1
|
Coe KA, Lee W, Stone MC, Komazin-Meredith G, Meredith TC, Grad YH, Walker S. Multi-strain Tn-Seq reveals common daptomycin resistance determinants in Staphylococcus aureus. PLoS Pathog 2019; 15:e1007862. [PMID: 31738809 PMCID: PMC6934316 DOI: 10.1371/journal.ppat.1007862] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/27/2019] [Accepted: 09/24/2019] [Indexed: 01/30/2023] Open
Abstract
Antibiotic-resistant Staphylococcus aureus remains a leading cause of antibiotic resistance-associated mortality in the United States. Given the reality of multi-drug resistant infections, it is imperative that we establish and maintain a pipeline of new compounds to replace or supplement our current antibiotics. A first step towards this goal is to prioritize targets by identifying the genes most consistently required for survival across the S. aureus phylogeny. Here we report the first direct comparison of multiple strains of S. aureus via transposon sequencing. We show that mutant fitness varies by strain in key pathways, underscoring the importance of using more than one strain to differentiate between core and strain-dependent essential genes. We treated the libraries with daptomycin to assess whether the strain-dependent differences impact pathways important for survival. Despite baseline differences in gene importance, several pathways, including the lipoteichoic acid pathway, consistently promote survival under daptomycin exposure, suggesting core vulnerabilities that can be exploited to resensitize daptomycin-nonsusceptible isolates. We also demonstrate the merit of using transposons with outward-facing promoters capable of overexpressing nearby genes for identifying clinically-relevant gain-of-function resistance mechanisms. Together, the daptomycin vulnerabilities and resistance mechanisms support a mode of action with wide-ranging effects on the cell envelope and cell division. This work adds to a growing body of literature demonstrating the nuanced insights gained by comparing Tn-Seq results across multiple bacterial strains. Antibiotic-resistant Staphylococcus aureus kills thousands of people every year in the United States alone. To stay ahead of the looming threat of multidrug-resistant infections, we must continue to develop new antibiotics and find ways to make our current repertoire of antibiotics more effective, including by finding pairs of compounds that perform best when administered together. In the age of next-generation sequencing, we can now use transposon sequencing to find potential targets for new antibiotics on a genome-wide scale, identified as either essential genes or genes that positively influence survival in the presence of an antibiotic. In this work, we created a compendium of genes that are essential across a range of S. aureus strains, as well as those that are important for growth in the presence of the antibiotic daptomycin. The results will be a resource for researchers working to develop the next generation of antibiotic therapies.
Collapse
Affiliation(s)
- Kathryn A. Coe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wonsik Lee
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Madeleine C. Stone
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gloria Komazin-Meredith
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
| | - Timothy C. Meredith
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- * E-mail: (TCM); (YHG); (SW)
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (TCM); (YHG); (SW)
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (TCM); (YHG); (SW)
| |
Collapse
|
2
|
Brantl S, Müller P. Toxin⁻Antitoxin Systems in Bacillus subtilis. Toxins (Basel) 2019; 11:toxins11050262. [PMID: 31075979 PMCID: PMC6562991 DOI: 10.3390/toxins11050262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Toxin-antitoxin (TA) systems were originally discovered as plasmid maintenance systems in a multitude of free-living bacteria, but were afterwards found to also be widespread in bacterial chromosomes. TA loci comprise two genes, one coding for a stable toxin whose overexpression kills the cell or causes growth stasis, and the other coding for an unstable antitoxin that counteracts toxin action. Of the currently known six types of TA systems, in Bacillus subtilis, so far only type I and type II TA systems were found, all encoded on the chromosome. Here, we review our present knowledge of these systems, the mechanisms of antitoxin and toxin action, and the regulation of their expression, and we discuss their evolution and possible physiological role.
