1
|
Suzuki T, Kobayashi S, Miyahira K, Sugiyama M, Katsuki K, Ishikawa M. DNA-binding protein from starvation cells traps intracellular free-divalent iron and plays an important role in oxidative stress resistance in Acetobacter pasteurianus NBRC 3283. J Biosci Bioeng 2020; 131:256-263. [PMID: 33218820 DOI: 10.1016/j.jbiosc.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
Acetobacter pasteurianus accumulates reactive oxygen species (ROS). ROS are produced by electron and oxygen coupling in the electron transport chain in the intracellular environment during the stationary and in the acetic acid over-oxidation phases in the presence of ethanol, thereby exposing cell to oxidative stress. In this study, to reveal the resistance mechanism to oxidative stress in A. pasteurianus, we focused on DNA-binding protein from starvation cells (Dps) and analyzed the function of Dps against oxidative stress. When Dps under the copresence of plasmid DNA was exposed to H2O2 and divalent iron, plasmid DNA fragmentation was suppressed under the presence of Dps; however, DNA binding was not observed, revealing a defensive activity for oxidative damage. In addition, this finding revealed that Dps incorporates a divalent iron intracellularly, forming a ferroxidase center. Moreover, levels of hydroxyl radicals produced by Fenton reaction under the presence of H2O2 and divalent iron were decreased by the addition of Dps, resulting in the suppression of the Fenton reaction. Through fluorescence microscopy using a divalent-iron-specific fluorescent probe, we found that, in dps gene disruptants, the accumulation of the divalent iron increased, and the dps gene disruptants showed higher sensitivity to H2O2 than the wild-type. These result strongly suggested that Dps traps intracellular free-divalent iron and plays an important role in the oxidative stress resistance of A. pasteurianus NBRC 3283 after the acetic acid fermentation phase.
Collapse
Affiliation(s)
- Toshihiro Suzuki
- Department of Fermentation Sciences, Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Seiya Kobayashi
- Department of Fermentation Sciences, Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kyoko Miyahira
- Department of Fermentation Sciences, Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Minami Sugiyama
- Department of Fermentation Sciences, Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kohei Katsuki
- Department of Fermentation Sciences, Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Morio Ishikawa
- Department of Fermentation Sciences, Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|
2
|
Tondo ML, de Pedro-Jové R, Vandecaveye A, Piskulic L, Orellano EG, Valls M. KatE From the Bacterial Plant Pathogen Ralstonia solanacearum Is a Monofunctional Catalase Controlled by HrpG That Plays a Major Role in Bacterial Survival to Hydrogen Peroxide. FRONTIERS IN PLANT SCIENCE 2020; 11:1156. [PMID: 32849714 PMCID: PMC7412880 DOI: 10.3389/fpls.2020.01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/16/2020] [Indexed: 05/31/2023]
Abstract
Ralstonia solanacearum is the causative agent of bacterial wilt disease on a wide range of plant species. Besides the numerous bacterial activities required for host invasion, those involved in the adaptation to the plant environment are key for the success of infection. R. solanacearum ability to cope with the oxidative burst produced by the plant is likely one of the activities required to grow parasitically. Among the multiple reactive oxygen species (ROS)-scavenging enzymes predicted in the R. solanacearum GMI1000 genome, a single monofunctional catalase (KatE) and two KatG bifunctional catalases were identified. In this work, we show that these catalase activities are active in bacterial protein extracts and demonstrate by gene disruption and mutant complementation that the monofunctional catalase activity is encoded by katE. Different strategies were used to evaluate the role of KatE in bacterial physiology and during the infection process that causes bacterial wilt. We show that the activity of the enzyme is maximal during exponential growth in vitro and this growth-phase regulation occurs at the transcriptional level. Our studies also demonstrate that katE expression is transcriptionally activated by HrpG, a central regulator of R. solanacearum induced upon contact with the plant cells. In addition, we reveal that even though both KatE and KatG catalase activities are induced upon hydrogen peroxide treatment, KatE has a major effect on bacterial survival under oxidative stress conditions and especially in the adaptive response of R. solanacearum to this oxidant. The katE mutant strain also exhibited differences in the structural characteristics of the biofilms developed on an abiotic surface in comparison to wild-type cells, but not in the overall amount of biofilm production. The role of catalase KatE during the interaction with its host plant tomato is also studied, revealing that disruption of this gene has no effect on R. solanacearum virulence or bacterial growth in leave tissues, which suggests a minor role for this catalase in bacterial fitness in planta. Our work provides the first characterization of the R. solanacearum catalases and identifies KatE as a bona fide monofunctional catalase with an important role in bacterial protection against oxidative stress.
