1
|
Wutikeli H, Xie T, Xiong W, Shen Y. ELAV/Hu RNA-binding protein family: key regulators in neurological disorders, cancer, and other diseases. RNA Biol 2025; 22:1-11. [PMID: 40000387 PMCID: PMC11926907 DOI: 10.1080/15476286.2025.2471133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The ELAV/Hu family represents a crucial group of RNA-binding proteins predominantly expressed in neurons, playing significant roles in mRNA transcription and translation. These proteins bind to AU-rich elements in transcripts to regulate the expression of cytokines, growth factors, and the development and maintenance of neurons. Elav-like RNA-binding proteins exhibit remarkable molecular weight conservation across different species, highlighting their evolutionary conservation. Although these proteins are widely expressed in the nervous system and other cell types, variations in the DNA sequences of the four Elav proteins contribute to their distinct roles in neurological disorders, cancer, and other Diseases . Elavl1, a ubiquitously expressed family member, is integral to processes such as cell growth, ageing, tumorigenesis, and inflammatory diseases. Elavl2, primarily expressed in the nervous and reproductive systems, is critical for central nervous system and retinal development; its dysregulation has been implicated in neurodevelopmental disorders such as autism. Both Elavl3 and Elavl4 are restricted to the nervous system and are involved in neuronal differentiation and excitability. Elavl3 is essential for cerebellar function and has been associated with epilepsy, while Elavl4 is linked to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. This paper provides a comprehensive review of the ELAV/Hu family's role in nervous system development, neurological disorders, cancer, and other diseases.
Collapse
Affiliation(s)
- Huxitaer Wutikeli
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Special Administrative Region (SAR), Kowloon, Hong Kong, China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Ustaoglu P, Gill JK, Doubovetzky N, Haussmann IU, Dix TC, Arnold R, Devaud JM, Soller M. Dynamically expressed single ELAV/Hu orthologue elavl2 of bees is required for learning and memory. Commun Biol 2021; 4:1234. [PMID: 34711922 PMCID: PMC8553928 DOI: 10.1038/s42003-021-02763-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Changes in gene expression are a hallmark of learning and memory consolidation. Little is known about how alternative mRNA processing, particularly abundant in neuron-specific genes, contributes to these processes. Prototype RNA binding proteins of the neuronally expressed ELAV/Hu family are candidates for roles in learning and memory, but their capacity to cross-regulate and take over each other's functions complicate substantiation of such links. Honey bees Apis mellifera have only one elav/Hu family gene elavl2, that has functionally diversified by increasing alternative splicing including an evolutionary conserved microexon. RNAi knockdown demonstrates that ELAVL2 is required for learning and memory in bees. ELAVL2 is dynamically expressed with altered alternative splicing and subcellular localization in mushroom bodies, but not in other brain regions. Expression and alternative splicing of elavl2 change during memory consolidation illustrating an alternative mRNA processing program as part of a local gene expression response underlying memory consolidation.
Collapse
Affiliation(s)
- Pinar Ustaoglu
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jatinder Kaur Gill
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nicolas Doubovetzky
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, 31062, France
| | - Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Thomas C Dix
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roland Arnold
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, 31062, France
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
RNA-Binding Protein HuD as a Versatile Factor in Neuronal and Non-Neuronal Systems. BIOLOGY 2021; 10:biology10050361. [PMID: 33922479 PMCID: PMC8145660 DOI: 10.3390/biology10050361] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Tight regulation of gene expression is critical for various biological processes such as proliferation, development, differentiation, and death; its dysregulation is linked to the pathogenesis of diseases. Gene expression is dynamically regulated by numerous factors at DNA, RNA, and protein levels, and RNA binding proteins (RBPs) and non–coding RNAs play important roles in the regulation of RNA metabolisms. RBPs govern a diverse spectrum of RNA metabolism by recognizing and binding to the secondary structure or the certain sequence of target mRNAs, and their malfunctions caused by aberrant expression or mutation are implicated in disease pathology. HuD, an RBP in the human antigen (Hu) family, has been studied as a pivotal regulator of gene expression in neuronal systems; however, accumulating evidence reveals the significance of HuD in non–neuronal systems including certain types of cancer cells or endocrine cells in the lung, pancreas, and adrenal gland. In addition, the abnormal function of HuD suggests its pathological association with neurological disorders, cancers, and diabetes. Thus, this review discusses HuD–mediated gene regulation in neuronal and non–neuronal systems to address how it works to orchestrate gene expression and how its expression is controlled in the stress response of pathogenesis of diseases. Abstract HuD (also known as ELAVL4) is an RNA–binding protein belonging to the human antigen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs. Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal development, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic transmission by regulating the metabolism of target mRNAs. However, growing evidence suggests that HuD also functions as a pivotal regulator of gene expression in non–neuronal systems and its malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression, abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant HuD expression. This review focuses on recent advances investigating the emerging role of HuD, its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and non–neuronal systems.