Collapse
Affiliation(s)
- Sabine Brantl
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| | - Peter Müller
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Philosophenweg 12, D-07743 Jena, Germany.
| |
Collapse
|
3
|
Moscoso M, García P, Cabral MP, Rumbo C, Bou G. A D-Alanine auxotrophic live vaccine is effective against lethal infection caused by Staphylococcus aureus. Virulence 2018; 9:604-620. [PMID: 29297750 PMCID: PMC5955480 DOI: 10.1080/21505594.2017.1417723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus infections are becoming a major global health issue due to the rapid emergence of multidrug-resistant strains. Therefore, there is an urgent need to develop an effective vaccine to prevent and control these infections. In order to develop a universal immunization strategy, we constructed a mutant derivative of S. aureus 132 which lacks the genes involved in D-alanine biosynthesis, a structural component of cell wall peptidoglycan. This unmarked deletion mutant requires the exogenous addition of D-alanine for in vitro growth. The aim of this study was to examine the ability of this D-alanine auxotroph to induce protective immunity against staphylococcal infection. Our findings demonstrate that this deletion mutant is highly attenuated, elicits a protective immune response in mice and generates cross-reactive antibodies. Moreover, the D-alanine auxotroph was completely eliminated from the blood of mice after its intravenous or intraperitoneal injection. We determined that the protective effect was dependent on antibody production since the adoptive transfer of immune serum into naïve mice resulted in effective protection against S. aureus bacteremia. In addition, splenocytes from mice immunized with the D-alanine auxotroph vaccine showed specific production of IL-17A after ex vivo stimulation. We conclude that this D-alanine auxotroph protects mice efficiently against virulent staphylococcal strains through the combined action of antibodies and IL-17A, and therefore constitutes a promising vaccine candidate against staphylococcal disease, for which no licensed vaccine is available yet.
Collapse
Affiliation(s)
- Miriam Moscoso
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Patricia García
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Maria P Cabral
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| | - Carlos Rumbo
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain.,b International Research Center in Critical Raw Materials-ICCRAM, University of Burgos , Burgos , Spain.,c Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology. Consolidated Research Unit UIC-154. Castilla y León. Spain. University of Burgos. Hospital del Rey s/n , Burgos , Spain
| | - Germán Bou
- a Department of Microbiology , University Hospital A Coruña (CHUAC) - Biomedical Research Institute A Coruña (INIBIC) , A Coruña , Spain
| |
Collapse
|
4
|
Muller C, Massier S, Le Breton Y, Rincé A. The role of the CroR response regulator in resistance of Enterococcus faecalis to D-cycloserine is defined using an inducible receiver domain. Mol Microbiol 2017; 107:416-427. [PMID: 29205552 DOI: 10.1111/mmi.13891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
Abstract
Enterococcus faecalis is an opportunistic multidrug-resistant human pathogen causing severe nosocomial infections. Previous investigations revealed that the CroRS two-component regulatory pathway likely displays a pleiotropic role in E. faecalis, involved in virulence, macrophage survival, oxidative stress response as well as antibiotic resistance. Therefore, CroRS represents an attractive potential new target for antibiotherapy. In this report, we further explored CroRS cellular functions by characterizing the CroR regulon: the 'domain swapping' method was applied and a CroR chimera protein was generated by fusing the receiver domain from NisR to the output domain from CroR. After demonstrating that the chimera CroR complements a croR gene deletion in E. faecalis (stress response, virulence), we conducted a global gene expression analysis using RNA-Seq and identified 50 potential CroR targets involved in multiple cellular functions such as cell envelope homeostasis, substrate transport, cell metabolism, gene expression regulation, stress response, virulence and antibiotic resistance. For validation, CroR direct binding to several candidate targets was demonstrated by EMSA. Further, this work identified alr, the gene encoding the alanine racemase enzyme involved in E. faecalis resistance to D-cycloserine, a promising antimicrobial drug to treat enterococcal infections, as a member of the CroR regulon.