Collapse
Affiliation(s)
- María Laura Tondo
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Catalonia, Spain
- Department of Genetics, University of Barcelona, Barcelona, Spain
| | - Agustina Vandecaveye
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Laura Piskulic
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elena G. Orellano
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Catalonia, Spain
- Department of Genetics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Inactivation of ahpC renders Stenotrophomonas maltophilia resistant to the disinfectant hydrogen peroxide. Antonie van Leeuwenhoek 2018; 112:809-814. [PMID: 30467663 DOI: 10.1007/s10482-018-1203-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Abstract
Inactivation of ahpC, encoding alkyl hydroperoxide reductase, rendered Stenotrophomonas maltophilia more resistant to H2O2; the phenotype was directly correlated with enhanced total catalase activity, resulting from an increased level of KatA catalase. Plasmid-borne expression of ahpC from pAhpCsm could complement all of the mutant phenotypes. Mutagenesis of the proposed AhpC peroxidactic and resolving cysteine residues to alanine (C47A and C166A) on the pAhpCsm plasmid diminished its ability to complement the ahpC mutant phenotypes, suggesting that the mutagenized ahpC was non-functional. As mutations commonly occur in bacteria living in hostile environment, our data suggest that point mutations in ahpC at codons required for the enzyme function (such as C47 and C166), the AhpC will be non-functional, leading to high resistance to the disinfectant H2O2.
Collapse
|
4
|
Jaroensuk J, Atichartpongkul S, Chionh YH, Wong YH, Liew CW, McBee ME, Thongdee N, Prestwich EG, DeMott MS, Mongkolsuk S, Dedon PC, Lescar J, Fuangthong M. Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in Pseudomonas aeruginosa. Nucleic Acids Res 2016; 44:10834-10848. [PMID: 27683218 PMCID: PMC5159551 DOI: 10.1093/nar/gkw870] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023] Open
Abstract
Bacteria respond to environmental stresses using a variety of signaling and gene expression pathways, with translational mechanisms being the least well understood. Here, we identified a tRNA methyltransferase in Pseudomonas aeruginosa PA14, trmJ, which confers resistance to oxidative stress. Analysis of tRNA from a trmJ mutant revealed that TrmJ catalyzes formation of Cm, Um, and, unexpectedly, Am. Defined in vitro analyses revealed that tRNAMet(CAU) and tRNATrp(CCA) are substrates for Cm formation, tRNAGln(UUG), tRNAPro(UGG), tRNAPro(CGG) and tRNAHis(GUG) for Um, and tRNAPro(GGG) for Am. tRNASer(UGA), previously observed as a TrmJ substrate in Escherichia coli, was not modified by PA14 TrmJ. Position 32 was confirmed as the TrmJ target for Am in tRNAPro(GGG) and Um in tRNAGln(UUG) by mass spectrometric analysis. Crystal structures of the free catalytic N-terminal domain of TrmJ show a 2-fold symmetrical dimer with an active site located at the interface between the monomers and a flexible basic loop positioned to bind tRNA, with conformational changes upon binding of the SAM-analog sinefungin. The loss of TrmJ rendered PA14 sensitive to H2O2 exposure, with reduced expression of oxyR-recG, katB-ankB, and katE. These results reveal that TrmJ is a tRNA:Cm32/Um32/Am32 methyltransferase involved in translational fidelity and the oxidative stress response.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand.,Singapore-MIT Alliance for Research and Technology, Singapore
| | | | - Yok Hian Chionh
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Yee Hwa Wong
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Megan E McBee
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Narumon Thongdee
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Erin G Prestwich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Department of Biotechnology, Faculty of Sciences, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Singapore .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore .,NTU Institute of Structural Biology, Nanyang Technological University, Singapore.,UPMC UMRS CR7 - CNRS ERL 8255-INSERM U1135 Centre d' Immunologie et des Maladies Infectieuses, Paris, France
| | - Mayuree Fuangthong
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand .,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| |
Collapse
|
5
|
Sornchuer P, Namchaiw P, Kerdwong J, Charoenlap N, Mongkolsuk S, Vattanaviboon P. Copper chloride induces antioxidant gene expression but reduces ability to mediate H2O2 toxicity in Xanthomonas campestris. Microbiology (Reading) 2014; 160:458-466. [DOI: 10.1099/mic.0.072470-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copper (Cu)-based biocides are currently used as control measures for both fungal and bacterial diseases in agricultural fields. In this communication, we show that exposure of the bacterial plant pathogen Xanthomonas campestris to nonlethal concentrations of Cu2+ ions (75 µM) enhanced expression of genes in OxyR, OhrR and IscR regulons. High levels of catalase, Ohr peroxidase and superoxide dismutase diminished Cu2+-induced gene expression, suggesting that the production of hydrogen peroxide (H2O2) and organic hydroperoxides is responsible for Cu2+-induced gene expression. Despite high expression of antioxidant genes, the CuCl2-treated cells were more susceptible to H2O2 killing treatment than the uninduced cells. This phenotype arose from lowered catalase activity in the CuCl2-pretreated cells. Thus, exposure to a nonlethal dose of Cu2+ renders X. campestris vulnerable to H2O2, even when various genes for peroxide-metabolizing enzymes are highly expressed. Moreover, CuCl2-pretreated cells are sensitive to treatment with the redox cycling drug, menadione. No physiological cross-protection response was observed in CuCl2-treated cells in a subsequent challenge with killing concentrations of an organic hydroperoxide. As H2O2 production is an important initial plant immune response, defects in H2O2 protection are likely to reduce bacterial survival in plant hosts and enhance the usefulness of copper biocides in controlling bacterial pathogens.
