1
|
Chen D, Guo Z, Yao L, Sun Y, Dian Y, Zhao D, Ke Y, Zeng F, Zhang C, Deng G, Li L. Targeting oxidative stress-mediated regulated cell death as a vulnerability in cancer. Redox Biol 2025; 84:103686. [PMID: 40424719 DOI: 10.1016/j.redox.2025.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Reactive oxygen species (ROS), regulators of cellular behaviors ranging from signaling to cell death, have complex production and control mechanisms to maintain a dynamic redox balance under physiological conditions. Redox imbalance is frequently observed in tumor cells, where ROS within tolerable limits promote oncogenic transformation, while excessive ROS induce a range of regulated cell death (RCD). As such, targeting ROS-mediated regulated cell death as a vulnerability in cancer. However, the precise regulatory networks governing ROS-mediated cancer cell death and their therapeutic applications remain inadequately characterized. In this Review, we first provide a comprehensive overview of the mechanisms underlying ROS production and control within cells, highlighting their dynamic balance. Next, we discuss the paradoxical nature of the redox system in tumor cells, where ROS can promote tumor growth or suppress it, depending on the context. We also systematically explored the role of ROS in tumor signaling pathways and revealed the complex ROS-mediated cross-linking networks in cancer cells. Following this, we focus on the intricate regulation of ROS in RCD and its current applications in cancer therapy. We further summarize the potential of ROS-induced RCD-based therapies, particularly those mediated by drugs targeting specific redox balance mechanisms. Finally, we address the measurement of ROS and oxidative damage in research, discussing existing challenges and future prospects of targeting ROS-mediated RCD in cancer therapy. We hope this review will offer promise for the clinical application of targeting oxidative stress-mediated regulated cell death in cancer therapy.
Collapse
Affiliation(s)
- Danyao Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China; Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yizhe Ke
- The First Affliated Hospital of Shihezi University, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, China.
| | - Linfeng Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Chaudhary S, Siddiqui JA, Pothuraju R, Bhatia R. Ribosome biogenesis, altered metabolism and ribotoxic stress response in pancreatic ductal adenocarcinoma tumor microenvironment. Cancer Lett 2025; 612:217484. [PMID: 39842499 DOI: 10.1016/j.canlet.2025.217484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a poor overall survival rate. Cellular stress response pathways promoting cancer cell fitness in harsh tumor microenvironment (TME) play a critical role in cancer growth and survival. The influence of oncogenic Kras, multi-functional heterogeneous cancer-associated fibroblasts (CAFs), and immunosuppressive TME on cancer cells makes the disease more complex and difficult to treat. The desmoplastic reaction by CAFs comprises approximately 90 % of the tumor, with only 10 % of cancer cells making things even more complicated, resulting in therapy resistance. Consistently increasing fibrosis creates a hypoxic environment and elevated interstitial fluid pressure inside the tumor constraining vascular supply. Stress conditions in TME alter translation efficiency and metabolism to fulfill the energy requirements of rapidly growing cancer cells. Extensive research has been conducted on multiple molecular and metabolic regulators in PDAC TME. However, the role of TME in influencing translation programs, a prerequisite for cell cycle progression and functional/growth requirements for cancer cells, remains elusive. This review highlights the recent advancements in understanding altered translational programs in PDAC TME. We emphasize the role of ribosome biogenesis, ribosome-induced stress response, and the concept of specialized ribosomes and their probable role in mutationally rewiring the pancreatic TME.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Jawed Akhtar Siddiqui
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Cancer Center Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ramesh Pothuraju
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India.
| | - Rakesh Bhatia
- Amity School of Biological Sciences, Amity University Punjab, 82A, Mohali, Punjab, 140306, India.
| |
Collapse
|
3
|
Ganesan IP, Kiyokawa H. A Perspective on Therapeutic Targeting Against Ubiquitin Ligases to Stabilize Tumor Suppressor Proteins. Cancers (Basel) 2025; 17:626. [PMID: 40002221 PMCID: PMC11853300 DOI: 10.3390/cancers17040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The loss of functions of tumor suppressor (TS) genes plays a key role in not only tumor initiation but also tumor progression leading to poor prognosis. While therapeutic inhibition of oncogene-encoded kinases has shown clinical success, restoring TS functions remains challenging due to conceptual and technical limitations. E3 ubiquitin ligases that ubiquitinate TS proteins for accelerated degradation in cancers emerge as promising therapeutic targets. Unlike proteasomal inhibitors with a broad spectrum, inhibitors of an E3 ligase would offer superior selectivity and efficacy in enhancing expression of its substrate TS proteins as far as the TS proteins retain wild-type structures. Recent advances in developing E3 inhibitors, including MDM2 inhibitors, highlight their potential and ultimately guide the framework to establish E3 inhibition as effective strategies to treat specific types of cancers. This review explores E3 ligases that negatively regulate bona fide TS proteins, the developmental status of E3 inhibitors, and their promise and pitfalls as therapeutic agents for anti-cancer precision medicine.
Collapse
Affiliation(s)
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
4
|
Neira JL, Rizzuti B, Palomino‐Schätzlein M, Rejas V, Abian O, Velazquez‐Campoy A. Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme. Protein Sci 2025; 34:e70033. [PMID: 39840810 PMCID: PMC11751894 DOI: 10.1002/pro.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/23/2025]
Abstract
PADI4 is one of the human isoforms of a family of enzymes involved in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase that is critical for degradation of the tumor suppressor gene p53. We have previously shown that there is an interaction between MDM2 and PADI4 in cellulo, and that such interaction occurs through the N-terminal region of MDM2, N-MDM2, and in particular through residues Thr26, Val28, Phe91, and Lys98. Here, by using a "divide-and-conquer" approach, we have designed and synthesized peptides comprising these two polypeptide stretches (residues Ala21-Lys36, and Lys94-Val108), either in the wild-type species or in their citrullinated versions. Some of the citrullinated peptides were aggregation-prone, as suggested by DOSY-NMR experiments, but the wild-type versions of both fragments were monomeric in solution. We found out that wild-type and modified peptides were disordered in all cases, as also tested by far-UV circular dichroism (CD), and citrullination mainly affected the NMR chemical shifts of adjacent residues. Isothermal titration calorimetry (ITC) in the absence and presence of GSK484, an enzymatic PADI4 inhibitor, indicated that this compound blocked binding of the peptides to the enzyme. Binding to the active site of the N-MDM2 fragments was also confirmed by in silico experiments. The affinities of PADI4 for the wild-type peptides were more favorable than those of the corresponding citrullinated ones, but all measured values were within the micromolar range, indicating that there were no major variations in the thermodynamics of binding due to sequence effects. The kinetic dissociation rates, koff, measured by biolayer interferometry (BLI), were always one-order of magnitude faster for the citrullinated peptides than for the wild-type ones. Taken together, all these findings indicate that MDM2 is a substrate for PADI4 and is prone to citrullination in the identified (and specific) positions of its N-terminal region.