Collapse
Affiliation(s)
- Cécile Muller
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Sébastien Massier
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Yoann Le Breton
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Alain Rincé
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| |
Collapse
|
5
|
Schuster CF, Bertram R. Toxin-Antitoxin Systems of Staphylococcus aureus. Toxins (Basel) 2016; 8:E140. [PMID: 27164142 PMCID: PMC4885055 DOI: 10.3390/toxins8050140] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/02/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements found in the majority of prokaryotes. They encode toxin proteins that interfere with vital cellular functions and are counteracted by antitoxins. Dependent on the chemical nature of the antitoxins (protein or RNA) and how they control the activity of the toxin, TA systems are currently divided into six different types. Genes comprising the TA types I, II and III have been identified in Staphylococcus aureus. MazF, the toxin of the mazEF locus is a sequence-specific RNase that cleaves a number of transcripts, including those encoding pathogenicity factors. Two yefM-yoeB paralogs represent two independent, but auto-regulated TA systems that give rise to ribosome-dependent RNases. In addition, omega/epsilon/zeta constitutes a tripartite TA system that supposedly plays a role in the stabilization of resistance factors. The SprA1/SprA1AS and SprF1/SprG1 systems are post-transcriptionally regulated by RNA antitoxins and encode small membrane damaging proteins. TA systems controlled by interaction between toxin protein and antitoxin RNA have been identified in S. aureus in silico, but not yet experimentally proven. A closer inspection of possible links between TA systems and S. aureus pathophysiology will reveal, if these genetic loci may represent druggable targets. The modification of a staphylococcal TA toxin to a cyclopeptide antibiotic highlights the potential of TA systems as rather untapped sources of drug discovery.
Collapse
Affiliation(s)
- Christopher F Schuster
- Section of Microbiology & MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK.
| | - Ralph Bertram
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Lehrbereich Mikrobielle Genetik, University of Tübingen, 72076 Tübingen, Germany.
- Klinikum Nürnberg Medical School GmbH, Research Department, Paracelsus Medical University, 90419 Nuremberg, Germany.
| |
Collapse
|
6
|
Hernández SB, Cava F. Environmental roles of microbial amino acid racemases. Environ Microbiol 2015; 18:1673-85. [DOI: 10.1111/1462-2920.13072] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Sara B. Hernández
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| |
Collapse
|
7
|
Subramanian D, Natarajan J. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes. Gene 2015; 574:149-62. [DOI: 10.1016/j.gene.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022]
|
8
|
Santiago M, Matano LM, Moussa SH, Gilmore MS, Walker S, Meredith TC. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 2015; 16:252. [PMID: 25888466 PMCID: PMC4389836 DOI: 10.1186/s12864-015-1361-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/19/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Staphylococcus aureus readily develops resistance to antibiotics and achieving effective therapies to overcome resistance requires in-depth understanding of S. aureus biology. High throughput, parallel-sequencing methods for analyzing transposon mutant libraries have the potential to revolutionize studies of S. aureus, but the genetic tools to take advantage of the power of next generation sequencing have not been fully developed. RESULTS Here we report a phage-based transposition system to make ultra-high density transposon libraries for genome-wide analysis of mutant fitness in any Φ11-transducible S. aureus strain. The high efficiency of the delivery system has made it possible to multiplex transposon cassettes containing different regulatory elements in order to make libraries in which genes are over- or under-expressed as well as deleted. By incorporating transposon-specific barcodes into the cassettes, we can evaluate how null mutations and changes in gene expression levels affect fitness in a single sequencing data set. Demonstrating the power of the system, we have prepared a library containing more than 690,000 unique insertions. Because one unique feature of the phage-based approach is that temperature-sensitive mutants are retained, we have carried out a genome-wide study of S. aureus genes involved in withstanding temperature stress. We find that many genes previously identified as essential are temperature sensitive and also identify a number of genes that, when disrupted, confer a growth advantage at elevated temperatures. CONCLUSIONS The platform described here reliably provides mutant collections of unparalleled genotypic diversity and will enable a wide range of functional genomic studies in S. aureus.
Collapse
Affiliation(s)
- Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Leigh M Matano
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Samir H Moussa
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael S Gilmore
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA.
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Timothy C Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
9
|
Daptomycin In Vitro Activity against Methicillin-Resistant Staphylococcus aureus Is Enhanced by d-Cycloserine in a Mechanism Associated with a Decrease in Cell Surface Charge. Antimicrob Agents Chemother 2013; 57:4537-4539. [PMID: 23796933 DOI: 10.1128/aac.00799-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/12/2013] [Indexed: 11/20/2022] Open
Abstract
The killing activity of daptomycin against an isogenic pair of daptomycin-susceptible and daptomycin-nonsusceptible (DNS) methicillin-resistant Staphylococcus aureus (MRSA) strains was enhanced by the addition of certain cell wall agents at 1× MIC. However, when high inocula of the DNS strain were used, no significant killing was observed in our experiments. Cytochrome c binding assays revealed d-cycloserine as the only agent associated with a reduction in the cell surface charge for both strains at the concentrations used.