Collapse
Affiliation(s)
- Phornphan Sornchuer
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Poommaree Namchaiw
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Jarunee Kerdwong
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nisanart Charoenlap
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Center of Excellence on Environmental Health and Toxicology, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Paiboon Vattanaviboon
- Center of Excellence on Environmental Health and Toxicology, Bangkok, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| |
Collapse
|
6
|
Tondo ML, Petrocelli S, Ottado J, Orellano EG. The monofunctional catalase KatE of Xanthomonas axonopodis pv. citri is required for full virulence in citrus plants. PLoS One 2010; 5:e10803. [PMID: 20520822 PMCID: PMC2875408 DOI: 10.1371/journal.pone.0010803] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 04/22/2010] [Indexed: 01/09/2023] Open
Abstract
Background Xanthomonas axonopodis pv. citri (Xac) is an obligate aerobic phytopathogen constantly exposed to hydrogen peroxide produced by normal aerobic respiration and by the plant defense response during plant-pathogen interactions. Four putative catalase genes have been identified in silico in the Xac genome, designated as katE, catB, srpA (monofunctional catalases) and katG (bifunctional catalase). Methodology/Principal Findings Xac catalase activity was analyzed using native gel electrophoresis and semi-quantitative RT-PCR. We demonstrated that the catalase activity pattern was regulated in different growth stages displaying the highest levels during the stationary phase. KatE was the most active catalase in this phase of growth. At this stage cells were more resistant to hydrogen peroxide as was determined by the analysis of CFU after the exposition to different H2O2 concentrations. In addition, Xac exhibited an adaptive response to hydrogen peroxide, displaying higher levels of catalase activity and H2O2 resistance after treatment with sub-lethal concentrations of the oxidant. In the plant-like medium XVM2 the expression of KatE was strongly induced and in this medium Xac was more resistant to H2O2. A XackatE mutant strain was constructed by insertional mutagenesis. We observed that catalase induction in stationary phase was lost meanwhile the adaptive response to peroxide was maintained in this mutant. Finally, the XackatE strain was assayed in planta during host plant interaction rendering a less aggressive phenotype with a minor canker formation. Conclusions Our results confirmed that in contrast to other Xanthomonas species, Xac catalase-specific activity is induced during the stationary phase of growth in parallel with the bacterial resistance to peroxide challenge. Moreover, Xac catalases expression pattern is modified in response to any stimuli associated with the plant or the microenvironment it provides. The catalase KatE has been shown to have an important function for the colonization and survival of the bacterium in the citrus plant during the pathogenic process. Our work provides the first genetic evidence to support a monofunctional catalase as a virulence factor in Xac.
Collapse
Affiliation(s)
- María Laura Tondo
- Molecular Biology Division, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Silvana Petrocelli
- Molecular Biology Division, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Ottado
- Molecular Biology Division, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elena G. Orellano
- Molecular Biology Division, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
7
|
The catalase-peroxidase KatG is required for virulence of Xanthomonas campestris pv. campestris in a host plant by providing protection against low levels of H2O2. J Bacteriol 2009; 191:7372-7. [PMID: 19783631 DOI: 10.1128/jb.00788-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas campestris pv. campestris katG encodes a catalase-peroxidase that has a role in protecting the bacterium against micromolar concentrations of H(2)O(2). A knockout mutation in katG that causes loss of catalase-peroxidase activity correlates with increased susceptibility to H(2)O(2) and a superoxide generator and is avirulent in a plant model system. katG expression is induced by oxidants in an OxyR-dependent manner.
Collapse
|
8
|
Hrimpeng K, Prapagdee B, Banjerdkij P, Vattanaviboon P, Dubbs JM, Mongkolsuk S. Challenging Xanthomonas campestris with low levels of arsenic mediates cross-protection against oxidant killing. FEMS Microbiol Lett 2006; 262:121-7. [PMID: 16907748 DOI: 10.1111/j.1574-6968.2006.00383.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Xanthomonas encounters highly toxic reactive oxygen species (ROS) from many sources, such as those generated by plants against invading bacteria, other soil bacteria and from aerobic respiration. Thus, conditions that alter intracellular ROS levels such as exposure to toxic metalloids would have profound effects on bacterial physiology. Here, we report that exposure of Xanthomonas campestris pv. phaseoli (Xp) to low levels of arsenic induces physiological cross-protection against killing by H(2)O(2) and organic hydroperoxide but not a superoxide generator. Cross-protection against H(2)O(2) and organic hydroperoxide toxicity was due to increased expression of genes encoding major peroxide-metabolizing enzymes such as alkyl hydroperoxide reductase (AhpC), catalase (KatA) and organic hydroperoxide resistance protein (Ohr). Arsenic-induced protection against H(2)O(2) and organic hydroperoxide requires the peroxide stress response regulators, OxyR and OhrR, respectively. Moreover, analyses of double mutants of the major H(2)O(2) and organic hyproperoxide-scavenging enzymes, Xp ahpC katA and Xp ahpC ohr, respectively, suggested the existence of unidentified OxyR- and OhrR-regulated genes that are involved in arsenic-induced resistance to H(2)O(2) and organic hyproperoxide killing in Xp. These arsenic-induced physiological alterations could play an important role in bacterial survival both in the soil environment and during plant-pathogen interactions.
