1
|
Xiong W, Zhai M, Yu X, Wei L, Mao J, Liu J, Xie J, Li B. Comparative RNA-sequencing analysis of ER-based HSP90 functions and signal pathways in Tribolium castaneum. Cell Stress Chaperones 2018; 23:29-43. [PMID: 28681272 PMCID: PMC5741579 DOI: 10.1007/s12192-017-0821-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
Tribolium castaneum, the red flour beetle, is a major agriculture pest that damages stored grains and cereal products. Heat-shock protein 90 of T. castaneum (Tchsp90) has been reported to play pivotal roles in heat stress response, development, reproduction, and life span. However, the signaling pathway of Tchsp90 remains unclear. Thus, the global transcriptome profiles between RNA interference (RNAi)-treated insects (ds-Tchsp90) and control insects of T. castaneum were investigated and compared by RNA sequencing. In all, we obtained 14,145,451 sequence reads, which assembled into 13,243 genes. Among these genes, 461 differentially expressed genes (DEGs) were identified between the ds-Tchsp90 and control samples. These DEGs were classified into 44 gene ontology (GO) functional groups, including the cellular process, the response to stimulus, the immune system process, the development process, and reproduction. Interestingly, knocking down the expression of Tchsp90 suppressed both the DNA replication and cell division signaling pathways, which most likely modulated the effects of Tchsp90 on development, reproduction, and life span. Moreover, the DEGs encoding AnnexinB9, frizzled-4, sno, Fem1B, TSL, and CSW might be related to the regulation of the development and reproduction of ds-Tchsp90 insects. The DEGs including TLR6, PGRP2, defensin1, and defensin2 were involved in heat stress and immune response simultaneously, which suggested that cross talk might exist between immunity and stress response. Additionally, RNAi of Tchsp90 altered large-scale serine protease (sp) gene expression patterns and amplified the SP signaling pathway to regulate the development and reproduction as well as the stress response and innate immunity in T. castaneum. All these results shed new light onto the regulatory mechanism of Tchsp90 involved in insect physiology and could further facilitate research into appropriate and sustainable pest control management.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Mengfan Zhai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xiaojuan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
2
|
Yamamoto K, Aso Y, Fujii H. Identification and expression analysis of minichromosome maintenance proteins in the silkworm, Bombyx mori. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:148. [PMID: 21070176 PMCID: PMC3016899 DOI: 10.1673/031.010.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 02/21/2010] [Indexed: 05/30/2023]
Abstract
The minichromosome maintenance protein (MCM) family is involved in the regulatory role of DNA replication in eukaryotic organisms. A cDNA encoding of an MCM of the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), was cloned by reverse transcriptase-polymerase chain reaction (RT-PCR) and sequenced. The resultant amino acid sequence and phylogenetic analysis revealed high identity to MCM, and specifically to MCM7, of vertebrates and invertebrates. An RT-PCR showed that the bmMCM7 transcript was present in the ovaries, testes, silk glands, and fat bodies of larval silkworms. Expression plasmids were transformed into competent Escherichia coli and overexpressed. This is the first report on the identification of MCM helicase of the silkworm, B. mori.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Laboratories of Insect Genetic Resources, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|
3
|
Dresselhaus T, Srilunchang KO, Leljak-Levanic D, Schreiber DN, Garg P. The fertilization-induced DNA replication factor MCM6 of maize shuttles between cytoplasm and nucleus, and is essential for plant growth and development. PLANT PHYSIOLOGY 2006; 140:512-27. [PMID: 16407440 PMCID: PMC1361320 DOI: 10.1104/pp.105.074294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The eukaryotic genome is duplicated exactly once per cell division cycle. A strategy that limits every replication origin to a single initiation event is tightly regulated by a multiprotein complex, which involves at least 20 protein factors. A key player in this regulation is the evolutionary conserved hexameric MCM2-7 complex. From maize (Zea mays) zygotes, we have cloned MCM6 and characterized this essential gene in more detail. Shortly after fertilization, expression of ZmMCM6 is strongly induced. During progression of zygote and proembryo development, ZmMCM6 transcript amounts decrease and are low in vegetative tissues, where expression is restricted to tissues containing proliferating cells. The highest protein amounts are detectable about 6 to 20 d after fertilization in developing kernels. Subcellular localization studies revealed that MCM6 protein shuttles between cytoplasm and nucleoplasm in a cell cycle-dependent manner. ZmMCM6 is taken up by the nucleus during G1 phase and the highest protein levels were observed during late G1/S phase. ZmMCM6 is excluded from the nucleus during late S, G2, and mitosis. Transgenic maize was generated to overexpress and down-regulate ZmMCM6. Plants displaying minor antisense transcript amounts were reduced in size and did not develop cobs to maturity. Down-regulation of ZmMCM6 gene activity seems also to affect pollen development because antisense transgenes could not be propagated via pollen to wild-type plants. In summary, the transgenic data indicate that MCM6 is essential for both vegetative as well as reproductive growth and development in plants.