Collapse
Affiliation(s)
- José L. Neira
- IDIBE, Universidad Miguel HernándezElcheAlicanteSpain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de ZaragozaZaragozaSpain
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de ZaragozaZaragozaSpain
- CNR‐NANOTEC, SS Rende (CS), Department of PhysicsUniversity of CalabriaRendeItaly
| | | | - Virginia Rejas
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yufera 3ValenciaSpain
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de ZaragozaZaragozaSpain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)ZaragozaSpain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
- Departamento de Bioquímica y Biología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
| | - Adrian Velazquez‐Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de ZaragozaZaragozaSpain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)ZaragozaSpain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
- Departamento de Bioquímica y Biología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
| |
Collapse
|
5
|
Aguilar A, Yang J, Li Y, McEachern D, Huang L, Razzouk S, Wang S. Discovery of MD-265: A Potent MDM2 Degrader That Achieves Complete Tumor Regression and Improves Long-Term Survival of Mice with Leukemia. J Med Chem 2024; 67:19503-19518. [PMID: 39480241 PMCID: PMC12077404 DOI: 10.1021/acs.jmedchem.4c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
MDM2 has been pursued as an attractive therapeutic target for human cancers. Herein, we describe our discovery of MD-265 as a promising PROTAC MDM2 degrader and extensive in vitro and in vivo evaluations of its therapeutic potential and mechanism of action. MD-265 effectively depleted MDM2 protein in cancer cells at concentrations as low as 1 nM, leading to strong activation of p53 in cancer cells carrying wild-type p53. It selectively inhibited the growth of wild-type p53 leukemia cell lines and showed no activity in mutated p53 lines. MD-265 achieved persistent tumor regression in a leukemia xenograft model without causing any signs of toxicity and dramatically improved survival of mice in a disseminated leukemia model even with a weekly administration. MD-265 displayed an excellent intravenous PK profile in mice, rats, and dogs. MD-265 is a promising MDM2 degrader for advanced preclinical development for the treatment of human cancers.
Collapse
Affiliation(s)
- Angelo Aguilar
- Department
of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jiuling Yang
- Department
of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yangbing Li
- Department
of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department
of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liyue Huang
- Department
of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stevenchoukry Razzouk
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department
of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- The
Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Thayer KM, Stetson S, Caballero F, Chiu C, Han ISM. Navigating the complexity of p53-DNA binding: implications for cancer therapy. Biophys Rev 2024; 16:479-496. [PMID: 39309126 PMCID: PMC11415564 DOI: 10.1007/s12551-024-01207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024] Open
Abstract
Abstract The tumor suppressor protein p53, a transcription factor playing a key role in cancer prevention, interacts with DNA as its primary means of determining cell fate in the event of DNA damage. When it becomes mutated, it opens damaged cells to the possibility of reproducing unchecked, which can lead to formation of cancerous tumors. Despite its critical role, therapies at the molecular level to restore p53 native function remain elusive, due to its complex nature. Nevertheless, considerable information has been amassed, and new means of investigating the problem have become available. Objectives We consider structural, biophysical, and bioinformatic insights and their implications for the role of direct and indirect readout and how they contribute to binding site recognition, particularly those of low consensus. We then pivot to consider advances in computational approaches to drug discovery. Materials and methods We have conducted a review of recent literature pertinent to the p53 protein. Results Considerable literature corroborates the idea that p53 is a complex allosteric protein that discriminates its binding sites not only via consensus sequence through direct H-bond contacts, but also a complex combination of factors involving the flexibility of the binding site. New computational methods have emerged capable of capturing such information, which can then be utilized as input to machine learning algorithms towards the goal of more intelligent and efficient de novo allosteric drug design. Conclusions Recent improvements in machine learning coupled with graph theory and sector analysis hold promise for advances to more intelligently design allosteric effectors that may be able to restore native p53-DNA binding activity to mutant proteins. Clinical relevance The ideas brought to light by this review constitute a significant advance that can be applied to ongoing biophysical studies of drugs for p53, paving the way for the continued development of new methodologies for allosteric drugs. Our discoveries hold promise to provide molecular therapeutics which restore p53 native activity, thereby offering new insights for cancer therapies. Graphical Abstract Structural representation of the p53 DBD (PDBID 1TUP). DNA consensus sequence is shown in gray, and the protein is shown in blue. Red beads indicate hotspot residue mutations, green beads represent DNA interacting residues, and yellow beads represent both.
Collapse
Affiliation(s)
- Kelly M. Thayer
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| | - Sean Stetson
- Department of Chemistry, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Fernando Caballero
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06457 USA
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - Christopher Chiu
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06457 USA
| | - In Sub Mark Han
- Molecular Biophysics Program, Wesleyan University, Middletown, CT 06457 USA
| |
Collapse
|
7
|
Werenski JO, Hung YP, Chang CY, Nielsen GP, Lozano-Calderón SA. Myositis ossificans mimicking bone surface osteosarcoma: case report with literature review. APMIS 2024; 132:535-543. [PMID: 38741286 DOI: 10.1111/apm.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Myositis ossificans, a benign tumor composed of spindle cells and osteoblasts, can clinically and radiologically mimic osteosarcoma. While recognition and accurate diagnosis of myositis ossificans can be a challenge, this is critical as it may allow a conservative surgical approach to maximize functional outcomes. Herein, we present a patient with surface myositis ossificans confirmed genetically by the presence of COL1A1::USP6 gene fusion, along with a literature review. Due to the enhanced visualization of the bone matrix, computed tomography (CT) imaging may be a superior imaging modality to magnetic resonance (MR) imaging. Staged biopsies with samples obtained from the periphery and center of the lesions may allow pathologists to discern the zonal distribution histologically. Furthermore, immunohistochemistry fluorescence in situ hybridization and molecular testing can aid in the distinction of myositis ossificans from mimics. Because of their resemblance to other bone tumors, these cases of myositis ossificans highlight the importance of a multidisciplinary approach integrating clinical, radiologic, and pathologic analysis and involving serial imaging, sampling, and judicious use of ancillary immunohistochemical and molecular testing.
