observed.
Collapse
Affiliation(s)
- Khanh Dang Vu
- INRS-ETE, Université du Québec, 490 rue de la Couronne, Québec, Canada G1K 9A9
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Okay S, Tefon BE, Ozkan M, Ozcengiz G. Expression of chitinase A (chiA) gene from a local isolate of Serratia marcescens in Coleoptera-specific Bacillus thuringiensis. J Appl Microbiol 2007; 104:161-70. [PMID: 17927758 DOI: 10.1111/j.1365-2672.2007.03570.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The present study focused on cloning and expression of chiA gene from a highly chitinolytic local isolate of Serratia marcescens in an anti-Coleopteran Bacillus thuringiensis and comparison of the characteristics of the native and recombinant ChiAs. METHODS AND RESULTS chiA gene from Ser. marcescens was cloned, sequenced and compared with the previously cloned chiA genes. chiA gene was PCR cloned and expressed in anti-Coleopteran B. thuringiensis strain 3023 as verified by Western blot analysis. Specific ChiA activity of the recombinant B. thuringiensis (strain 3023-SCHI) reached its highest level at 21st hour of growth (16.93 U mg(-1)), which was 5.2- and 1.3-fold higher than that of its parental strain and Ser. marcescens, respectively. Temperature and pH effects on native and recombinant ChiAs were next determined. The recombinant plasmid was quite stable over 240 generations. CONCLUSIONS Serratia marcescens ChiA was heterologously expressed in an anti-Coleopteran B. thuringiensis at levels even higher than that produced by the source organism. SIGNIFICANCE AND IMPACT OF THE STUDY Bacillus thuringiensis 3023-SCHI co-expressing anti-Coleopteran Cry3Aa protein and Ser. marcescens chitinase offers a viable alternative to the use of chitinolytic microbes/enzymes in combination with entamopathogenic bacteria for an increased potency because of synergistic interaction between them.
Collapse
Affiliation(s)
- S Okay
- Biological Sciences Department, Middle East Technical University, Ankara, Turkey
| | | | | | | |
Collapse
|
13
|
Casique-Arroyo G, Bideshi D, Salcedo-Hernández R, Barboza-Corona JE. Development of a recombinant strain of Bacillus thuringiensis subsp. kurstaki HD-73 that produces the endochitinase ChiA74. Antonie van Leeuwenhoek 2006; 92:1-9. [PMID: 17136568 DOI: 10.1007/s10482-006-9127-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/16/2006] [Indexed: 12/01/2022]
Abstract
Bacillus thuringiensis subsp. kurstaki HD-73 was transformed with the homologous endochitinase gene chiA74 of B. thuringiensis subsp. kenyae LBIT-82 under the regulation of its own promoter and Shine-Dalgarno sequence. The plasmid, pEHchiA74, which harbors chiA74, was detected by southern blot analysis and showed high segregational stability when the recombinant strain was grown in a medium without antibiotic. The recombinant bacterium transformed with pEHchiA74 showed an improvement in chitinolytic activity three times that of the wild-type strain. Expression of ChiA74 did not have any deleterious effect on the crystal morphology and size, but sporulation and Cry1Ac production in rich medium (nutrient broth with glucose) was reduced by approximately 30%. No significant increase in the toxicity of the transformant bacterium toward Plutella xylostella was detected using the same amount of total protein. However, it is possible that ChiA74 synthesis compensated for the decrease in net Cry1Ac synthesis and toxicity observed with the recombinant strain.
Collapse
Affiliation(s)
- Gabriela Casique-Arroyo
- Departamento de Ingeniería en Alimentos, Instituto de Ciencias Agrícolas, Universidad de Guanajuato, Apartado postal 311, Irapuato, Guanajuato, 36500, Mexico
| | | | | | | |
Collapse
|
14
|
Purification and characterization of a Bacillus circulans No. 4.1 chitinase expressed in Escherichia coli. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-9038-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Liu M, Cai QX, Liu HZ, Zhang BH, Yan JP, Yuan ZM. Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J Appl Microbiol 2002; 93:374-9. [PMID: 12174034 DOI: 10.1046/j.1365-2672.2002.01693.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the distribution of chitinase in Bacillus thuringiensis strains, and the enhancing effects of the chitinase-producing B. thuringiensis strains on insecticidal toxicity of active B. thuringiensis strain against Spodoptera exigua larvae. METHODS AND RESULTS The chitinolytic activities of B.thuringiensis strains representing the 70 serotypes were investigated by the whitish opaque halo and the colorimetric method. Thirty-eight strains produced different levels of chitinase at pH 7.0, and so did 17 strains at pH 10.0. The strain T04A001 exhibited the highest production, reaching a specific activity of 355 U ml(-1) in liquid medium. SDS-PAGE and Western blotting showed that the chitinase produced by some B. thuringiensis strains had a molecular weight of about 61 kDa. The bioassay results indicated that the chitinase-producing B. thuringiensis strains could enhance the insecticidal activity of B. thuringiensis strain DL5789 against S. exigua larvae, with an enhancing ratio of 2.35-fold. CONCLUSION This study demonstrated that chitinase was widely produced in B. thuringiensis strains and some of the strains could enhance the toxicity of active B. thuringiensis strain. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first investigation devoted exclusively to analyse the distribution of chitinase in B. thuringiensis. It infers that the chitinase produced by B. thuringiensis might play a role in the activity of the biopesticide.