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Developmental Biology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, 22609 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
4
|
Claycomb JM, MacAlpine DM, Evans JG, Bell SP, Orr-Weaver TL. Visualization of replication initiation and elongation in Drosophila. J Cell Biol 2002; 159:225-36. [PMID: 12403810 PMCID: PMC2173051 DOI: 10.1083/jcb.200207046] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chorion gene amplification in the ovaries of Drosophila melanogaster is a powerful system for the study of metazoan DNA replication in vivo. Using a combination of high-resolution confocal and deconvolution microscopy and quantitative realtime PCR, we found that initiation and elongation occur during separate developmental stages, thus permitting analysis of these two phases of replication in vivo. Bromodeoxyuridine, origin recognition complex, and the elongation factors minichromosome maintenance proteins (MCM)2-7 and proliferating cell nuclear antigen were precisely localized, and the DNA copy number along the third chromosome chorion amplicon was quantified during multiple developmental stages. These studies revealed that initiation takes place during stages 10B and 11 of egg chamber development, whereas only elongation of existing replication forks occurs during egg chamber stages 12 and 13. The ability to distinguish initiation from elongation makes this an outstanding model to decipher the roles of various replication factors during metazoan DNA replication. We utilized this system to demonstrate that the pre-replication complex component, double-parked protein/cell division cycle 10-dependent transcript 1, is not only necessary for proper MCM2-7 localization, but, unexpectedly, is present during elongation.
Collapse
Affiliation(s)
- Julie M Claycomb
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | |
Collapse
|
5
|
Calzada A, Bueno A. Genes involved in the initiation of DNA replication in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:133-207. [PMID: 11804036 DOI: 10.1016/s0074-7696(01)12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.
Collapse
Affiliation(s)
- Arturo Calzada
- Instituto de Microbiología--Bioquímica/Centro de Investigación del Cancer, Departamento de Microbiología y Genética, Edificio Departamental, CSIC/Universidad de Salamanca, Spain
| | | |
Collapse
|
6
|
Pasion SG, Forsburg SL. Deconstructing a conserved protein family: the role of MCM proteins in eukaryotic DNA replication. GENETIC ENGINEERING 2002; 23:129-55. [PMID: 11570101 DOI: 10.1007/0-306-47572-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- S G Pasion
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
7
|
Bosco G, Orr-Weaver TL. The cell cycle during oogenesis and early embryogenesis in Drosophila. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12026-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Kolonin MG, Finley RL. A role for cyclin J in the rapid nuclear division cycles of early Drosophila embryogenesis. Dev Biol 2000; 227:661-72. [PMID: 11071782 DOI: 10.1006/dbio.2000.9916] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear division cycles of early Drosophila embryogenesis have a number of unique features that distinguish them from later cell cycles. These features include the lack of some checkpoints that operate in later cell cycles, the absence of gap phases, and very rapid DNA synthesis phases. The molecular mechanisms that control these rapid nuclear division cycles are poorly understood. Here we describe analysis of cyclin J, a previously uncharacterized cyclin which has an RNA expression pattern that suggests a possible role in early embryogenesis. We show that the cyclin J protein is present in early embryos where it forms active kinase complexes with cyclin-dependent kinase (Cdk) 2. To determine whether cyclin J plays a role in controlling the early nuclear cycles we isolated peptide aptamers that specifically bind to cyclin J and inhibit its ability to activate Cdks. We injected the inhibitory aptamers into syncytial Drosophila embryos and demonstrated that they caused defects in chromosome segregation and progression through mitosis. We obtained similar results by injecting cyclin J antibodies into embryos. Our results suggest that a cyclin J-associated kinase activity is required for the early embryonic division cycles.