Collapse
Affiliation(s)
- Karnjana Hrimpeng
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
9
|
Charoenlap N, Eiamphungporn W, Chauvatcharin N, Utamapongchai S, Vattanaviboon P, Mongkolsuk S. OxyR mediated compensatory expression between ahpC and katA and the significance of ahpC in protection from hydrogen peroxide in Xanthomonas campestris. FEMS Microbiol Lett 2005; 249:73-8. [PMID: 15993009 DOI: 10.1016/j.femsle.2005.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 04/15/2005] [Accepted: 06/01/2005] [Indexed: 11/16/2022] Open
Abstract
katA and ahpC, encoding monofunctional catalase and alkyl hydroperoxide reductase, respectively, play important protective roles against peroxide toxicity in Xanthomonas campestris pv. phaseoli (Xp). The expression of both katA and ahpC is controlled by the global peroxide sensor and transcriptional activator, OxyR. In Xp, these two genes have compensatory expression patterns. Inactivation of katA leads to an increase in the level of AhpC and a concomitant increase in resistance to tert-butyl hydroperoxide (tBOOH). High-level expression of katA from an expression vector in Xp also lowered the level of ahpC expression. The compensatory regulation of katA and ahpC was mediated by OxyR, since the compensatory response was not observed in an oxyR mutant background. ahpC and katA play important but unequal roles in protecting Xp from H(2)O(2) toxicity. These observations, taken together with a previous observation that an ahpC mutant expresses high levels of KatA and is hyper-resistant to H(2)O(2), suggest the possibility that inactivation of either gene leads to accumulation of intracellular H(2)O(2). This in turn oxidizes reduced OxyR and converts the regulator to the oxidized form that then activates expression of genes in the OxyR regulon.
Collapse
Affiliation(s)
- Nisanart Charoenlap
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | | | | | | | | | |
Collapse
|
10
|
Vattanaviboon P, Seeanukun C, Whangsuk W, Utamapongchai S, Mongkolsuk S. Important role for methionine sulfoxide reductase in the oxidative stress response of Xanthomonas campestris pv. phaseoli. J Bacteriol 2005; 187:5831-6. [PMID: 16077131 PMCID: PMC1196060 DOI: 10.1128/jb.187.16.5831-5836.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A methionine sulfoxide reductase gene (msrA) from Xanthomonas campestris pv. phaseoli has unique expression patterns and physiological function. msrA expression is growth dependent and is highly induced by exposure to oxidants and N-ethylmaleimide in an OxyR- and OhrR-independent manner. An msrA mutant showed increased sensitivity to oxidants but only during stationary phase.
Collapse
Affiliation(s)
- Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.
| | | | | | | | | |
Collapse
|
11
|
Banjerdkij P, Vattanaviboon P, Mongkolsuk S. Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonas campestris. Appl Environ Microbiol 2005; 71:1843-9. [PMID: 15812010 PMCID: PMC1082542 DOI: 10.1128/aem.71.4.1843-1849.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cadmium is an important heavy metal pollutant. For this study, we investigated the effects of cadmium exposure on the oxidative stress responses of Xanthomonas campestris, a soil and plant pathogenic bacterium. The exposure of X. campestris to low concentrations of cadmium induces cross-protection against subsequent killing treatments with either H2O2 or the organic hydroperoxide tert-butyl hydroperoxide (tBOOH), but not against the superoxide generator menadione. The cadmium-induced resistance to peroxides is due to the metal's ability to induce increased levels of peroxide stress protective enzymes such as alkyl hydroperoxide reductase (AhpC), monofunctional catalase (KatA), and organic hydroperoxide resistance protein (Ohr). Cadmium-induced resistance to H2O2 is dependent on functional OxyR, a peroxide-sensing transcription regulator. Cadmium-induced resistance to tBOOH shows a more complex regulatory pattern. The inactivation of the two major sensor-regulators of organic hydroperoxide, OxyR and OhrR, only partially inhibited cadmium-induced protection against tBOOH, suggesting that these genes do have some role in the process. However, other, as yet unknown mechanisms are involved in inducible organic hydroperoxide protection. Furthermore, we show that the cadmium-induced peroxide stress response is mediated by the metal's ability to predominately cause an increase in intracellular concentrations of organic hydroperoxide and, in part, H2O2. Analyses of various mutants of peroxide-metabolizing enzymes suggested that this increase in organic hydroperoxide levels is, at least in part, responsible for cadmium toxicity in Xanthomonas.