Collapse
|
4
|
Zannoni A, Bombardi C, Dondi F, Morini M, Forni M, Chiocchetti R, Spadari A, Romagnoli N. Proteinase-activated receptor 2 expression in the intestinal tract of the horse. Res Vet Sci 2014; 96:464-71. [PMID: 24656343 DOI: 10.1016/j.rvsc.2014.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/20/2014] [Accepted: 03/01/2014] [Indexed: 11/18/2022]
Abstract
Proteinase-activated receptor 2 (PAR2) is a G-protein-coupled receptor for trypsin and mast cell tryptase; it is highly expressed at the intestinal level with multiple functions, such as epithelial permeability and intestinal motility. Many proteases activate PAR2 during tissue damage, suggesting a role of the inflammatory response receptors. The aim of the study was to evaluate the distribution and expression of PAR2 in the jejunum, the ileum and the pelvic flexure, using samples collected from healthy adult horses after slaughter. Proteinase-activated receptor 2 immunoreactivity (PAR2-IR) was observed in the enterocytes, intestinal glands, the smooth muscle of the muscularis mucosae, and the longitudinal and circular muscle layers; there were no differences in the distribution of PAR2-IR in the different sections of the intestinal tract. The protein expression level showed that the relative amount of the PAR2 content in the mucosa of the intestinal tract decreased from the small to the large intestine while the PAR2 mRNA analysed showed similar values. This study provides relevant findings concerning the distribution of the PAR2 in the intestines of healthy horses and represents the starting point for evaluating the role of the PAR2 during strangulative intestinal disease and consequent systemic intestinal reperfusion/injury complications in horses in order to identify and employ antagonist PAR2 molecules.
Collapse
Affiliation(s)
- Augusta Zannoni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Alessandro Spadari
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy.
| |
Collapse
|
5
|
Watanabe T, Aonuma H. Tissue-specific promoter usage and diverse splicing variants of found in neurons, an ancestral Hu/ELAV-like RNA-binding protein gene of insects, in the direct-developing insect Gryllus bimaculatus. INSECT MOLECULAR BIOLOGY 2014; 23:26-41. [PMID: 24382152 DOI: 10.1111/imb.12057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hu/ELAV-like RNA-binding proteins (RBPs) are involved in the post-transcriptional regulation of RNA metabolism including splicing, transport, translational control and turnover. The Hu/ELAV-like RBP genes are predominantly expressed in neurons, and are therefore used as common neuronal markers in many animals. Although the expression patterns and functions of the Hu/ELAV-like RBP genes have been extensively studied in the model insect Drosophila melanogaster, little is known in basal direct-developing insects. In the present study, we performed an identification and expression analysis of the found in neurons (fne) gene, an ancestral insect Hu/ELAV-like RBP gene, in the cricket Gryllus bimaculatus. Contrary to expectation that the Gryllus fne transcript would be predominantly expressed in the nervous system, expression analysis revealed that the Gryllus fne gene is expressed broadly. In addition, we discovered that alternative promoter usage directs tissue-specific and embryonic stage-dependent regulation of fne expression, and that alternative splicing contributes to the generation of diverse sets of fne transcripts. Our data provide novel insights into the evolutionary diversification of the Hu/ELAV-like RBP gene family in insects.