Collapse
Affiliation(s)
- Joseph O Werenski
- Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yin P Hung
- Division of Bone and Soft Tissue Pathology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Connie Y Chang
- Division of Musculoskeletal Imaging & Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - G Petur Nielsen
- Division of Bone and Soft Tissue Pathology, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Santiago A Lozano-Calderón
- Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ryu S, Nakashima H, Tanaka Y, Mukai R, Ishihara Y, Tominaga T, Ohshima T. Ribosomal Protein S4 X-Linked as a Novel Modulator of MDM2 Stability by Suppressing MDM2 Auto-Ubiquitination and SCF Complex-Mediated Ubiquitination. Biomolecules 2024; 14:885. [PMID: 39199272 PMCID: PMC11351588 DOI: 10.3390/biom14080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Mouse double minute 2 (MDM2) is an oncoprotein that is frequently overexpressed in tumors and enhances cellular transformation. Owing to the important role of MDM2 in modulating p53 function, it is crucial to understand the mechanism underlying the regulation of MDM2 levels. We identified ribosomal protein S4X-linked (RPS4X) as a novel binding partner of MDM2 and showed that RPS4X promotes MDM2 stability. RPS4X suppressed polyubiquitination of MDM2 by suppressing homodimer formation and preventing auto-ubiquitination. Moreover, RPS4X inhibited the interaction between MDM2 and Cullin1, a scaffold protein of the Skp1-Cullin1-F-box protein (SCF) complex and an E3 ubiquitin ligase for MDM2. RPS4X expression in cells enhanced the steady-state level of MDM2 protein. RPS4X was associated not only with MDM2 but also with Cullin1 and then blocked the MDM2/Cullin1 interaction. This is the first report of an interaction between ribosomal proteins (RPs) and Cullin1. Our results contribute to the elucidation of the MDM2 stabilization mechanism in cancer cells, expanding our understanding of the new functions of RPs.
Collapse
Affiliation(s)
- Satsuki Ryu
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Hiroki Nakashima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Yuka Tanaka
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan;
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101-1709, USA;
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan;
| | - Takashi Tominaga
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
| | - Takayuki Ohshima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (S.R.); (H.N.); (T.T.)
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan;
| |
Collapse
|
9
|
Ikliptikawati DK, Makiyama K, Hazawa M, Wong RW. Unlocking the Gateway: The Spatio-Temporal Dynamics of the p53 Family Driven by the Nuclear Pores and Its Implication for the Therapeutic Approach in Cancer. Int J Mol Sci 2024; 25:7465. [PMID: 39000572 PMCID: PMC11242911 DOI: 10.3390/ijms25137465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The p53 family remains a captivating focus of an extensive number of current studies. Accumulating evidence indicates that p53 abnormalities rank among the most prevalent in cancer. Given the numerous existing studies, which mostly focus on the mutations, expression profiles, and functional perturbations exhibited by members of the p53 family across diverse malignancies, this review will concentrate more on less explored facets regarding p53 activation and stabilization by the nuclear pore complex (NPC) in cancer, drawing on several studies. p53 integrates a broad spectrum of signals and is subject to diverse regulatory mechanisms to enact the necessary cellular response. It is widely acknowledged that each stage of p53 regulation, from synthesis to degradation, significantly influences its functionality in executing specific tasks. Over recent decades, a large body of data has established that mechanisms of regulation, closely linked with protein activation and stabilization, involve intricate interactions with various cellular components. These often transcend canonical regulatory pathways. This new knowledge has expanded from the regulation of genes themselves to epigenomics and proteomics, whereby interaction partners increase in number and complexity compared with earlier paradigms. Specifically, studies have recently shown the involvement of the NPC protein in such complex interactions, underscoring the further complexity of p53 regulation. Furthermore, we also discuss therapeutic strategies based on recent developments in this field in combination with established targeted therapies.
Collapse
Affiliation(s)
- Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
| | - Kei Makiyama
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Richard W. Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| |
Collapse
|
10
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
11
|
Krześniak M, Łasut-Szyszka B, Będzińska A, Gdowicz-Kłosok A, Rusin M. The Strong Activation of p53 Tumor Suppressor Drives the Synthesis of the Enigmatic Isoform of DUSP13 Protein. Biomedicines 2024; 12:1449. [PMID: 39062022 PMCID: PMC11274236 DOI: 10.3390/biomedicines12071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The p53 tumor suppressor protein activates various sets of genes depending on its covalent modifications, which are controlled by the nature and intensity of cellular stress. We observed that actinomycin D and nutlin-3a (A + N) collaborate in inducing activating phosphorylation of p53. Our recent transcriptomic data demonstrated that these substances strongly synergize in the upregulation of DUSP13, a gene with an unusual pattern of expression, coding for obscure phosphatase having two isoforms, one expressed in the testes and the other in skeletal muscles. In cancer cells exposed to A + N, DUSP13 is expressed from an alternative promoter in the intron, resulting in the expression of an isoform named TMDP-L1. Luciferase reporter tests demonstrated that this promoter is activated by both endogenous and ectopically expressed p53. We demonstrated for the first time that mRNA expressed from this promoter actually produces the protein, which can be detected with Western blotting, in all examined cancer cell lines with wild-type p53 exposed to A + N. In some cell lines, it is also induced by clinically relevant camptothecin, by nutlin-3a acting alone, or by a combination of actinomycin D and other antagonists of p53-MDM2 interaction-idasanutlin or RG7112. This isoform, fused with green fluorescent protein, localizes in the perinuclear region of cells.
Collapse
Affiliation(s)
| | | | | | | | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland; (M.K.); (B.Ł.-S.); (A.B.); (A.G.-K.)