Collapse
Affiliation(s)
- M Liu
- Wuhan Institute of Virology, the Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | |
Collapse
|
16
|
Wiwat C, Thaithanun S, Pantuwatana S, Bhumiratana A. Toxicity of chitinase-producing Bacillus thuringiensis ssp. kurstaki HD-1 (G) toward Plutella xylostella. J Invertebr Pathol 2000; 76:270-7. [PMID: 11112372 DOI: 10.1006/jipa.2000.4976] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One-hundred fifty isolates of Bacillus thuringiensis were tested for their ability to produce chitinase using colloidal chitin agar as the primary plating medium. Of 14 strains that produced chitinase, B. thuringiensis ssp. kurstaki HD-1(G) was identified as the highest chitinase producer and selected for further study. This bacterium produced the highest amount of chitinase (19.3 mU/ml) when it was cultivated in nutrient broth supplemented with 0.3% colloidal chitin on a rotary shaker (200 rpm) at 30 degrees C for 2 days. The toxicities of B. thuringiensis ssp. kurstaki HD-1(G) and B. thuringiensis ssp. kurstaki wa-p-2, a chitinase nonproducer, were assayed toward Plutella xylostella (diamondback moth) larvae, resulting in LC(50)'s of 4.93 x 10(4) and 1.32 x 10(5) spores/ml, respectively. If the culture broth from B. thuringiensis ssp. kurstaki HD-1(G) was used as the suspending liquid instead of phosphate buffer, their LC(50)'s were reduced to 6.23 x 10(3) and 7.60 x 10(4) spores/ml, respectively. The histopathological changes of the midgut epithelial cells of diamondback moth larvae were compared after feeding on B. thuringiensis ssp. kurstaki HD-1(G) with and without the presence of supernatant containing chitinase under light microscopy and transmission electron microscopy. The midgut epithelial cells of larvae fed for 30 min in the presence of chitinase, with or without spores and endotoxin crystals, appeared more elongated and swollen than those of the control larvae. A number of different cellular changes such as extensive cellular disintegration and appearance of numerous vacuoles were observed from the larvae fed on B. thuringiensis ssp. kurstaki HD-1(G) supplemented with supernatant containing chitinase. Thus increased toxicity and changes in epithelial cells were correlated with the presence of chitinase but this was not distinguished from the possible presence of vegetative-stage insecticidal proteins.
Collapse
Affiliation(s)
- C Wiwat
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Sri-Ayudhya Road, Rachathevi, Bangkok, 10400, Thailand
| | | | | | | |
Collapse
|
17
|
Lertcanawanichakul M, Wiwat C. Improved shuttle vector for expression of chitinase gene in Bacillus thuringiensis. Lett Appl Microbiol 2000; 31:123-8. [PMID: 10972713 DOI: 10.1046/j.1365-2672.2000.00777.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 6.96-kbp plasmid vector pBCX was constructed from the plasmid pBC16 (4.4 kbp) and a 2.56-kbp fragment of pBluescript II KS. The bifunctional plasmid pBCX conferred ampicillin and tetracycline resistance in Escherichia coli but only tetracycline resistance in Bacillus thuringiensis. It has unique sites for BamHI, SmaI, PstI, HindIII, SalI, XhoI, DraII, ApaI and KpnI derived from pBluescript II KS and was lost at a low rate in B. thuringiensis subsp. israelensis when cultured in Luria-Bertani broth without antibiotic. The chitinase gene from B. circulans number 4.1 (pCHIB1) was subcloned into the HindIII sites of this vector and designated as pBX43 (9.56 kbp). This plasmid produced three times as much chitinase in B. thuringiensis subsp. israelensis strain c4Q272 as pHYB43, which comprises the commercial shuttle vector pHY300PLK plus the chitinase gene.
Collapse
Affiliation(s)
- M Lertcanawanichakul
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
18
|
Abstract
Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications. Particularly, chitinases are used in agriculture to control plant pathogens. Chitinases and chitooligomers produced by enzymatic hydrolysis of chitin can also be used in human health care. The success in employing chitinases for different aspects depends on the supply of highly active preparations at reasonable cost. Therefore, the understanding of biochemistry and genetics of chitinolytic enzymes, their phylogenetic relationships and methods of estimation will make them more useful in a variety of processes in near future.