Collapse
Affiliation(s)
- T Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
6
|
Sorteni C, Clavenzani P, De Giorgio R, Portnoy O, Sirri R, Mordenti O, Di Biase A, Parmeggiani A, Menconi V, Chiocchetti R. Enteric neuroplasticity in seawater-adapted European eel (Anguilla anguilla). J Anat 2013; 224:180-91. [PMID: 24433383 DOI: 10.1111/joa.12131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 12/01/2022] Open
Abstract
European eels live most of their lives in freshwater until spawning migration to the Sargasso Sea. During seawater adaptation, eels modify their physiology, and their digestive system adapts to the new environment, drinking salt water to compensate for the continuous water loss. In that period, eels stop feeding until spawning. Thus, the eel represents a unique model to understand the adaptive changes of the enteric nervous system (ENS) to modified salinity and starvation. To this purpose, we assessed and compared the enteric neuronal density in the cranial portion of the intestine of freshwater eels (control), lagoon eels captured in brackish water before their migration to the Sargasso Sea (T0), and starved seawater eels hormonally induced to sexual maturity (T18; 18 weeks of starvation and treatment with standardized carp pituitary extract). Furthermore, we analyzed the modification of intestinal neuronal density of hormonally untreated eels during prolonged starvation (10 weeks) in seawater and freshwater. The density of myenteric (MP) and submucosal plexus (SMP) HuC/D-immunoreactive (Hu-IR) neurons was assessed in wholemount preparations and cryosections. The number of MP and SMP HuC/D-IR neurons progressively increased from the freshwater to the salty water habitat (control > T0 > T18; P < 0.05). Compared with freshwater eels, the number of MP and SMP HuC/D-IR neurons significantly increased (P < 0.05) in the intestine of starved untreated salt water eels. In conclusion, high salinity evokes enteric neuroplasticity as indicated by the increasing number of HuC/D-IR MP and SMP neurons, a mechanism likely contributing to maintaining the body homeostasis of this fish in extreme conditions.
Collapse
Affiliation(s)
- C Sorteni
- Department of Veterinary Medical Science (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy; Centro interdipartimentale di ricerca sull'alimentazione umana, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bombardi C, Grandis A, Gardini A, Sorteni C, Clavenzani P, Chiocchetti R. Expression of β2 adrenoceptors within enteric neurons of the horse ileum. Res Vet Sci 2013; 95:837-45. [PMID: 23941962 DOI: 10.1016/j.rvsc.2013.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/10/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
Abstract
The activity of the gastrointestinal tract is regulated through the activation of adrenergic receptors (ARs). Since data concerning the distribution of ARs in the horse intestine is virtually absent, we investigated the distribution of β2-AR in the horse ileum using double-immunofluorescence. The β2-AR-immunoreactivity (IR) was observed in most (95%) neurons located in submucosal plexus (SMP) and in few (8%) neurons of the myenteric plexus (MP). Tyrosine hydroxylase (TH)-IR fibers were observed close to neurons expressing β2-AR-IR. Since β2-AR is virtually expressed in most neurons located in the horse SMP and in a lower percentage of neurons in the MP, it is reasonable to retain that this adrenergic receptor could regulate the activity of both secretomotor neurons and motor neurons innervating muscle layers and blood vessels. The high density of TH-IR fibers near β2-AR-IR enteric neurons indicates that the excitability of these cells could be directly modulated by the sympathetic system.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Science, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Bronicki LM, Jasmin BJ. Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. RNA (NEW YORK, N.Y.) 2013; 19:1019-1037. [PMID: 23861535 PMCID: PMC3708524 DOI: 10.1261/rna.039164.113] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Precise control of messenger RNA (mRNA) processing and abundance are increasingly being recognized as critical for proper spatiotemporal gene expression, particularly in neurons. These regulatory events are governed by a large number of trans-acting factors found in neurons, most notably RNA-binding proteins (RBPs) and micro-RNAs (miRs), which bind to specific cis-acting elements or structures within mRNAs. Through this binding mechanism, trans-acting factors, particularly RBPs, control all aspects of mRNA metabolism, ranging from altering the transcription rate to mediating mRNA degradation. In this context the best-characterized neuronal RBP, the Hu/ELAVl family member HuD, is emerging as a key component in multiple regulatory processes--including pre-mRNA processing, mRNA stability, and translation--governing the fate of a substantial amount of neuronal mRNAs. Through its ability to regulate mRNA metabolism of diverse groups of functionally similar genes, HuD plays important roles in neuronal development and function. Furthermore, compelling evidence indicates supplementary roles for HuD in neuronal plasticity, in particular, recovery from axonal injury, learning and memory, and multiple neurological diseases. The purpose of this review is to provide a detailed overview of the current knowledge surrounding the expression and roles of HuD in the nervous system. Additionally, we outline the present understanding of the molecular mechanisms presiding over the localization, abundance, and function of HuD in neurons.