Collapse
Affiliation(s)
- M G Kolonin
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
9
|
Yucel JK, Marszalek JD, McIntosh JR, Goldstein LS, Cleveland DW, Philp AV. CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila. J Cell Biol 2000; 150:1-11. [PMID: 10893249 PMCID: PMC2185570 DOI: 10.1083/jcb.150.1.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 06/02/2000] [Indexed: 11/22/2022] Open
Abstract
CENP-meta has been identified as an essential, kinesin-like motor protein in Drosophila. The 257-kD CENP-meta protein is most similar to the vertebrate kinetochore-associated kinesin-like protein CENP-E, and like CENP-E, is shown to be a component of centromeric/kinetochore regions of Drosophila chromosomes. However, unlike CENP-E, which leaves the centromere/kinetochore region at the end of anaphase A, the CENP-meta protein remains associated with the centromeric/kinetochore region of the chromosome during all stages of the Drosophila cell cycle. P-element-mediated disruption of the CENP-meta gene leads to late larval/pupal stage lethality with incomplete chromosome alignment at metaphase. Complete removal of CENP-meta from the female germline leads to lethality in early embryos resulting from defects in metaphase chromosome alignment. Real-time imaging of these mutants with GFP-labeled chromosomes demonstrates that CENP-meta is required for the maintenance of chromosomes at the metaphase plate, demonstrating that the functions required to establish and maintain chromosome congression have distinguishable requirements.
Collapse
Affiliation(s)
- Jennifer K. Yucel
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Janet D. Marszalek
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
| | - J. Richard McIntosh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Lawrence S.B. Goldstein
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Alastair Valentine Philp
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
10
|
Yucel JK, Marszalek JD, McIntosh JR, Goldstein LS, Cleveland DW, Philp AV. CENP-meta, an Essential Kinetochore Kinesin Required for the Maintenance of Metaphase Chromosome Alignment in Drosophila. J Cell Biol 2000. [DOI: 10.1083/jcb.150.1.1a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CENP-meta has been identified as an essential, kinesin-like motor protein in Drosophila. The 257-kD CENP-meta protein is most similar to the vertebrate kinetochore-associated kinesin-like protein CENP-E, and like CENP-E, is shown to be a component of centromeric/kinetochore regions of Drosophila chromosomes. However, unlike CENP-E, which leaves the centromere/kinetochore region at the end of anaphase A, the CENP-meta protein remains associated with the centromeric/kinetochore region of the chromosome during all stages of the Drosophila cell cycle. P-element–mediated disruption of the CENP-meta gene leads to late larval/pupal stage lethality with incomplete chromosome alignment at metaphase. Complete removal of CENP-meta from the female germline leads to lethality in early embryos resulting from defects in metaphase chromosome alignment. Real-time imaging of these mutants with GFP-labeled chromosomes demonstrates that CENP-meta is required for the maintenance of chromosomes at the metaphase plate, demonstrating that the functions required to establish and maintain chromosome congression have distinguishable requirements.