Collapse
|
10
|
Chen LC, Chiang WD, Chen WC, Chen HH, Huang YW, Chen WJ, Lin SB. Influence of alanine uptake on Staphylococcus aureus surface charge and its susceptibility to two cationic antibacterial agents, nisin and low molecular weight chitosan. Food Chem 2012; 135:2397-403. [DOI: 10.1016/j.foodchem.2012.06.122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/09/2012] [Accepted: 06/21/2012] [Indexed: 02/07/2023]
|
11
|
Effect of D-alanine in teichoic acid from the Streptococcus thermophilus cell wall on the barrier-protection of intestinal epithelial cells. Biosci Biotechnol Biochem 2012; 76:283-8. [PMID: 22313760 DOI: 10.1271/bbb.110646] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
D-Alanylation of teichoic acid (TA) affects various functions of Gram-positive bacteria, including immunomodulatory effects. We investigated in this study the impact of D-alanine (D-Ala) in TA from Streptococcus thermophilus ATCC 19258(T) on the barrier-protecting effect in human intestinal Caco-2 cells. ATCC 19258(T) suppressed the tumor necrosis factor-α-induced decrease in transepithelial electrical resistance (TER), an indicator of the barrier function. The D-alanylation of TA in ATCC 19258(T) was growth phase- and culture temperature-dependent. Treatment of ATCC 19258(T) with Mg(2+) decreased the dlt mRNA expression and D-Ala content in TA and also abolished the suppressive effect on the TER decrease. Supplementation with L-alanine (L-Ala) to the broth led to an increase of D-Ala in ATCC 19258(T) and of the intestinal barrier-protecting effect. Taken together, D-Ala in TA played an important role in the barrier-protecting effect of S. thermophilus in the intestinal epithelium, and these beneficial effects could be enhanced by exogenous L-Ala.
Collapse
|
12
|
Regulation of the mazEF toxin-antitoxin module in Staphylococcus aureus and its impact on sigB expression. J Bacteriol 2009; 191:2795-805. [PMID: 19181798 DOI: 10.1128/jb.01713-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Staphylococcus aureus, the sigB operon codes for the alternative sigma factor sigma(B) and its regulators that enable the bacteria to rapidly respond to environmental stresses via redirection of transcriptional priorities. However, a full model of sigma(B) regulation in S. aureus has not yet emerged. Earlier data has suggested that mazEF, a toxin-antitoxin (TA) module immediately upstream of the sigB operon, was transcribed with the sigB operon. Here we demonstrate that the promoter P(mazE) upstream of mazEF is essential for full sigma(B) activity and that instead of utilizing autorepression typical of TA systems, sigB downregulates this promoter, providing a negative-feedback loop for sigB to repress its own transcription. We have also found that the transcriptional regulator SarA binds and activates P(mazE). In addition, P(mazE) was shown to respond to environmental and antibiotic stresses in a way that provides an additional layer of control over sigB expression. The antibiotic response also appears to occur in two other TA systems in S. aureus, indicating a shared mechanism of regulation.
Collapse
|
13
|
Abstract
Bacterial populations that are exposed to rapidly changing and sometimes hostile environments constantly switch between growth, survival, and death. Understanding bacterial survival and death are therefore cornerstones in a full comprehension of microbial life. During the last few years, new insights have emerged regarding the mechanisms of bacterial inactivation under stressful conditions. Particularly under mildly lethal stress, the ultimate cause of inactivation often seems mediated by the cell itself and is subject to additional regulation that integrates information about the global state of the cell and its environmental and social surrounding. This article explores the thin line between bacterial growth and inactivation and focuses on some emerging bacterial survival strategies, both from an individual cell and from a population perspective.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
14
|
Rice KC, Bayles KW. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 2008; 72:85-109, table of contents. [PMID: 18322035 PMCID: PMC2268280 DOI: 10.1128/mmbr.00030-07] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although the phenomenon of bacterial cell death and lysis has been studied for over 100 years, the contribution of these important processes to bacterial physiology and development has only recently been recognized. Contemporary study of cell death and lysis in a number of different bacteria has revealed that these processes, once thought of as being passive and unregulated, are actually governed by highly complex regulatory systems. An emerging paradigm in this field suggests that, analogous to programmed cell death in eukaryotes, regulated cell death and lysis in bacteria play an important role in both developmental processes, such as competence and biofilm development, and the elimination of damaged cells, such as those irreversibly injured by environmental or antibiotic stress. Further study in this exciting field of bacterial research may provide new insight into the potential evolutionary link between control of cell death in bacteria and programmed cell death (apoptosis) in eukaryotes.