| |
Collapse
|
12
|
Li Y, Li G, Zuo C, Wang X, Han F, Jia Y, Shang H, Tian Y. Discovery of ganoderic acid A (GAA) PROTACs as MDM2 protein degraders for the treatment of breast cancer. Eur J Med Chem 2024; 270:116367. [PMID: 38581732 DOI: 10.1016/j.ejmech.2024.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Breast cancer is one of the most common female malignant tumors, with triple-negative breast cancer (TNBC) being the most specific, highly invasive, metastatic and associated with a poor prognosis. Our previous study showed that the natural product ganoderic acid A (GAA) has a certain affinity for MDM2. In this study, two series of novel GAA PROTACs C1-C10 and V1-V10 were designed and synthesized for the treatment of breast cancer. The antitumor activity of these compounds was evaluated against four human tumor cell lines (MCF-7, MDA-MB-231, SJSA-1, and HepG2). Among them, V9 and V10 showed stronger anti-proliferative effects against breast cancer cells, and V10 showed the best selectivity in MDA-MB-231 cells (TNBC), which was 5-fold higher than that of the lead compound GAA. Preliminary structure-activity analysis revealed that V-series GAA PROTACs had better effects than C-series, and the introduction of 2O-4O PEG linkers could significantly improve the antitumor activity. Molecular docking, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), and Western blot researches showed that both V9 and V10 could bind with MDM2, and degrade the protein through the ubiquitin-proteasome system. Molecular dynamics simulation (MD) revealed that V10 is a bifunctional molecule that can bind to von Hippel-Lindau (VHL) at one end and target MDM2 at the other. In addition, V10 promoted the upregulation of p21 in p53-mutant MDA-MB-231 cells, and induced apoptosis via down-regulation of the bcl-2/bax ratio and the expression of cyclin B1. Finally, in vivo experiments showed that, V10 also exhibited good tumor inhibitory activity in xenografted TNBC zebrafish models, with an inhibition rate of 27.2% at 50 μg/mL. In conclusion, our results suggested that V10 has anti-tumor effects on p53-mutant breast cancer in vitro and in vivo, and may be used as a novel lead compound for the future development of TNBC.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Guangyu Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chenwei Zuo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xiaolin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Fang Han
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yi Jia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hai Shang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Yu Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
13
|
Tomiyasu H, Habara M, Hanaki S, Sato Y, Miki Y, Shimada M. FOXO1 promotes cancer cell growth through MDM2-mediated p53 degradation. J Biol Chem 2024; 300:107209. [PMID: 38519029 PMCID: PMC11021968 DOI: 10.1016/j.jbc.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024] Open
Abstract
FOXO1 is a transcription factor and potential tumor suppressor that is negatively regulated downstream of PI3K-PKB/AKT signaling. Paradoxically, FOXO also promotes tumor growth, but the detailed mechanisms behind this role of FOXO are not fully understood. In this study, we revealed a molecular cascade by which the Thr24 residue of FOXO1 is phosphorylated by AKT and is dephosphorylated by calcineurin, which is a Ca2+-dependent protein phosphatase. Curiously, single nucleotide somatic mutations of FOXO1 in cancer occur frequently at and near Thr24. Using a calcineurin inhibitor and shRNA directed against calcineurin, we revealed that calcineurin-mediated dephosphorylation of Thr24 regulates FOXO1 protein stability. We also found that FOXO1 binds to the promoter region of MDM2 and activates transcription, which in turn promotes MDM2-mediated ubiquitination and degradation of p53. FOXO3a and FOXO4 are shown to control p53 activity; however, the significance of FOXO1 in p53 regulation remains largely unknown. Supporting this notion, FOXO1 depletion increased p53 and p21 protein levels in association with the inhibition of cell proliferation. Taken together, these results indicate that FOXO1 is stabilized by calcineurin-mediated dephosphorylation and that FOXO1 supports cancer cell proliferation by promoting MDM2 transcription and subsequent p53 degradation.
Collapse
Affiliation(s)
- Haruki Tomiyasu
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Yuki Sato
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Yosei Miki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi, Yamaguchi, Japan; Department of Molecular Biology, Nagoya University, Graduate School of Medicine, Showa-ku, Nagoya, Japan.
| |
Collapse
|
14
|
KITIC D, MILADINOVIC B, RANDJELOVIC M, FAGOONEE S, POPA D, CALINA D, SHARIFI-RAD J. Alvaradoin E: an update of its anticancer potential and mechanisms of action. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2024; 35. [DOI: 10.23736/s2724-542x.23.03035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Abstract
PURPOSE OF REVIEW This review aims to elucidate the multifaceted role of the tumor suppressor protein p53 in the context of HIV infection. We explore how p53, a pivotal regulator of cellular processes, interacts with various facets of the HIV life cycle. Understanding these interactions could provide valuable insights into potential therapeutic interventions and the broader implications of p53 in viral infections. RECENT FINDINGS Recent research has unveiled a complex interplay between p53 and HIV. Several reports have highlighted the involvement of p53 in restricting the replication of HIV within both immune and nonimmune cells. Various mechanisms have been suggested to unveil how p53 enforces this restriction on HIV replication. However, HIV has developed strategies to manipulate p53, benefiting its replication and evading host defenses. In summary, p53 plays a multifaceted role in HIV infection, impacting viral replication and disease progression. Recent findings underscore the importance of understanding the intricate interactions between p53 and HIV for the development of innovative therapeutic approaches. Manipulating p53 pathways may offer potential avenues to suppress viral replication and ameliorate immune dysfunction, ultimately contributing to the management of HIV/AIDS. Further research is warranted to fully exploit the therapeutic potential of p53 in the context of HIV infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
16
|
Pal A, Tripathi SK, Rani P, Rastogi M, Das S. p53 and RNA viruses: The tug of war. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1826. [PMID: 37985142 DOI: 10.1002/wrna.1826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Host factors play essential roles in viral infection, and their interactions with viral proteins are necessary for establishing effective pathogenesis. p53 is a host factor that maintains genomic integrity by controlling cell-cycle progression and cell survival. It is a well-known tumor suppressor protein that gets activated by various stress signals, thereby regulating cellular pathways. The cellular outcomes from different stresses are tightly related to p53 dynamics, including its alterations at gene, mRNA, or protein levels. p53 also contributes to immune responses leading to the abolition of viral pathogens. In turn, the viruses have evolved strategies to subvert p53-mediated host responses to improve their life cycle and pathogenesis. Some viruses attenuate wild-type p53 (WT-p53) function for successful pathogenesis, including degradation and sequestration of p53. In contrast, some others exploit the WT-p53 function through regulation at the transcriptional/translational level to spread infection. One area in which the importance of such host factors is increasingly emerging is the positive-strand RNA viruses that cause fatal viral infections. In this review, we provide insight into all the possible mechanisms of p53 modulation exploited by the positive-strand RNA viruses to establish infection. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priya Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Meghana Rastogi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India, Kalyani, West Bengal, India
| |
Collapse
|
17
|
Rizzuti B, Abian O, Velazquez-Campoy A, Neira JL. Conformational Stability of the N-Terminal Region of MDM2. Molecules 2023; 28:7578. [PMID: 38005300 PMCID: PMC10673428 DOI: 10.3390/molecules28227578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
MDM2 is an E3 ubiquitin ligase which is crucial for the degradation and inhibition of the key tumor-suppressor protein p53. In this work, we explored the stability and the conformational features of the N-terminal region of MDM2 (N-MDM2), through which it binds to the p53 protein as well as other protein partners. The isolated domain possessed a native-like conformational stability in a narrow pH range (7.0 to 10.0), as shown by intrinsic and 8-anilinonapthalene-1-sulfonic acid (ANS) fluorescence, far-UV circular dichroism (CD), and size exclusion chromatography (SEC). Guanidinium chloride (GdmCl) denaturation followed by intrinsic and ANS fluorescence, far-UV CD and SEC at physiological pH, and differential scanning calorimetry (DSC) and thermo-fluorescence experiments showed that (i) the conformational stability of isolated N-MDM2 was very low; and (ii) unfolding occurred through the presence of several intermediates. The presence of a hierarchy in the unfolding intermediates was also evidenced through DSC and by simulating the unfolding process with the help of computational techniques based on constraint network analysis (CNA). We propose that the low stability of this protein is related to its inherent flexibility and its ability to interact with several molecular partners through different routes.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L. Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDIBE), Universidad Miguel Hernández, 03202 Elche, Spain
| |
Collapse
|
18
|
Sun S, Zhong B, Zeng X, Li J, Chen Q. Transcription factor E4F1 as a regulator of cell life and disease progression. SCIENCE ADVANCES 2023; 9:eadh1991. [PMID: 37774036 PMCID: PMC10541018 DOI: 10.1126/sciadv.adh1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
E4F transcription factor 1 (E4F1), a member of the GLI-Kruppel family of zinc finger proteins, is now widely recognized as a transcription factor. It plays a critical role in regulating various cell processes, including cell growth, proliferation, differentiation, apoptosis and necrosis, DNA damage response, and cell metabolism. These processes involve intricate molecular regulatory networks, making E4F1 an important mediator in cell biology. Moreover, E4F1 has also been implicated in the pathogenesis of a range of human diseases. In this review, we provide an overview of the major advances in E4F1 research, from its first report to the present, including studies on its protein domains, molecular mechanisms of transcriptional regulation and biological functions, and implications for human diseases. We also address unresolved questions and potential research directions in this field. This review provides insights into the essential roles of E4F1 in human health and disease and may pave the way for facilitating E4F1 from basic research to clinical applications.