Collapse
Affiliation(s)
- Peerakan Banjerdkij
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | | | |
Collapse
|
12
|
Chauvatcharin N, Atichartpongkul S, Utamapongchai S, Whangsuk W, Vattanaviboon P, Mongkolsuk S. Genetic and physiological analysis of the major OxyR-regulated katA from Xanthomonas campestris pv. phaseoli. Microbiology (Reading) 2005; 151:597-605. [PMID: 15699208 DOI: 10.1099/mic.0.27598-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
katAencodes the major catalase that accounts for 90 % of the total catalase activity present inXanthomonas campestrispv.phaseoli.katAis located upstream of an ORF designatedankAencoding a cytoplasmic membrane protein homologous to eukaryotic ankyrin. Transcriptional analysis ofkatAandankAidentified twokatAtranscripts: a major monocistronickatAtranscript and a minor bicistronickatA–ankAtranscript. KatA expression was induced in the presence of various oxidants including H2O2, organic hydroperoxides and the superoxide-generating agent menadione, in an OxyR-dependent manner. Analysis of thekatApromoter region showed a putative OxyR binding site located upstream of anEscherichia coli-likeσ70−35 region that is likely to be responsible for transcription activation in response to oxidant treatment. Gel mobility shift experiments confirmed that purified OxyR specifically binds to thekatApromoter. AkatAmutant was highly sensitive to H2O2during both the exponential and stationary phases of growth. This phenotype could be complemented by functionalkatA, confirming the essential role of the gene in protectingX. campestrisfrom H2O2toxicity. Unexpectedly, inactivation ofankAalso significantly reduced resistance to H2O2and the phenotype could be complemented by plasmid-borne expression ofankA. Physiological analyses showed thatkatAplays an important role in, but is not solely responsible for, both the adaptive and menadione-induced cross-protective responses to H2O2killing inX. campestris.
Collapse
Affiliation(s)
- Nopmanee Chauvatcharin
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | | - Supa Utamapongchai
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Wirongrong Whangsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| |
Collapse
|
13
|
Panek HR, O'Brian MR. KatG is the primary detoxifier of hydrogen peroxide produced by aerobic metabolism in Bradyrhizobium japonicum. J Bacteriol 2004; 186:7874-80. [PMID: 15547258 PMCID: PMC529082 DOI: 10.1128/jb.186.23.7874-7880.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 09/02/2004] [Indexed: 12/12/2022] Open
Abstract
Bacteria are exposed to reactive oxygen species from the environment and from those generated by aerobic metabolism. Catalases are heme proteins that detoxify H(2)O(2), and many bacteria contain more than one catalase enzyme. Also, the nonheme peroxidase alkyl hydroperoxide reductase (Ahp) is the major scavenger of endogenous H(2)O(2) in Escherichia coli. Here, we show that aerobically grown Bradyrhizobium japonicum cells express a single catalase activity. Four genes encoding putative catalases in the B. japonicum genome were identified, including a katG homolog encoding a catalase-peroxidase. Deletion of the katG gene resulted in loss of catalase activity in cell extracts and of exogenous H(2)O(2) consumption by whole cells. The katG strain had a severe aerobic growth phenotype but showed improved growth in the absence of O(2). By contrast, a B. japonicum ahpCD mutant grew well aerobically and consumed H(2)O(2) at wild-type rates. A heme-deficient hemA mutant expressed about one-third of the KatG activity as the wild type but grew well aerobically and scavenged low concentrations of exogenous H(2)O(2). However, cells of the hemA strain were deficient in consumption of high concentrations of H(2)O(2) and were very sensitive to killing by short exposure to H(2)O(2). In addition, KatG activity did not decrease as a result of mutation of the gene encoding the transcriptional activator OxyR. We conclude that aerobic metabolism produces toxic levels of H(2)O(2) in B. japonicum, which is detoxified primarily by KatG. Furthermore, the katG level sufficient for detoxification does not require OxyR.
Collapse
Affiliation(s)
- Heather R Panek
- Department of Biochemistry and Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, NY 14214, USA
| | | |
Collapse
|
14
|
Prapagdee B, Eiamphungporn W, Saenkham P, Mongkolsuk S, Vattanaviboon P. Analysis of growth phase regulated KatA and CatE and their physiological roles in determining hydrogen peroxide resistance in Agrobacterium tumefaciens. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09699.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Prapagdee B, Vattanaviboon P, Mongkolsuk S. The role of a bifunctional catalase-peroxidase KatA in protection of Agrobacterium tumefaciens from menadione toxicity. FEMS Microbiol Lett 2004; 232:217-23. [PMID: 15033242 DOI: 10.1016/s0378-1097(04)00075-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 01/12/2004] [Accepted: 01/21/2004] [Indexed: 11/23/2022] Open
Abstract
Agrobacterium tumefaciens is an aerobic plant pathogenic bacterium that is exposed to reactive oxygen species produced either as by-products of aerobic metabolism or by the defense systems of host plants. The physiological function of the bifunctional catalase-peroxidase (KatA) in the protection of A. tumefaciens from reactive oxygen species other than H(2)O(2) was evaluated in the katA mutant (PB102). Unexpectedly, PB102 was highly sensitive to the superoxide generator menadione. The expression of katA from a plasmid vector complemented the menadione-hypersensitive phenotype. A. tumefaciens possesses an additional catalase gene, a monofunctional catalase encoded by catE. Neither inactivation nor high-level expression of the catE gene altered the menadione resistance level. Moreover, heterologous expression of the catalase-peroxidase-encoding gene katG from Burkholderia pseudomallei, but not the monofunctional catalase gene katE from Xanthomonas campestris could restore normal levels of menadione resistance to PB102. A recent observation suggests that the menadione resistance phenotype involves increased activities of organic peroxide-metabolizing enzymes. Heterologous expression of X. campestris alkyl hydroperoxide reductase from a plasmid vector failed to complement the menadione-sensitive phenotype of PB102. The level of menadione resistance shows a direct correlation with the level of peroxidase activity of KatA. This is a novel role for KatA and suggests that resistance to menadione toxicity is mediated by a new, and as yet unknown, mechanism in A. tumefaciens.