Collapse
|
9
|
Characterization of multiple exon 1 variants in mammalian HuD mRNA and neuron-specific transcriptional control via neurogenin 2. J Neurosci 2012; 32:11164-75. [PMID: 22895702 DOI: 10.1523/jneurosci.2247-12.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The RBP (RNA-binding protein) and Hu/ELAV family member HuD regulates mRNA metabolism of genes directly or indirectly involved in neuronal differentiation, learning and memory, and several neurological diseases. Given the important functions of HuD in a variety of processes, we set out to determine the mechanisms that promote HuD mRNA expression in neurons using a mouse model. Through several complementary approaches, we determined that the abundance of HuD mRNA is predominantly under transcriptional control in developing neurons. Bioinformatic and 5'RACE (rapid amplification of cDNA ends) analyses of the 5' genomic flanking region identified eight conserved HuD leader exons (E1s), two of which are novel. Expression of all E1 variants was determined in mouse embryonic (E14.5) and adult brains. Sequential deletion of the 5' regulatory region upstream of the predominantly expressed E1c variant revealed a well conserved 400 bp DNA region that contains five E-boxes and is capable of directing HuD expression specifically in neurons. Using EMSA (electrophoretic mobility shift assay), ChIP (chromatin immunoprecipitation), and 5' regulatory region deletion and mutation analysis, we found that two of these E-boxes are targets of Neurogenin 2 (Ngn2) and that this mechanism is important for HuD mRNA induction. Together, our findings reveal that transcriptional regulation of HuD involves the use of alternate leader exons and Ngn2 mediates neuron-specific mRNA expression. To our knowledge, this is the first study to identify molecular events that positively regulate HuD mRNA expression.
Collapse
|
10
|
Kim DS, Huh JW, Kim YH, Park SJ, Kim HS, Chang KT. Bioinformatic analysis of TE-spliced new exons within human, mouse and zebrafish genomes. Genomics 2010; 96:266-71. [PMID: 20728532 DOI: 10.1016/j.ygeno.2010.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/10/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
Recent studies indicate major roles for transposable elements (TEs) in alternative splicing. In this study, we conducted genome-wide alternative splicing analyses focusing on new internal exon birth derived from TEs in human, mouse, and zebrafish genomes. We identified two different exon sets, TE-spliced exons and non-TE-spliced exons. The proportion of TE-spliced exons was nearly twice as high as the proportion of non-TE-spliced exons in the coding sequence (CDS) region. Detailed analysis of various families of TEs in three different species of TE-spliced exons revealed a different pattern in zebrafish. In our analysis, we could identify the functional role of TE insertions in the vertebrate genome affecting mRNA splicing machinery. Their effects can be directly linked to the shift from constitutive to alternative splicing during primate evolution. Our results indicate that TEs have a significant effect on shaping new internal exons in human, mouse, and zebrafish transcriptomes.
Collapse
Affiliation(s)
- Dae-Soo Kim
- National Primate Research Center (NPRC), KRIBB, Ochang, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Talora C, Frati L, Gulino A, Screpanti I. Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO J 2007; 26:1670-80. [PMID: 17332745 PMCID: PMC1829386 DOI: 10.1038/sj.emboj.7601626] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 02/05/2007] [Indexed: 11/08/2022] Open
Abstract
Constitutive activation of the transmembrane receptor, Notch3, and loss of function of the hematopoietic transcription repressor, Ikaros (IK), play direct roles in T-cell differentiation and leukemogenesis that are dependent on pre-T-cell receptor (pre-TCR) signaling. We demonstrate the occurrence of crosstalk between Notch3 and IK that results in transcriptional regulation of the gene encoding the pTalpha chain of the pre-TCR. We also show that, in the presence of the pre-TCR, constitutive activation of Notch3 in thymocytes causes increased expression of dominantnegative non-DNA-binding IK isoforms, which are able to restrain the IK inhibition of Notch3's transcriptional activation of pTalpha. This effect appears to be mediated by Notch3's pre-TCR-dependent upregulation of the RNA-binding protein, HuD. Notch3 signaling thus appears to play a critical role in the diminished IK activity described in several lymphoid leukemias. By exerting transcription-activating and transcription-repressing effects on the pTalpha promoter, Notch3 and IK cooperate in the fine-tuning of pre-TCR expression and function, which has important implications for the regulation of thymocyte differentiation and proliferation.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Marco Mecarozzi
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Antonio F Campese
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Paola Grazioli
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Claudio Talora
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | | | - Alberto Gulino