Collapse
Affiliation(s)
- Silu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing Zhong
- Upper Airways Research Laboratory, Department of Otolaryngology–Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
19
|
Albadari N, Xie Y, Liu T, Wang R, Gu L, Zhou M, Wu Z, Li W. Synthesis and biological evaluation of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold. Eur J Med Chem 2023; 255:115423. [PMID: 37130471 PMCID: PMC10246915 DOI: 10.1016/j.ejmech.2023.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Overexpression of both human murine double minute 2 (MDM2) and X-linked inhibitor of apoptosis protein (XIAP) is detected in tumor cells from several cancer types, including childhood acute leukemia lymphoma (ALL), neuroblastoma (NB), and prostate cancer, and is associated with disease progression and treatment resistance. In this report, we described the design and syntheses of a series of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold from our previously reported lead compound JW-2-107 and tested their cytotoxicity in a panel of human cancer cell lines. The best compound identified in this study is compound 3e. Western blot analyses demonstrated that treatments with 3e decreased MDM2 and XIAP protein levels and increased expression of p53, resulting in cancer cell growth inhibition and cell death. Furthermore, compound 3e effectively inhibited tumor growth in vivo when tested using a human 22Rv1 prostate cancer xenograft model. Collectively, results in this study strongly suggest that the tetrahydroquinoline scaffold, represented by 3e and our earlier lead compound JW-2-107, has abilities to dual target MDM2 and XIAP and is promising for further preclinical development.
Collapse
Affiliation(s)
- Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Yang Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Rui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| |
Collapse
|
20
|
Silvestri AP, Zhang Q, Ping Y, Muir EW, Zhao J, Chakka SK, Wang G, Bray WM, Chen W, Fribourgh JL, Tripathi S, He Y, Rubin SM, Satz AL, Pye CR, Kuai L, Su W, Schwochert JA. DNA-Encoded Macrocyclic Peptide Libraries Enable the Discovery of a Neutral MDM2-p53 Inhibitor. ACS Med Chem Lett 2023; 14:820-826. [PMID: 37312849 PMCID: PMC10258823 DOI: 10.1021/acsmedchemlett.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/03/2023] [Indexed: 06/15/2023] Open
Abstract
Synthetic macrocyclic peptides are an emerging molecular class for both targeting intracellular protein-protein interactions (PPIs) and providing an oral modality for drug targets typically addressed by biologics. Display technologies, such as mRNA and phage display, often yield peptides that are too large and too polar to achieve passive permeability or oral bioavailability without substantial off-platform medicinal chemistry. Herein, we use DNA-encoded cyclic peptide libraries to discover a neutral nonapeptide, UNP-6457, that inhibits MDM2-p53 interaction with an IC50 of 8.9 nM. X-ray structural analysis of the MDM2-UNP-6457 complex revealed mutual binding interactions and identified key ligand modification points which may be tuned to enhance its pharmacokinetic profile. These studies showcase how tailored DEL libraries can directly yield macrocyclic peptides benefiting from low MW, TPSA, and HBD/HBA counts that are capable of potently inhibiting therapeutically relevant protein-protein interactions.
Collapse
Affiliation(s)
- Anthony P. Silvestri
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Qi Zhang
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yan Ping
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Erik W. Muir
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Jingsi Zhao
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Sai Kumar Chakka
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Gaonan Wang
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Walter M. Bray
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Wenhua Chen
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jennifer L. Fribourgh
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Sarvind Tripathi
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Yunyun He
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Seth M. Rubin
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | | | - Cameron R. Pye
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Letian Kuai
- WuXi
AppTec, 55 Cambridge
Parkway, 8th Floor, Cambridge, Massachusetts 02142, United States
| | - Wenji Su
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Joshua A. Schwochert
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| |
Collapse
|
21
|
Kasper B, Baldi GG, Loong HHF, Trent J. EJSO educational Special issue from the TARPSWG - Standard medical treatment and new options in retroperitoneal sarcoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:1133-1139. [PMID: 34998634 DOI: 10.1016/j.ejso.2021.12.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 01/10/2023]
Abstract
Retroperitoneal soft tissue sarcomas mainly consist histologically of liposarcomas and leiomyosarcomas. For the liposarcoma subgroup, the local relapse rate seems to determine patients' overall prognosis. In contrast, leiomyosarcoma patients are challenged by the development of metastatic disease; therefore, effective systemic therapies are the cornerstone to improve patients' outcome. No doubt, the limited number of active regimens currently available makes the treatment of patients with locally advanced and/or metastatic disease challenging and results in the overall poor prognosis of this population. In this European Journal of Surgical Oncology Educational Special Issue from the Transatlantic Australasian RetroPeritoneal Sarcoma Working Group (TARPSWG), we aim to summarize state-of-the-art systemic treatments for patients with retroperitoneal sarcomas with a focus on the locally advanced and metastatic disease setting including conventional standard chemotherapies as well as new innovative treatment approaches in order to identify current unmet medical needs guiding the sarcoma community to initiate appropriate translational research projects and design innovative clinical trials.