Collapse
Affiliation(s)
- Kelly C Rice
- Department of Microbiology and Pathology, University of Nebraska Medical Center, 668 S. 41st St., PYH4014, Omaha, NE 68198-6245, USA
| | | |
Collapse
|
15
|
|
16
|
Wang L, Trawick JD, Yamamoto R, Zamudio C. Genome-wide operon prediction in Staphylococcus aureus. Nucleic Acids Res 2004; 32:3689-702. [PMID: 15252153 PMCID: PMC484181 DOI: 10.1093/nar/gkh694] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 06/07/2004] [Accepted: 06/21/2004] [Indexed: 01/10/2023] Open
Abstract
Identification of operon structure is critical to understanding gene regulation and function, and pathogenesis, and for identifying targets towards the development of new antibiotics in bacteria. Recently, the complete genome sequences of a large number of important human bacterial pathogens have become available for computational analysis, including the major human Gram-positive pathogen Staphylococcus aureus. By annotating the predicted operon structure of the S.aureus genome, we hope to facilitate the exploration of the unique biology of this organism as well as the comparative genomics across a broad range of bacteria. We have integrated several operon prediction methods and developed a consensus approach to score the likelihood of each adjacent gene pair to be co-transcribed. Gene pairs were separated into distinct operons when scores were equal to or below an empirical threshold. Using this approach, we have generated a S.aureus genome map with scores annotated at the intersections of every adjacent gene pair. This approach predicted about 864 monocistronic transcripts and 533 polycistronic operons from the protein-encoding genes in the S.aureus strain Mu50 genome. When compared with a set of experimentally determined S.aureus operons from literature sources, this method successfully predicted at least 91% of gene pairs. At the transcription unit level, this approach correctly identified at least 92% of complete operons in this dataset. This consensus approach has enabled us to predict operons with high accuracy from a genome where limited experimental evidence for operon structure is available.
Collapse
Affiliation(s)
- Liangsu Wang
- Elitra Pharmaceuticals Inc., 10410 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
17
|
Hazan R, Sat B, Engelberg-Kulka H. Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J Bacteriol 2004; 186:3663-9. [PMID: 15150257 PMCID: PMC415763 DOI: 10.1128/jb.186.11.3663-3669.2004] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mazEF is an Escherichia coli suicide module specific for a stable toxin and a labile antitoxin. Inhibiting mazEF expression appeared to activate the module to cause cell death. Here we show that several stressful conditions, including high temperatures, DNA damage, and oxidative stress, also induce mazEF-mediated cell death. We also show that this process takes place only during logarithmic growth and requires an intact relA gene.
Collapse
Affiliation(s)
- Ronen Hazan
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
18
|
Abstract
Programmed cell death (PCD) is a genetically determined process of cellular suicide that is activated in response to cellular stress or damage, as well as in response to the developmental signals in multicellular organisms. Although historically studied in eukaryotes, it has been proposed that PCD also functions in prokaryotes, either during the developmental life cycle of certain bacteria or to remove damaged cells from a population in response to a wide variety of stresses. This review will examine several putative examples of bacterial PCD and summarize what is known about the molecular components of these systems.