Collapse
Affiliation(s)
- Jennifer K. Yucel
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Janet D. Marszalek
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
| | - J. Richard McIntosh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Lawrence S.B. Goldstein
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Alastair Valentine Philp
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
11
|
Springer PS, Holding DR, Groover A, Yordan C, Martienssen RA. The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells during the G(1) phase and is required maternally for early Arabidopsis development. Development 2000; 127:1815-22. [PMID: 10751170 DOI: 10.1242/dev.127.9.1815] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PROLIFERA (PRL) encodes a homologue of the DNA replication licensing factor Mcm7, a highly conserved protein found in all eukaryotes. Insertions in the PROLIFERA gene are lethal, resulting in decreased transmission through the female gametophyte, and homozygous embryonic lethality. We show here that PROLIFERA is specifically expressed in populations of dividing cells in sporophytic tissues of the plant body, such as the palisade layer of the leaf and founder cells of initiating flower primordia. Gene fusions with the green fluorescent protein (GFP) reveal that the PROLIFERA protein accumulates during the G(1) phase of the cell cycle, and is transiently localized to the nucleus. During mitosis, the fusion protein rapidly disappears, returning to daughter nuclei during G(1). PROLIFERA::GUS fusions are strongly expressed in the central cell nucleus of mature megagametophytes, which have a variety of arrest points reflecting a leaky lethality. Expression is also observed in the endosperm of mutant prl embryo sacs that arrest following fertilization. Crosses with wild-type pollen result in occasional embryonic lethals that also stain for GUS activity. In contrast, embryos resulting from crosses of wild-type carpels with PRL::GUS pollen do not stain and are phenotypically normal. In situ hybridization of GUS fusion RNA indicates transcription is equivalent from maternally and paternally derived alleles, so that accumulation of maternally derived gametophytic protein is likely to be responsible for the ‘maternal’ effect.
Collapse
Affiliation(s)
- P S Springer
- Cold Spring Harbor Laboratory, P.O. Box 100, Cold Spring Harbor, NY 11724, USA.
| | | | | | | | | |
Collapse
|
12
|
Austin RJ, Orr-Weaver TL, Bell SP. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev 1999; 13:2639-49. [PMID: 10541550 PMCID: PMC317108 DOI: 10.1101/gad.13.20.2639] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the yeast Saccharomyces cerevisiae, sequence-specific DNA binding by the origin recognition complex (ORC) is responsible for selecting origins of DNA replication. In metazoans, origin selection is poorly understood and it is unknown whether specific DNA binding by metazoan ORC controls replication. To address this problem, we used in vivo and in vitro approaches to demonstrate that Drosophila ORC (DmORC) binds to replication elements that direct repeated initiation of replication to amplify the Drosophila chorion gene loci in the follicle cells of egg chambers. Using immunolocalization, we observe that ACE3, a 440-bp chorion element that contains information sufficient to drive amplification, directs DmORC localization in follicle cells. Similarly, in vivo cross-linking and chromatin immunoprecipitation assays demonstrate association of DmORC with both ACE3 and two other amplification control elements, AER-d and ACE1. To demonstrate that the in vivo localization of DmORC is related to its DNA-binding properties, we find that purified DmORC binds to ACE3 and AER-d in vitro, and like its S. cerevisiae counterpart, this binding is dependent on ATP. Our findings suggest that sequence-specific DNA binding by ORC regulates initiation of metazoan DNA replication. Furthermore, adaptation of this experimental approach will allow for the identification of additional metazoan ORC DNA-binding sites and potentially origins of replication.
Collapse
Affiliation(s)
- R J Austin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
13
|
Feger G. Identification and complete cDNA sequence of the missing Drosophila MCMs: DmMCM3, DmMCM6 and DmMCM7. Gene 1999; 227:149-55. [PMID: 10023044 DOI: 10.1016/s0378-1119(98)00596-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The minichromosome maintenance (MCM) gene family consists of six members (MCM2, 3, 4, 5, 6 and 7) in Saccharomyces cerevisiae as well as in humans. Each family member plays an essential role in the replication of DNA. In Drosophila melanogaster only three members, DmMCM2, DmMCM4/dpa and DmMCM5/DmCDC46, have been studied. In addition, two other partial sequences were recently reported. Using degenerate primers and low stringency PCR conditions six different DNA sequences were identified with highest sequence similarity to MCM2, 3, 4, 5, 6 and 7. Sequence analysis of full length cDNA clones corresponding to the MCM3, 6 and 7 fragment proves the existence of six MCM genes in Drosophila melanogaster. Strong homology to the human counterparts, mRNA expression analysis and physico-chemical properties suggest a conserved function in DNA replication for DmMCM3, 6 and 7.