Collapse
Affiliation(s)
- Bernd Kasper
- University of Heidelberg, Mannheim University Medical Center, Sarcoma Unit, Mannheim, Germany.
| | | | - Herbert Ho-Fung Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jonathan Trent
- University of Miami, Sylvester Comprehensive Cancer Center, Miami, USA
| |
Collapse
|
22
|
Menon AA, Deshpande V, Suster D. MDM2 for the practicing pathologist: a primer. J Clin Pathol 2023; 76:285-290. [PMID: 36898827 DOI: 10.1136/jcp-2022-208687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
The mouse double minute 2 (MDM2) gene is located on the long arm of chromosome 12 and is the primary negative regulator of p53. The MDM2 gene encodes an E3 ubiquitin-protein ligase that mediates the ubiquitination of p53, leading to its degradation. MDM2 enhances tumour formation by inactivating the p53 tumour suppressor protein. The MDM2 gene also has many p53-independent functions. Alterations of MDM2 may occur through various mechanisms and contribute to the pathogenesis of many human tumours and some non-neoplastic diseases. Detection of MDM2 amplification is used in the clinical practice setting to help diagnose multiple tumour types, including lipomatous neoplasms, low-grade osteosarcomas and intimal sarcoma, among others. It is generally a marker of adverse prognosis, and MDM2-targeted therapies are currently in clinical trials. This article provides a concise overview of the MDM2 gene and discusses practical diagnostic applications pertaining to human tumour biology.
Collapse
Affiliation(s)
- Aswathy Ashok Menon
- Department of Pathology, Neuberg Anand Reference Laboratory, Bengaluru, Karnataka, India
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Suster
- Department of Pathology, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
23
|
Ivanenkov YA, Kukushkin ME, Beloglazkina AA, Shafikov RR, Barashkin AA, Ayginin AA, Serebryakova MS, Majouga AG, Skvortsov DA, Tafeenko VA, Beloglazkina EK. Synthesis and Biological Evaluation of Novel Dispiro-Indolinones with Anticancer Activity. Molecules 2023; 28:molecules28031325. [PMID: 36770991 PMCID: PMC9919490 DOI: 10.3390/molecules28031325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Novel variously substituted thiohydantoin-based dispiro-indolinones were prepared using a regio- and diastereoselective synthetic route from 5-arylidene-2-thiohydantoins, isatines, and sarcosine. The obtained molecules were subsequently evaluated in vitro against the cancer cell lines LNCaP, PC3, HCTwt, and HCT(-/-). Several compounds demonstrated a relatively high cytotoxic activity vs. LNCaP cells (IC50 = 1.2-3.5 µM) and a reasonable selectivity index (SI = 3-10). Confocal microscopy revealed that the conjugate of propargyl-substituted dispiro-indolinone with the fluorescent dye Sulfo-Cy5-azide was mainly localized in the cytoplasm of HEK293 cells. P388-inoculated mice and HCT116-xenograft BALB/c nude mice were used to evaluate the anticancer activity of compound 29 in vivo. Particularly, the TGRI value for the P388 model was 93% at the final control timepoint. No mortality was registered among the population up to day 31 of the study. In the HCT116 xenograft model, the compound (170 mg/kg, i.p., o.d., 10 days) provided a T/C ratio close to 60% on day 8 after the treatment was completed. The therapeutic index-estimated as LD50/ED50-for compound 29 in mice was ≥2.5. Molecular docking studies were carried out to predict the possible binding modes of the examined molecules towards MDM2 as the feasible biological target. However, such a mechanism was not confirmed by Western blot data and, apparently, the synthesized compounds have a different mechanism of cytotoxic action.
Collapse
Affiliation(s)
- Yan A. Ivanenkov
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute (VNIIA), 22. ul. Sushchevskaya, 127055 Moscow, Russia
| | - Maxim E. Kukushkin
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | | | - Radik R. Shafikov
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, GSP-7, Ulitsa Mklukho-Maklaya 16/10, 17997 Moscow, Russia
- A. N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia
| | - Alexander A. Barashkin
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Andrey A. Ayginin
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Marina S. Serebryakova
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexander G. Majouga
- College of New Materials and Nanotechnologies, National University of Science and Technology MISiS, 119049 Moscow, Russia
| | - Dmitry A. Skvortsov
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Viktor A. Tafeenko
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elena K. Beloglazkina
- Chemistry Department, Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
24
|
Rocha SM, Nascimento D, Cardoso AM, Passarinha L, Socorro S, Maia CJ. STEAP1 regulation and its influence modulating the response of LNCaP prostate cancer cells to bicalutamide, enzalutamide and apalutamide. Mol Med Rep 2023; 27:52. [PMID: 36660947 PMCID: PMC9879076 DOI: 10.3892/mmr.2023.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 01/15/2023] Open
Abstract
Anti‑androgen drugs are the standard pharmacological therapies for treatment of non‑metastatic prostate cancer (PCa). However, the response of PCa cells may depend on the anti‑androgen used and often patients become resistant to treatment. Thus, studying how the anti‑androgen drugs affect oncogenes expression and action and the identification of the best strategy for combined therapies are essential to improve the efficacy of treatments. The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) is an oncogene associated with PCa progression and aggressiveness, although its relationship with the androgen receptor signaling remains to be elucidated. The present study aimed to evaluate the effect of anti‑androgens in regulating STEAP1 expression and investigate whether silencing STEAP1 can make PCa cells more sensitive to anti‑androgen drugs. For this purpose, wild‑type and STEAP1 knockdown LNCaP cells were exposed to bicalutamide, enzalutamide and apalutamide. Bicalutamide decreased the expression of STEAP1, but enzalutamide and apalutamide increased its expression. However, decreased cell proliferation and increased apoptosis was observed in response to all drugs. Overall, the cellular and molecular effects were similar between LNCaP wild‑type and LNCaP‑STEAP1 knockdown cells, except for c‑myc expression levels, where a cumulative effect between anti‑androgen treatment and STEAP1 knockdown was observed. The effect of STEAP1 knockdown alone or combined with anti‑androgens in c‑myc levels is required to be addressed in future studies.