Collapse
Affiliation(s)
- Benjaphorn Prapagdee
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | | | |
Collapse
|
16
|
Michán S, Lledías F, Hansberg W. Asexual development is increased in Neurospora crassa cat-3-null mutant strains. EUKARYOTIC CELL 2003; 2:798-808. [PMID: 12912899 PMCID: PMC178387 DOI: 10.1128/ec.2.4.798-808.2003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We use asexual development of Neurospora crassa as a model system with which to determine the causes of cell differentiation. Air exposure of a mycelial mat induces hyphal adhesion, and adherent hyphae grow aerial hyphae that, in turn, form conidia. Previous work indicated the development of a hyperoxidant state at the start of these morphogenetic transitions and a large increase in catalase activity during conidiation. Catalase 3 (CAT-3) increases at the end of exponential growth and is induced by different stress conditions. Here we analyzed the effects of cat-3-null strains on growth and asexual development. The lack of CAT-3 was not compensated by other catalases, even under oxidative stress conditions, and cat-3(RIP) colonies were sensitive to H(2)O(2), indicating that wild-type (Wt) resistance to external H(2)O(2) was due to CAT-3. cat-3(RIP) colonies grown in the dark produced high levels of carotenes as a consequence of oxidative stress. Light exacerbated oxidative stress and further increased carotene synthesis. In the cat-3(RIP) mutant strain, increased aeration in liquid cultures led to increased hyphal adhesion and protein oxidation. Compared to the Wt, the cat-3(RIP) mutant strain produced six times more aerial hyphae and conidia in air-exposed mycelial mats, as a result of longer and more densely packed aerial hyphae. Protein oxidation in colonies was threefold higher and showed more aerial hyphae and conidia in mutant strains than did the Wt. Results indicate that oxidative stress due to lack of CAT-3 induces carotene synthesis, hyphal adhesion, and more aerial hyphae and conidia.
Collapse
Affiliation(s)
- Shaday Michán
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, DF, México
| | | | | |
Collapse
|
17
|
Nakjarung K, Mongkolsuk S, Vattanaviboon P. The oxyR from Agrobacterium tumefaciens: evaluation of its role in the regulation of catalase and peroxide responses. Biochem Biophys Res Commun 2003; 304:41-7. [PMID: 12705881 DOI: 10.1016/s0006-291x(03)00535-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gene for Agrobacterium tumefaciens OxyR, a peroxide sensor and transcriptional regulator, was characterized. Phylogenetic analysis of bacterial OxyR showed that the protein could be divided into four clades. The A. tumefaciens OxyR grouped in clade III that consists primarily of OxyRs of Alphaproteobacteria displayed the highest homology to OxyR from Rhizobium leguminosarum. oxyR is located next to, and is divergently transcribed from, a bifunctional catalase-peroxidase gene (katA). An A. tumefaciens oxyR mutant was constructed and shown to be hyper-sensitive to H2O2, but not to the superoxide generator, menadione, or an organic hydroperoxide. Exposure of A. tumefaciens to H2O2 resulted in induction of the catalase-peroxidase enzyme. This induction was abolished in the oxyR mutant. In vivo analysis of a katA::lacZ promoter fusion confirmed the results of enzyme assays and indicated that induction of the katA promoter by H2O2 was dependent on functional OxyR. We also examined the regulation of oxyR in A. tumefaciens. Exposure to H2O2 did not induce expression of the gene but simply changed OxyR from a reduced to an oxidized form. The in vivo oxyR promoter analysis showed that the promoter was auto-regulated and that transcription was not induced by H2O2.