Collapse
Affiliation(s)
- G Feger
- Geneva Biomedical Research Institute, Glaxo Wellcome Research and Development S.A., 14 chemin des Aulx, CH-228 Plan-les-Ouates, Geneva, Switzerland.
| |
Collapse
|
14
|
Ohno K, Hirose F, Inoue YH, Takisawa H, Mimura S, Hashimoto Y, Kiyono T, Nishida Y, Matsukage A. cDNA cloning and expression during development of Drosophila melanogaster MCM3, MCM6 and MCM7. Gene X 1998; 217:177-85. [PMID: 9795205 DOI: 10.1016/s0378-1119(98)00358-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
cDNAs encoding three Drosophila melanogaster MCM proteins, DmMCM3, DmMCM6 and DmMCM7, candidates of DNA replication-licensing factors, were cloned and sequenced. The deduced amino-acid sequences displayed 60, 59 and 68% identities with the respective Xenopus laevis homologues, XMCM3, XMCM6 and XMCM7. Six members of the D. melanogaster MCM family were found to share 31-36% identities in their amino-acid sequences, and to possess the five common domains carrying conserved amino-acid sequences as reported with X. laevis MCM proteins. DmMCM3, DmMCM6 and DmMCM7 genes were mapped to the 4F region on the X chromosome, the 6B region on the X chromosome and the 66E region on the third chromosome, respectively, by in situ hybridization. Contents of their mRNAs were proved to be high in unfertilized eggs and early embryos (0-4h after fertilization), then decrease gradually by the 12h time point, with only low levels detected at later stages of development except in adult females. This fluctuation pattern is similar to those of genes for proteins involved in DNA replication, such as DNA polymerase alpha and proliferating cell nuclear antigen, suggesting that expression of DmMCM genes is under the regulatory mechanism which regulates expression of other genes involved in DNA replication.
Collapse
Affiliation(s)
- K Ohno
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kearsey SE, Labib K. MCM proteins: evolution, properties, and role in DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1398:113-36. [PMID: 9689912 DOI: 10.1016/s0167-4781(98)00033-5] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Su TT, Sprenger F, DiGregorio PJ, Campbell SD, O'Farrell PH. Exit from mitosis in Drosophila syncytial embryos requires proteolysis and cyclin degradation, and is associated with localized dephosphorylation. Genes Dev 1998; 12:1495-503. [PMID: 9585509 PMCID: PMC316833 DOI: 10.1101/gad.12.10.1495] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cyclin proteolysis that accompanies the exit from mitosis in diverse systems appears to be essential for restoration of interphase. The early syncytial divisions of Drosophila embryos, however, occur without detectable oscillations in the total cyclin level or Cdk1 activity. Nonetheless, we found that injection of an established inhibitor of cyclin proteolysis, a cyclin B amino-terminal peptide, prevents exit from mitosis in syncytial embryos. Similarly, injection of a version of Drosophila cyclin B that is refractory to proteolysis results in mitotic arrest. We infer that proteolysis of cyclins is required for exit from syncytial mitoses. This inference can be reconciled with the failure to observe oscillations in total cyclin levels if only a small pool of cyclins is destroyed in each cycle. We find that antibody detection of histone H3 phosphorylation (PH3) acts as a reporter for Cdk1 activity. A gradient of PH3 along anaphase chromosomes suggests local Cdk1 inactivation near the spindle poles in syncytial embryos. This pattern of Cdk1 inactivation would be consistent with local cyclin destruction at centrosomes or kinetochores. The local loss of PH3 during anaphase is specific to the syncytial divisions and is not observed after cellularization. We suggest that exit from mitosis in syncytial cycles is modified to allow nuclear autonomy within a common cytoplasm.
Collapse
Affiliation(s)
- T T Su
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143-0448, USA.