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
- Neuromed Institute, Pozzilli, Italy
| | - Isabella Screpanti
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University ‘La Sapienza', Roma, Italy
- Laboratory of Molecular Pathology, Dipartimento di Medicina Sperimentale, University ‘La Sapienza', Viale Regina Elena 324, Roma 00161, Italy. Tel.: +39 06 44700816; Fax: +39 06 4464129; E-mail:
| |
Collapse
|
12
|
Deschênes-Furry J, Perrone-Bizzozero N, Jasmin BJ. The RNA-binding protein HuD: a regulator of neuronal differentiation, maintenance and plasticity. Bioessays 2006; 28:822-33. [PMID: 16927307 DOI: 10.1002/bies.20449] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
mRNA stability is increasingly recognized as being essential for controlling the expression of a wide variety of transcripts during neuronal development and synaptic plasticity. In this context, the role of AU-rich elements (ARE) contained within the 3' untranslated region (UTR) of transcripts has now emerged as key because of their high incidence in a large number of cellular mRNAs. This important regulatory element is known to significantly modulate the longevity of mRNAs by interacting with available stabilizing or destabilizing RNA-binding proteins (RBP). Thus, in parallel with the emergence of ARE, RBP are also gaining recognition for their pivotal role in regulating expression of a variety of mRNAs. In the nervous system, the member of the Hu family of ARE-binding proteins known as HuD, has recently been implicated in multiple aspects of neuronal function including the commitment and differentiation of neuronal precursors as well as synaptic remodeling in mature neurons. Through its ability to interact with ARE and stabilize multiple transcripts, HuD has now emerged as an important regulator of mRNA expression in neurons. The present review is designed to provide a comprehensive and updated view of HuD as an RBP in the nervous system. Additionally, we highlight the role of HuD in multiple aspects of a neuron's life from early differentiation to changes in mature neurons during learning paradigms and in response to injury and regeneration. Finally, we describe the current state of knowledge concerning the molecular and cellular events regulating the expression and activity of HuD in neurons.
Collapse
Affiliation(s)
- Julie Deschênes-Furry
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
13
|
Deschênes-Furry J, Angus LM, Bélanger G, Mwanjewe J, Jasmin BJ. Role of ELAV-like RNA-binding proteins HuD and HuR in the post-transcriptional regulation of acetylcholinesterase in neurons and skeletal muscle cells. Chem Biol Interact 2005; 157-158:43-9. [PMID: 16242680 DOI: 10.1016/j.cbi.2005.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the last few years, several laboratories have focused their attention on elucidating the molecular events that control the expression and localization of acetylcholinesterase (AChE) in neurons and skeletal muscle cells. In this context, results from a number of studies have clearly shown the important contribution of transcriptional events in regulating AChE expression. Specifically, these studies have highlighted the roles of several cis- and trans-acting factors that control transcription of the AChE gene in these excitable cells. However, it has also become apparent that changes in the transcriptional activity of the AChE gene cannot fully account for the alterations seen in the overall abundance of AChE transcripts in neurons and muscle cells placed under a variety of experimental conditions. This indicates, therefore, that post-transcriptional mechanisms also play a significant role in controlling AChE mRNA expression. With this in mind, we have recently begun to address this issue in greater detail. Here, we provide a summary of our most recent findings dealing with the post-transcriptional regulation of AChE. Together, our studies have shown so far the important contribution of an AU-rich element located in the 3'UTR of AChE transcripts and of the stabilizing RNA-binding proteins of the ELAV-like family in regulating AChE expression in differentiating neuronal and muscle cells.
Collapse
Affiliation(s)
- Julie Deschênes-Furry
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada K1H 8M5
| | | | | | | | | |
Collapse
|
14
|
Abstract
Very short exons, also known as micro-exons, occur in large numbers in some eukaryotic genomes. Existing annotation tools have a limited ability to recognize these short sequences, which range in length up to 25 bp. Here, we describe a computational method for the identification of micro-exons using near-perfect alignments between cDNA and genomic DNA sequences. Using this method, we detected 319 micro-exons in 4 complete genomes, of which 224 were previously unknown, human (170), the nematode Caenorhabditis elegans (4), the fruit fly Drosophila melanogaster (14), and the mustard plant Arabidopsis thaliana (36). Comparison of our computational method with popular cDNA alignment programs shows that the new algorithm is both efficient and accurate. The algorithm also aids in the discovery of micro-exon-skipping events and cross-species micro-exon conservation.