Collapse
Affiliation(s)
- Kaewkanya Nakjarung
- Department of Biotechnology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | | | | |
Collapse
|
18
|
Cussiol JRR, Alves SV, de Oliveira MA, Netto LES. Organic hydroperoxide resistance gene encodes a thiol-dependent peroxidase. J Biol Chem 2003; 278:11570-8. [PMID: 12540833 DOI: 10.1074/jbc.m300252200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ohr (organic hydroperoxide resistance gene) is present in several species of bacteria, and its deletion renders cells specifically sensitive to organic peroxides. The goal of this work was to determine the biochemical function of Ohr from Xylella fastidiosa. All of the Ohr homologues possess two cysteine residues, one of them located in a VCP motif, which is also present in all of the proteins from the peroxiredoxin family. Therefore, we have investigated whether Ohr possesses thiol-dependent peroxidase activity. The ohr gene from X. fastidiosa was expressed in Escherichia coli, and the recombinant Ohr decomposed hydroperoxides in a dithiothreitol-dependent manner. Ohr was about twenty times more efficient to remove organic hydroperoxides than to remove H(2)O(2). This result is consistent with the organic hydroperoxide sensitivity of Delta ohr strains. The dependence of Ohr on thiol compounds was ascertained by glutamine synthetase protection assays. Approximately two thiol equivalents were consumed per peroxide removed indicating that Ohr catalyzes the following reaction: 2RSH + ROOH --> RSSR + ROH + H(2)O. Pretreatment of Ohr with N-ethyl maleimide and substitution of cysteine residues by serines inhibited this peroxidase activity indicating that both of the Ohr cysteines are important to the decomposition of peroxides. C125S still had a residual enzymatic activity indicating that Cys-61 is directly involved in peroxide removal. Monothiol compounds do not support the peroxidase activity of Ohr as well as thioredoxin from Saccharomyces cerevisiae and from Spirulina. Interestingly, dithiothreitol and dyhydrolipoic acid, which possess two sulfhydryl groups, do support the peroxidase activity of Ohr. Taken together our results unequivocally demonstrated that Ohr is a thiol-dependent peroxidase.
Collapse
Affiliation(s)
- José Renato Rosa Cussiol
- Departamento de Biologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo SP Brazil 05508-900
| | | | | | | |
Collapse
|
19
|
Vattanaviboon P, Whangsuk W, Mongkolsuk S. A suppressor of the menadione-hypersensitive phenotype of a Xanthomonas campestris pv. phaseoli oxyR mutant reveals a novel mechanism of toxicity and the protective role of alkyl hydroperoxide reductase. J Bacteriol 2003; 185:1734-8. [PMID: 12591894 PMCID: PMC148068 DOI: 10.1128/jb.185.5.1734-1738.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated menadione-resistant mutants of Xanthomonas campestris pv. phaseoli oxyR (oxyR(Xp)). The oxyRR2(Xp) mutant was hyperresistant to the superoxide generators menadione and plumbagin and was moderately resistant to H(2)O(2) and tert-butyl hydroperoxide. Analysis of enzymes involved in oxidative-stress protection in the oxyRR2(Xp) mutant revealed a >10-fold increase in AhpC and AhpF levels, while the levels of superoxide dismutase (SOD), catalase, and the organic hydroperoxide resistance protein (Ohr) were not significantly altered. Inactivation of ahpC in the oxyRR2(Xp) mutant resulted in increased sensitivity to menadione killing. Moreover, high levels of expression of cloned ahpC and ahpF in the oxyR(Xp) mutant complemented the menadione hypersensitivity phenotype. High levels of other oxidant-scavenging enzymes such as catalase and SOD did not protect the cells from menadione toxicity. These data strongly suggest that the toxicity of superoxide generators could be mediated via organic peroxide production and that alkyl hydroperoxide reductase has an important novel function in the protection against the toxicity of these compounds in X. campestris.
Collapse
Affiliation(s)
- Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | | | | |
Collapse
|
20
|
Panmanee W, Vattanaviboon P, Eiamphungporn W, Whangsuk W, Sallabhan R, Mongkolsuk S. OhrR, a transcription repressor that senses and responds to changes in organic peroxide levels in Xanthomonas campestris pv. phaseoli. Mol Microbiol 2002; 45:1647-54. [PMID: 12354231 DOI: 10.1046/j.1365-2958.2002.03116.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the physiological role of OhrR as an organic peroxide sensor and transcription repressor in Xanthomonas campestris pv. phaseoli. In vivo exposure of X. campestris pv. phaseoli to either tert-butyl or cumene hydroperoxides efficiently neutralized OhrR repression of expression from the OhrR-regulated P1 promoter. H2O2 was a weak and non-physiological inducer of the system while other oxidants and metabolites of organic peroxide metabolism did not induce the expression from the P1. Northern blotting results indicated a correlation between concentrations of tert-butyl hydroperoxide used in the treatment and the induction of ohr (an OhrR-regulated gene) expression. In addition, the levels of ohr mRNA in cultures induced by various concentrations of tert-butyl hydroperoxide were reduced in cells with high levels of an organic peroxide metabolising enzyme (AhpC-AhpF) but not in cells with high catalase levels suggesting that organic peroxide interacts with OhrR. DNA band shift experiments using purified OhrR and the P1 promoter fragment showed that organic peroxide treatment prevented binding of the protein to the P1 promoter by oxidation of OhrR, as the inhibition of binding to the P1 promoter was reversed by addition of a reducing agent, DTT. The highly conserved cysteine residue C22 of OhrR is required for organic peroxide inducible gene expression. A mutant protein, OhrRC22S can repress the P1 promoter activity but is insensitive to organic peroxide treatment. Thus, OhrR is the first transcription repressor characterized that appeared to evolve to physiologically sense organic peroxides.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Biotechnology, Faculty of Sciences, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
21
|
Vattanaviboon P, Mongkolsuk S. Unusual adaptive, cross protection responses and growth phase resistance against peroxide killing in a bacterial shrimp pathogen, Vibrio harveyi. FEMS Microbiol Lett 2001; 200:111-6. [PMID: 11410358 DOI: 10.1111/j.1574-6968.2001.tb10701.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Oxidant induced protection against peroxide killing was investigated in a prawn bacterial pathogen, Vibrio harveyi. Exposure to 250 microM H(2)O(2) induced adaptive protection against subsequent exposure to killing concentrations of H(2)O(2). In addition, 200 microM t-butyl hydroperoxide (tBOOH) induced cross protection to H(2)O(2) killing. On the other hand, peroxide pretreatment did not induce protection against tBOOH killing. Peroxide induced adaptive and cross protection responses required new protein synthesis and were abolished by addition of a protein synthesis inhibitor. Pretreatments of V. harveyi with 250 microM H(2)O(2) and 200 microM tBOOH induced an increase in peroxide scavenging enzymes, catalase and alkyl hydroperoxide reductase subunit C. In addition, stationary phase cells of V. harveyi were more resistant to H(2)O(2) and iodoacetamide killing but highly susceptible to tBOOH killing compared to exponential phase cells. Many aspects of the oxidative stress response of V. harveyi are different from those of other bacteria and these factors may be important for bacterial survival in the environment and during interactions with host shrimp.