| | | | | | | | | |
Collapse
|
17
|
Su TT, O'Farrell PH. Chromosome association of minichromosome maintenance proteins in Drosophila endoreplication cycles. J Cell Biol 1998; 140:451-60. [PMID: 9456309 PMCID: PMC2140170 DOI: 10.1083/jcb.140.3.451] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Minichromosome maintenance (MCM) proteins are essential eukaryotic DNA replication factors. The binding of MCMs to chromatin oscillates in conjunction with progress through the mitotic cell cycle. This oscillation is thought to play an important role in coupling DNA replication to mitosis and limiting chromosome duplication to once per cell cycle. The coupling of DNA replication to mitosis is absent in Drosophila endoreplication cycles (endocycles), during which discrete rounds of chromosome duplication occur without intervening mitoses. We examined the behavior of MCM proteins in endoreplicating larval salivary glands, to determine whether oscillation of MCM-chromosome localization occurs in conjunction with passage through an endocycle S phase. We found that MCMs in polytene nuclei exist in two states: associated with or dissociated from chromosomes. We demonstrate that cyclin E can drive chromosome association of DmMCM2 and that DNA synthesis erases this association. We conclude that mitosis is not required for oscillations in chromosome binding of MCMs and propose that cycles of MCM-chromosome association normally occur in endocycles. These results are discussed in a model in which the cycle of MCM-chromosome associations is uncoupled from mitosis because of the distinctive program of cyclin expression in endocycles.
Collapse
Affiliation(s)
- T T Su
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
18
|
Duronio RJ, Bonnette PC, O'Farrell PH. Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F-DP transcription factor and cyclin E during the G1-S transition. Mol Cell Biol 1998; 18:141-51. [PMID: 9418862 PMCID: PMC121467 DOI: 10.1128/mcb.18.1.141] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/1997] [Accepted: 10/27/1997] [Indexed: 02/05/2023] Open
Abstract
Activation of heterodimeric E2F-DP transcription factors can drive the G1-S transition. Mutation of the Drosophila melanogaster dE2F gene eliminates transcriptional activation of several replication factors at the G1-S transition and compromises DNA replication. Here we describe a mutation in the Drosophila dDP gene. As expected for a defect in the dE2F partner, this mutation blocks G1-S transcription of DmRNR2 and cyclin E as previously described for mutations of dE2F. Mutation of dDP also causes an incomplete block of DNA replication. When S phase is compromised by reducing the activity of dE2F-dDP by either a dE2F or dDP mutation, the first phenotype detected is a reduction in the intensity of BrdU incorporation and a prolongation of the labeling. Notably, in many cells, there was no detected delay in entry into this compromised S phase. In contrast, when cyclin E function was reduced by a hypomorphic allele combination, BrdU incorporation was robust but the timing of S-phase entry was delayed. We suggest that dE2F-dDP contributes to the expression of two classes of gene products: replication factors, whose abundance has a graded effect on replication, and cyclin E, which triggers an all-or-nothing transition from G1 to S phase.
Collapse
Affiliation(s)
- R J Duronio
- Department of Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA.
| | | | | |
Collapse
|
19
|
Su TT, O'Farrell PH. Chromosome association of minichromosome maintenance proteins in Drosophila mitotic cycles. J Cell Biol 1997; 139:13-21. [PMID: 9314525 PMCID: PMC2139827 DOI: 10.1083/jcb.139.1.13] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Minichromosome maintenance (MCM) proteins are essential DNA replication factors conserved among eukaryotes. MCMs cycle between chromatin bound and dissociated states during each cell cycle. Their absence on chromatin is thought to contribute to the inability of a G2 nucleus to replicate DNA. Passage through mitosis restores the ability of MCMs to bind chromatin and the ability to replicate DNA. In Drosophila early embryonic cell cycles, which lack a G1 phase, MCMs reassociate with condensed chromosomes toward the end of mitosis. To explore the coupling between mitosis and MCM-chromatin interaction, we tested whether this reassociation requires mitotic degradation of cyclins. Arrest of mitosis by induced expression of nondegradable forms of cyclins A and/or B showed that reassociation of MCMs to chromatin requires cyclin A destruction but not cyclin B destruction. In contrast to the earlier mitoses, mitosis 16 (M16) is followed by G1, and MCMs do not reassociate with chromatin at the end of M16. dacapo mutant embryos lack an inhibitor of cyclin E, do not enter G1 quiescence after M16, and show mitotic reassociation of MCM proteins. We propose that cyclin E, inhibited by Dacapo in M16, promotes chromosome binding of MCMs. We suggest that cyclins have both positive and negative roles in controlling MCM-chromatin association.
Collapse
Affiliation(s)
- T T Su
- Department of Biochemistry and Biophysics, University of California San Francisco 94143-0448, USA
| | | |
Collapse
|