Collapse
Affiliation(s)
- Kelly C Rice
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | |
Collapse
|
19
|
Neuhaus FC, Baddiley J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 2003; 67:686-723. [PMID: 14665680 PMCID: PMC309049 DOI: 10.1128/mmbr.67.4.686-723.2003] [Citation(s) in RCA: 752] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Teichoic acids (TAs) are major wall and membrane components of most gram-positive bacteria. With few exceptions, they are polymers of glycerol-phosphate or ribitol-phosphate to which are attached glycosyl and D-alanyl ester residues. Wall TA is attached to peptidoglycan via a linkage unit, whereas lipoteichoic acid is attached to glycolipid intercalated in the membrane. Together with peptidoglycan, these polymers make up a polyanionic matrix that functions in (i) cation homeostasis; (ii) trafficking of ions, nutrients, proteins, and antibiotics; (iii) regulation of autolysins; and (iv) presentation of envelope proteins. The esterification of TAs with D-alanyl esters provides a means of modulating the net anionic charge, determining the cationic binding capacity, and displaying cations in the wall. This review addresses the structures and functions of D-alanyl-TAs, the D-alanylation system encoded by the dlt operon, and the roles of TAs in cell growth. The importance of dlt in the physiology of many organisms is illustrated by the variety of mutant phenotypes. In addition, advances in our understanding of D-alanyl ester function in virulence and host-mediated responses have been made possible through targeted mutagenesis of dlt. Studies of the mechanism of D-alanylation have identified two potential targets of antibacterial action and provided possible screening reactions for designing novel agents targeted to D-alanyl-TA synthesis.
Collapse
Affiliation(s)
- Francis C Neuhaus
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208. USA.
| | | |
Collapse
|
20
|
Gray CG, Cowley SC, Cheung KKM, Nano FE. The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol Lett 2002; 215:53-6. [PMID: 12393200 DOI: 10.1111/j.1574-6968.2002.tb11369.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Five transposon mutants of Francisella novicida were isolated that are compromised in their ability to grow in mouse macrophages in vitro. Sequence analysis of the DNA flanking the transposon insertions identified the genes that were interrupted in these mutants. One of the inactivated loci corresponds to the Francisella tularensis gene that encodes a 23-kDa protein that is the most prominently induced protein following macrophage infection. Another insertion was localised to approximately 2 kb upstream of the gene encoding the 23-kDa protein. By analysis of the incomplete Francisella genome sequence it was surmised that these two insertions disrupt different portions of a putative operon that encodes four proteins, none of which have discernible functions. Three other interrupted loci associated with poor intramacrophage growth showed similarity at the deduced amino acid level to alanine racemase, the ClpB heat-shock protease, and the purine biosynthetic enzyme, glutamine phosphoribosylpyrophosphate amidotransferases.
Collapse
Affiliation(s)
- Catherine G Gray
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | | | | | | |
Collapse
|
21
|
Netz DJA, Pohl R, Beck-Sickinger AG, Selmer T, Pierik AJ, Bastos MDCDF, Sahl HG. Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. J Mol Biol 2002; 319:745-56. [PMID: 12054867 DOI: 10.1016/s0022-2836(02)00368-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aureocin A53 is produced by Staphylococcus aureus A53. It is encoded on a 10.4 kb plasmid, pRJ9, and is active against Listeria monocytogenes. Aureocin A53 is a highly cationic 51-residue peptide containing ten lysine and five tryptophan residues. Aureocin A53 was purified to homogeneity by hydrophobic-interaction, cation-exchange, and reverse-phase chromatography. MALDI-TOF mass spectrometry yielded a molecular mass of 6012.5 Da, which was 28 Da higher than predicted from the structural gene sequence of the bacteriocin. The mass increment resulted from an N-formylmethionine residue, indicating that the aureocin A53 is synthesised and secreted without a typical bacteriocin leader sequence or sec-dependent signal peptide. The structural identity of aureocin A53 was verified by Edman sequencing after de-blocking with cyanogen bromide and extensive mass spectrometry analysis of enzymatically and laser-generated fragments. The complete sequence of pRJ9 was determined and none of the open reading frames identified in the vicinity of the structural gene aucA showed similarity to genes that are typically found in bacteriocin gene clusters. Thus, neither a dedicated protease or transporter, nor modifying enzymes and regulatory elements seemed to be involved in the production of aureocin A53. Further unique features that distinguish aureocin A53 from other peptide bacteriocins include remarkable protease stability and a defined, rigid structure in aqueous solution.