Collapse
Affiliation(s)
- P Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand.
| | | |
Collapse
|
22
|
Vattanaviboon P, Sriprang R, Mongkolsuk S. Catalase has a novel protective role against electrophile killing of Xanthomonas. MICROBIOLOGY (READING, ENGLAND) 2001; 147:491-498. [PMID: 11158366 DOI: 10.1099/00221287-147-2-491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability of XANTHOMONAS: campestris pv. phaseoli to protect itself against lethal concentrations of man-made (N:-ethylmaleimide, NEM) and endogenously produced (methylglyoxal, MG) electrophiles was investigated. Pretreatment of X. c. pv. phaseoli with a low concentration of NEM induced protection against lethal concentrations of NEM and MG. MG pretreatment weakly induced protection against NEM but not against MG itself. NEM-induced protection against electrophile killing required new protein synthesis and was abolished by the addition of a protein synthesis inhibitor. By contrast, MG-induced protection against NEM killing was independent of de novo protein synthesis. X. c. pv. phaseoli harbouring an expression vector carrying a catalase gene was over 100-fold more resistant to MG and NEM killing. High expression levels of genes for other peroxide-protective enzymes, such as those for alkyl hydroperoxide reductase (ahpC and ahpF) and ohr, failed to protect against electrophile killing. Thus, catalase appears to have a novel protective role(s) against electrophile toxicity. This finding suggests that in X. c. pv. phaseoli NEM and MG toxicity might involve accumulation and/or increased production of H(2)O(2). This idea was supported by the observation that addition of 10 mM sodium pyruvate, a compound that can react chemically with peroxide or hydroxyl radical scavengers (DMSO and glycerol), was found to protect XANTHOMONAS: from electrophile killing. The protective role of catalase and the role of H(2)O(2) in electrophile toxicity are novel observations and could be generally important in other bacteria. In addition, unlike other bacteria, XANTHOMONAS: in stationary phase was more susceptible to electrophile killing compared to cells in exponential phase.
Collapse
Affiliation(s)
- Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand1
| | - Rutchadaporn Sriprang
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd, Bangkok 10400, Thailand2
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Rd, Bangkok 10400, Thailand2
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand1
| |
Collapse
|
23
|
Mongkolsuk S, Whangsuk W, Vattanaviboon P, Loprasert S, Fuangthong M. A Xanthomonas alkyl hydroperoxide reductase subunit C (ahpC) mutant showed an altered peroxide stress response and complex regulation of the compensatory response of peroxide detoxification enzymes. J Bacteriol 2000; 182:6845-9. [PMID: 11073935 PMCID: PMC111433 DOI: 10.1128/jb.182.23.6845-6849.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alkyl hydroperoxide reductase subunit C (AhpC) is the catalytic subunit responsible for alkyl peroxide metabolism. A Xanthomonas ahpC mutant was constructed. The mutant had increased sensitivity to organic peroxide killing, but was unexpectedly hyperresistant to H(2)O(2) killing. Analysis of peroxide detoxification enzymes in this mutant revealed differential alteration in catalase activities in that its bifunctional catalase-peroxidase enzyme and major monofunctional catalase (Kat1) increased severalfold, while levels of its third growth-phase-regulated catalase (KatE) did not change. The increase in catalase activities was a compensatory response to lack of AhpC, and the phenotype was complemented by expression of a functional ahpC gene. Regulation of the catalase compensatory response was complex. The Kat1 compensatory response increase in activity was mediated by OxyR, since it was abolished in an oxyR mutant. In contrast, the compensatory response increase in activity for the bifunctional catalase-peroxidase enzyme was mediated by an unknown regulator, independent of OxyR. Moreover, the mutation in ahpC appeared to convert OxyR from a reduced form to an oxidized form that activated genes in the OxyR regulon in uninduced cells. This complex regulation of the peroxide stress response in Xanthomonas differed from that in other bacteria.
Collapse
Affiliation(s)
- S Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | | | | | | | |
Collapse
|