Collapse
Affiliation(s)
- Sandra M. Rocha
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Daniel Nascimento
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Ana Margarida Cardoso
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís Passarinha
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,Associate Laboratory i4HB-Institute for Health and Bioeconomy, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal,Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-284 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,C4-UBI-Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI-Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal,C4-UBI-Cloud Computing Competence Center, Universidade da Beira Interior, 6200-501 Covilhã, Portugal,Correspondence to: Professor Cláudio J. Maia, CICS-UBI-Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal, E-mail:
| |
Collapse
|
25
|
Chowdhury SG, Misra S, Karmakar P. Understanding the Impact of Obesity on Ageing in the Radiance of DNA Metabolism. J Nutr Health Aging 2023; 27:314-328. [PMID: 37248755 DOI: 10.1007/s12603-023-1912-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 05/31/2023]
Abstract
Ageing is a multi-factorial phenomenon which is considered as a major risk factor for the development of neurodegeneration, osteoporosis, cardiovascular disease, dementia, cancer, and other chronic diseases. Phenotypically, ageing is related with a combination of molecular, cellular, and physiological levels like genomic and epi-genomic alterations, loss of proteostasis, deregulation of cellular and subcellular function and mitochondrial dysfunction. Though, no single molecular mechanism accounts for the functional decline of different organ systems in older humans but accumulation of DNA damage or mutations is a dominant theory which contributes largely to the development of ageing and age-related diseases. However, mechanistic, and hierarchical order of these features of ageing has not been clarified yet. Scientific community now focus on the effect of obesity on accelerated ageing process. Obesity is a complex chronic disease that affects multiple organs and tissues. It can not only lead to various health conditions such as diabetes, cancer, and cardiovascular disease but also can decrease life expectancy which shows similar phenotype of ageing. Higher loads of DNA damage were also observed in the genome of obese people. Thus, inability of DNA damage repair may contribute to both ageing and obesity apart from cancer predisposition. The present review emphasizes on the involvement of molecular phenomenon of DNA metabolism in development of obesity and how it accelerates ageing in mammals.
Collapse
Affiliation(s)
- S G Chowdhury
- Parimal Karmakar, Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India.
| | | | | |
Collapse
|
26
|
Aguilar A, Wang S. Therapeutic Strategies to Activate p53. Pharmaceuticals (Basel) 2022; 16:24. [PMID: 36678521 PMCID: PMC9866379 DOI: 10.3390/ph16010024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The p53 protein has appropriately been named the "guardian of the genome". In almost all human cancers, the powerful tumor suppressor function of p53 is compromised by a variety of mechanisms, including mutations with either loss of function or gain of function and inhibition by its negative regulators MDM2 and/or MDMX. We review herein the progress made on different therapeutic strategies for targeting p53.
Collapse
Affiliation(s)
- Angelo Aguilar
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem 2022; 123:1891-1937. [PMID: 36183376 DOI: 10.1002/jcb.30331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
The protein p53 has been extensively investigated since it was found 43 years ago and has become a "guardian of the genome" that regulates the division of cells by preventing the growth of cells and dividing them, that is, inhibits the development of tumors. Initial proof of protein existence by researchers in the mid-1970s was found by altering and regulating the SV40 big T antigen termed the A protein. Researchers demonstrated how viruses play a role in cancer by employing viruses' ability to create T-antigens complex with viral tumors, which was discovered in 1979 following a viral analysis and cancer analog research. Researchers later in the year 1989 explained that in Murine Friend, a virus-caused erythroleukemia, commonly found that p53 was inactivated to suggest that p53 could be a "tumor suppressor gene." The TP53 gene, encoding p53, is one of human cancer's most frequently altered genes. The protein-regulated biological functions of all p53s include cell cycles, apoptosis, senescence, metabolism of the DNA, angiogenesis, cell differentiation, and immunological response. We tried to unfold the history of the p53 protein, which was discovered long back in 1979, that is, 43 years of research on p53, and how p53's function has been developed through time in this article.
Collapse
Affiliation(s)
- Manisha R Patil
- Department of Computer-Applications, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
28
|
Sharma R, Borah SJ, Bhawna, Kumar S, Gupta A, Singh P, Goel VK, Kumar R, Kumar V. Functionalized Peptide-Based Nanoparticles for Targeted Cancer Nanotherapeutics: A State-of-the-Art Review. ACS OMEGA 2022; 7:36092-36107. [PMID: 36278104 PMCID: PMC9583493 DOI: 10.1021/acsomega.2c03974] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 10/04/2023]
Abstract
Cancer mortality is increasing at an alarming rate across the globe. Albeit, many therapeutics are available commercially, they are not effective and have no cure up to today. Moreover, the knowledge gap in cancer therapy persists, representing a potential blind spot for the innovation of effective anticancer therapeutics. This review presents an update on current advancements in nanopeptide therapeutics. Herein, a detailed exploration of peptide-functionalized nanoparticles for the development of nanotherapeutics was carried out. Different approaches that include self-assembly nanostructures, solid phase peptide synthesis, ligand exchange, chemical reduction, and conjugation methods for assembling peptides for functionalizing nanodrugs are also highlighted. An outlook on biomedical applications is also reviewed. Additionally, a comprehensive discussion on targeted cancer cell therapy and mechanism of action are provided. The present review reflects the functional novelty of nanodrugs to improve stability, accessibility, bioavailability, and specificity toward cancerous cells. Finally, it summarizes the current challenges and future perspectives on the formulation of these nanodrugs.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi 110021, India
| | - Shikha Jyoti Borah
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi 110067, India
| | - Bhawna
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110007, India
| | - Poonam Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Vijay Kumar Goel
- School of Physical Science, Jawaharlal Nehru University, Delhi 110067, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi 110067, India
| |
Collapse
|
29
|
El Habbash AI, Aljoundi A, Elamin G, Soliman MES. Probing Alterations in MDM2 Catalytic Core Structure Effect of Garcinia Mangostana Derivatives: Insight from Molecular Dynamics Simulations. Cell Biochem Biophys 2022; 80:633-645. [PMID: 36184717 DOI: 10.1007/s12013-022-01101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/17/2022] [Indexed: 01/10/2023]
Abstract
The MDM2-p53 protein-protein interaction is a promising model for researchers to design, study, and discover new anticancer drugs. The design of therapeutically active compounds that can maintain or restore the binding of MDM2 to p53 has been found to limit the oncogenic activities of both. This led to the current development of a group of xanthone-core and cis-imidazoline analogs compounds, among which γ-Mangostin (GM), α-Mangostin (AM), and Nutlin exhibited their MDM2-p53 interaction inhibitory effects. Therefore, in this study, we seek to determine the mechanisms by which these compounds elicit MDM2-p53 interaction targeting. Unique to the binding of GM, AM, and Nutlin, from our findings, they share the same three active site residues Val76, Tyr50, and Gly41, which represent the top active side residues that contribute to high electrostatic energy. Consequently, the free binding energy contributed enormously to the binding of these compounds, which culminated in the high binding affinities of GM, AM, and Nutlin with high values. Furthermore, GM, AM, and Nutlin commonly interrupted the stable and compact conformation of MDM2 coupled with its active site, where Cα deviations were relatively high. We believe that our findings would assist in the design of more potent active anticancer drugs.