Collapse
|
15
|
Nassar F, Wegnez M. Characterization of two promoters of the Xenopus laevis elrD gene. Biochem Biophys Res Commun 2001; 283:392-8. [PMID: 11327714 DOI: 10.1006/bbrc.2001.4812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Xenopus laevis elrD gene belongs to the multigenic elav/Hu family. elrD is exclusively expressed in neural cells, where it could be involved in the posttranscriptional control of mRNAs. Here we report the isolation and characterization of the genomic elrD 5'-flanking region. We localized the transcription initiation sites and thus identified two distinct transcripts, elrD1 and elrD2 by 5' RACE PCR. The two transcripts derive from the use of alternative promoters located 915 bp apart. We show that sequences upstream of the elrD1 and elrD2 transcription units can direct expression of the reporter luciferase gene in Xenopus embryos. We also observed length variation of the ELRD first RNA recognition motif (RRM1).
Collapse
Affiliation(s)
- F Nassar
- Laboratoire d'Embryologie Moléculaire et Expérimentale, UPRES-A 8080, Université Paris-Sud, Bâtiment 445, Orsay, 91405, France
| | | |
Collapse
|
16
|
King PH, Fuller JJ, Nabors LB, Detloff PJ. Analysis of the 5' end of the mouse Elavl1 (mHuA) gene reveals a transcriptional regulatory element and evidence for conserved genomic organization. Gene 2000; 242:125-31. [PMID: 10721704 DOI: 10.1016/s0378-1119(99)00537-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
mHuA (Elavl1) belongs to a highly conserved family of genes encoding RNA-binding proteins and has been linked to cell growth and proliferation through its regulation of mRNA stability. Here, we use an RNase protection assay to demonstrate that the mHuA transcript is relatively abundant in a range of mouse tissues, with the highest levels being found in lung and embryonic stem cells. We then cloned and mapped an 18 kb DNA fragment which encompasses the 5' end of the mHuA gene. The genomic organization in this region is similar to the neural-restricted family members, Hel-N1 (ELAVL2) and mHuD (Elavl4). The first exon is lengthy and untranslated, and the second exon, which includes the methionine start site, ends between the ribonucleoprotein motifs of the first RNA binding domain. Mapping of the mHuA transcript by primer extension demonstrated three potential transcription-initiation sites which were detected consistently among different tissues and cell lines. Analysis of the sequence flanking these sites revealed the presence of transcriptional elements including TATA, CREB, c-ets, and AP1 sites. Transfection analysis of this promoter region using a luciferase-reporter-gene assay indicated strong transcriptional activity both in HeLa and in mouse macrophage (RAW) cells which is consistent with the ubiquitous expression pattern of mHuA. Thus, while the genomic organization of mHuA is similar to the neural-restricted members of the Elav family, the promoter element differs substantially both by sequence analysis and transcriptional activity in non-neural cell types.
Collapse
Affiliation(s)
- P H King
- Department of Neurology, University of Alabama, Birmingham 35295, USA.
| | | | | | | |
Collapse
|
17
|
Clayton GH, Perez GM, Smith RL, Owens GC. Expression of mRNA for the elav-like neural-specific RNA binding protein, HuD, during nervous system development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:271-80. [PMID: 9729424 DOI: 10.1016/s0165-3806(98)00074-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of mRNA for the neuronal antigen HuD (Elavl4) associated with paraneoplastic encephalomyelitis and sensory neuronopathy was evaluated in the developing and adult rat nervous system. Using RNase protection assay and non-radioactive in situ hybridization histochemistry HuD expression was shown to be expressed at high levels at the earliest time point observed (E15), but declined significantly during the first postnatal week to levels which were maintained into adulthood. In the adult, HuD expression became restricted primarily to large pyramidal-like neurons. Exceptions of note were many smaller neurons within a variety of thalamic nuclei. Expression of HuD was observed to be coincident with terminal differentiation of all neuronal structures evaluated regardless of the timing of their development, providing correlative evidence for a role in neuronal differentiation or the maintenance of neuronal phenotype. The marked restriction of HuD mRNA expression with maturity suggests that its functional role in adult neurons varies significantly throughout the CNS.
Collapse
Affiliation(s)
- G H Clayton
- Neurology and Pediatrics, Dept. of Neurology, B-182, University of Colorado Health Sciences Center, 4200 East Ninth Ave., Denver, CO 80262, USA.
| | | | | | | |
Collapse
|