Collapse
Affiliation(s)
- Daili Jacqueline Aguilar Netz
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, CCS, Bloco I, Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Wiltshire MD, Foster SJ. Identification and analysis of Staphylococcus aureus components expressed by a model system of growth in serum. Infect Immun 2001; 69:5198-202. [PMID: 11447207 PMCID: PMC98621 DOI: 10.1128/iai.69.8.5198-5202.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A model system mimicking Staphylococcus aureus bacteremia was developed by growth in serum under microaerobic conditions. Eight genes induced by growth in serum were identified, including an antimicrobial peptide biosynthesis locus, amino acid biosynthetic loci, and genes encoding putative surface proteins. Nine independent insertions were found in the major lysine biosynthesis operon, which encodes eight genes, is repressed by lysine in vitro, and is expressed in vivo.
Collapse
Affiliation(s)
- M D Wiltshire
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
23
|
Schrader-Fischer G, Berger-Bächi B. The AbcA transporter of Staphylococcus aureus affects cell autolysis. Antimicrob Agents Chemother 2001; 45:407-12. [PMID: 11158733 PMCID: PMC90305 DOI: 10.1128/aac.45.2.407-412.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased production of penicillin-binding protein PBP 4 is known to increase peptidoglycan cross-linking and contributes to methicillin resistance in Staphylococcus aureus. The pbp4 gene shares a 400-nucleotide intercistronic region with the divergently transcribed abcA gene, encoding an ATP-binding cassette transporter of unknown function. Our study revealed that methicillin stimulated abcA transcription but had no effects on pbp4 transcription. Analysis of abcA expression in mutants defective for global regulators showed that abcA is under the control of agr. Insertional inactivation of abcA by an erythromycin resistance determinant did not influence pbp4 transcription, nor did it alter resistance to methicillin and other cell wall-directed antibiotics. However, abcA mutants showed spontaneous partial lysis on plates containing subinhibitory concentrations of methicillin due to increased spontaneous autolysis. Since the autolytic zymograms of cell extracts were identical in mutants and parental strains, we postulate an indirect role of AbcA in control of autolytic activities and in protection of the cells against methicillin.
Collapse
Affiliation(s)
- G Schrader-Fischer
- Department of Medical Microbiology, University of Zürich, CH-8028 Zürich, Switzerland.
| | | |
Collapse
|
24
|
McAllister KA, Peery RB, Meier TI, Fischl AS, Zhao G. Biochemical and molecular analyses of the Streptococcus pneumoniae acyl carrier protein synthase, an enzyme essential for fatty acid biosynthesis. J Biol Chem 2000; 275:30864-72. [PMID: 10903317 DOI: 10.1074/jbc.m004475200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl carrier protein synthase (AcpS) is an essential enzyme in the biosynthesis of fatty acids in all bacteria. AcpS catalyzes the transfer of 4'-phosphopantetheine from coenzyme A (CoA) to apo-ACP, thus converting apo-ACP to holo-ACP that serves as an acyl carrier for the biosynthesis of fatty acids and lipids. To further understand the physiological role of AcpS, we identified, cloned, and expressed the acpS and acpP genes of Streptococcus pneumoniae and purified both products to homogeneity. Both acpS and acpP form operons with the genes whose functions are required for other cellular metabolism. The acpS gene complements an Escherichia coli mutant defective in the production of AcpS and appears to be essential for the growth of S. pneumoniae. Gel filtration and cross-linking analyses establish that purified AcpS exists as a homotrimer. AcpS activity was significantly stimulated by apo-ACP at concentrations over 10 microm and slightly inhibited at concentrations of 5-10 microm. Double reciprocal analysis of initial velocities of AcpS at various concentrations of CoA or apo-ACP indicated a random or compulsory ordered bi bi type of reaction mechanism. Further analysis of the inhibition kinetics of the product (3',5'-ADP) suggested that it is competitive with respect to CoA but mixed (competitive and noncompetitive) with respect to apo-ACP. Finally, apo-ACP bound tightly to AcpS in the absence of CoA, but CoA failed to do so in the absence of apo-ACP. Together, these results suggest that AcpS may be allosterically regulated by apo-ACP and probably proceeds by an ordered reaction mechanism with the first formation of the AcpS-apo-ACP complex and the subsequent transfer of 4'-phosphopantetheine to the apo-ACP of the complex.
Collapse
Affiliation(s)
- K A McAllister
- Lilly Research Laboratories, the Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | |
Collapse
|