Collapse
|
19
|
Sampson MN, Gooday GW. Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2189-2194. [PMID: 9720040 DOI: 10.1099/00221287-144-8-2189] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus thuringiensis subsp. israelensis IPS78 and B. thuringiensis subsp. aizawai HD133 both secreted exochitinase activity when grown in a medium containing chitin. Allosamidin, a specific chitinase inhibitor, inhibited activity from both strains, with IC50 values of about 50 microM with colloidal chitin as substrate and between 1 and 10 microM with 4-methylumbelliferyl-diacetylchitobioside and 4-methylumbelliferyl-triacetylchitotrioside as substrates. The involvement of these chitinolytic activities during pathogenesis in insects has been investigated with B. thuringiensis subsp. israelensis IPS78 against larvae of the midge Culicoides nubeculosus, and with B. thuringiensis subsp. aizawai HD133 against caterpillars of the cotton leafworm Spodoptera littoralis. Presence of 100 microM allosamidin increased the LD50 by factors of 1.3 and 1.4, respectively, demonstrating a role for bacterial chitinases in the attack on the insects. Presence of chitinase A from Serratia marcescens considerably decreased the values for LD50 confirming previous observations with different systems of the potentiation of entomopathogenesis of B. thuringiensis by exogenous chitinases. The most likely action of the endogenous chitinases of B. thuringiensis is to weaken the insects' peritrophic membranes, allowing more ready access of the bacterial toxins to the gut epithelia. Addition of exogenous chitinases will then increase this effect. Complementary cross-infection experiments, strain HD133 against midge larvae and strain IPS78 against caterpillars, were performed to investigate the pathogen/host specificities of the effects. Results showed that much higher concentrations of bacteria were required to achieve even low mortalities, and addition of chitinase A gave no increase in death rate.
Collapse
Affiliation(s)
- Mark N Sampson
- Department of Molecular and Cell Biology, Institute of Medical SciencesForesterhill, Aberdeen AB25 2ZDUK
| | - Graham W Gooday
- Department of Molecular and Cell Biology, Institute of Medical SciencesForesterhill, Aberdeen AB25 2ZDUK
| |
Collapse
|
20
|
Ding X, Gopalakrishnan B, Johnson LB, White FF, Wang X, Morgan TD, Kramer KJ, Muthukrishnan S. Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res 1998; 7:77-84. [PMID: 9608735 DOI: 10.1023/a:1008820507262] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chitinase expression in the insect gut normally occurs only during moulting, where the chitin of the peritrophic membrane is presumably degraded. Thus, insects feeding on plants that constitutively express an insect chitinase gene might be adversely affected, owing to an inappropriately timed exposure to chitinase. This hypothesis was tested by introducing a cDNA encoding a tobacco hornworm (Manduca sexta) chitinase (EC 3.2.1.14) into tobacco via Agrobacterium tumefaciens-mediated transformation. A truncated but enzymatically active chitinase was present in plants expressing the gene. Segregating progeny of high-expressing plants were compared for their ability to support growth of tobacco budworm (Heliothis virescens) larvae and for feeding damage. Both parameters were significantly reduced when budworms fed on transgenic tobacco plants expressing high levels of the chitinase gene. In contrast, hornworm larvae showed no significant growth reduction when fed on the chitinase-expressing transgenics. However, both budworm and hornworm larvae, when fed on chitinase-expressing transgenic plants coated with sublethal concentrations of a Bacillus thuringiensis toxin, were significantly stunted relative to larvae fed on toxin-treated non-transgenic controls. Foliar damage was also reduced. Plants expressing an insect chitinase gene may have agronomic potential for insect control.
Collapse
Affiliation(s)
- X Ding
- Department of Plant Pathology, Kansas State University, Manhattan 66506-5502, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kramer KJ, Muthukrishnan S. Insect chitinases: molecular biology and potential use as biopesticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1997; 27:887-900. [PMID: 9501415 DOI: 10.1016/s0965-1748(97)00078-7] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chitin, an insoluble structural polysaccharide that occurs in the exoskeletal and gut linings of insects, is a metabolic target of selective pest control agents. One potential biopesticide is the insect molting enzyme, chitinase, which degrades chitin to low molecular weight, soluble and insoluble oligosaccharides. For several years, our laboratories have been characterizing this enzyme and its gene. Most recently, we have been developing chitinase for use as a biopesticide to control insect and also fungal pests. Chitinases have been isolated from the tobacco hornworm, Manduca sexta, and several other insect species, and some of their chemical, physical, and kinetic properties have been determined. Also, cDNA and genomic clones for the chitinase from the hornworm have been isolated and characterized. Transgenic plants that express hornworm chitinase constitutively have been generated and found to exhibit host plant resistance. A transformed entomopathogenic virus that produces the enzyme displayed enhanced insecticidal activity. Chitinase also potentiated the efficacy of the toxin from the microbial insecticide, Bacillus thuringiensis. Insect chitinase and its gene are now available for biopesticidal applications in integrated pest management programs. Current knowledge regarding the molecular biology and biopesticidal action of insect and several other types of chitinases is described in this mini-review.
Collapse
Affiliation(s)
- K J Kramer
- Grain Marketing and Production Research Center, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502-2736, USA.
| | | |
Collapse
|