Collapse
Affiliation(s)
- Aisha I El Habbash
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ghazi Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
30
|
Chang M, Gao F, Chen J, Gnawali G, Wang W. MDM2-BCL-X L PROTACs enable degradation of BCL-X L and stabilization of p53. ACTA MATERIA MEDICA 2022; 1:333-342. [PMID: 36910255 PMCID: PMC10004178 DOI: 10.15212/amm-2022-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inhibition or degradation of anti-apoptotic protein BCL-XL is a viable strategy for cancer treatment. Despite the recent development of PROTACs for degradation of BCL-XL, the E3 ligases are confined to the commonly used VHL and CRBN. Herein we report the development of MDM2-BCL-XL PROTACs using MDM2 as E3 ligase for degradation of BCL-XL. Three MDM2-BCL-XL PROTACs derived from MDM2 inhibitor Nutlin-3, which can also upregulate p53, and BCL-2/BCL-XL inhibitor ABT-263 with different linker length were designed, synthesized, and evaluated in vitro. We found BMM4 exhibited potent, selective degradation activity against BCL-XL and stabilized tumor suppressor p53 in U87, A549 and MV-4-11 cancer cell lines. Moreover, combination of BMM4 and BCL-2 inhibitor ABT-199 showed synergistic antiproliferative activity. The unique dual-functional PROTACs offers an alternative strategy for targeted protein degradation.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Feng Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Az, USA
| | - Jing Chen
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Az, USA
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Az, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, Az, USA
| |
Collapse
|
31
|
Liu Y, Cao B, Hu L, Ye J, Tian W, He X. The Dual Roles of MAGE-C2 in p53 Ubiquitination and Cell Proliferation Through E3 Ligases MDM2 and TRIM28. Front Cell Dev Biol 2022; 10:922675. [PMID: 35927984 PMCID: PMC9344466 DOI: 10.3389/fcell.2022.922675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor p53 is critical for the maintenance of genome stability and protection against tumor malignant transformation, and its homeostasis is usually regulated by ubiquitination. MDM2 is a major E3 ligase of p53 ubiquitination, and its activity is enhanced by TRIM28. TRIM28 also independently ubiquitinates p53 as an E3 ligase activated by MAGE-C2. Moreover, MAGE-C2 is highly expressed in various cancers, but the detailed mechanisms of MAGE-C2 involved in MDM2/TRIM28-mediated p53 ubiquitination remain unknown. Here, we found that MAGE-C2 directly interacts with MDM2 through its conserved MHD domain to inhibit the activity of MDM2 on p53 ubiquitination. Furthermore, TRIM28 acts as an MAGE-C2 binding partner and directly competes with MAGE-C2 for MDM2 interaction, thus releasing the inhibitory role of MAGE-C2 and promoting p53 ubiquitination. MAGE-C2 suppresses cell proliferation in TRIM28-deficient cells, but the overexpression of TRIM28 antagonizes the inhibitory role of MAGE-C2 and accumulates p53 ubiquitination to promote cell proliferation. This study clarified the molecular link of MAGE-C2 in two major E3 systems MDM2 and TRIM28 on p53 ubiquitination. Our results revealed the molecular function of how MAGE-C2 and TRIM28 contribute to p53 ubiquitination and cell proliferation, in which MAGE-C2 acts as a potential inhibitor of MDM2 and TRIM28 is a vital regulator for MAGE-C2 function in p53 protein level and cell proliferation. This work would be helpful to understand the regulation mechanism of tumor suppressor p53.
Collapse
|
32
|
Martinucci B, Cucielo MS, Minatel BC, Cury SS, Caxali GH, Aal MCE, Felisbino SL, Pinhal D, Carvalho RF, Delella FK. Fibronectin Modulates the Expression of miRNAs in Prostate Cancer Cell Lines. Front Vet Sci 2022; 9:879997. [PMID: 35898539 PMCID: PMC9310065 DOI: 10.3389/fvets.2022.879997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PCa) is a significant cause of cancer-related deaths among men and companion animals, such as dogs. However, despite its high mortality and incidence rates, the molecular mechanisms underlying this disease remain to be fully elucidated. Among the many factors involved in prostate carcinogenesis, the extracellular matrix (ECM) plays a crucial role. This ECM in the prostate is composed mainly of collagen fibers, reticular fibers, elastic fibers, proteoglycans and glycoproteins, such as fibronectin. Fibronectin is a glycoprotein whose dysregulation has been implicated in the development of multiple types of cancer, and it has been associated with cell migration, invasion, and metastasis. Furthermore, our research group has previously shown that fibronectin induces transcriptional changes by modulating the expression of protein coding genes in LNCaP cells. However, potential changes at the post-transcriptional level are still not well understood. This study investigated the impact of exposure to fibronectin on the expression of a key class of regulatory RNAs, the microRNAs (miRNAs), in prostate cancer cell lines LNCaP and PC-3. Five mammalian miRNAs (miR-21, miR-29b, miR-125b, miR-221, and miR-222) were differentially expressed after fibronectin exposure in prostate cell lines. The expression profile of hundreds of mRNAs predicted to be targeted by these miRNAs was analyzed using publicly available RNA-Sequencing data (GSE64025, GSE68645, GSE29155). Also, protein-protein interaction networks and enrichment analysis were performed to gain insights into miRNA biological functions. Altogether, these functional analyzes revealed that fibronectin exposure impacts the expression of miRNAs potentially involved in PCa causing changes in critical signaling pathways such as PI3K-AKT, and response to cell division, death, proliferation, and migration. The relationship here demonstrated between fibronectin exposure and altered miRNA expression improves the comprehension of PCa in both men and other animals, such as dogs, which naturally develop prostate cancer.
Collapse
Affiliation(s)
- Bruno Martinucci
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Maira Smaniotto Cucielo
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Brenda Carvalho Minatel
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gabriel Henrique Caxali
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Mirian Carolini Esgoti Aal
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sergio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Flávia Karina Delella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
- *Correspondence: Flávia Karina Delella
| |
Collapse
|
33
|
Lieto E, Cardella F, Erario S, Del Sorbo G, Reginelli A, Galizia G, Urraro F, Panarese I, Auricchio A. Giant retroperitoneal liposarcoma treated with radical conservative surgery: A case report and review of literature. World J Clin Cases 2022; 10:6636-6646. [PMID: 35979304 PMCID: PMC9294896 DOI: 10.12998/wjcc.v10.i19.6636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/19/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Retroperitoneal liposarcoma (RLPS) is a rare malignant tumor of the connective tissue and usually grows to a large size, undetected. Diagnosis is currently based on collective findings from clinical examinations and computed tomography (CT) and magnetic resonance imaging, the latter of which show a fat density mass and possible surrounding organ involvement. Surgical resection is the main therapeutic strategy. The efficacy and safety of further therapeutic choices, such as chemotherapy and radiotherapy, are still controversial. CASE SUMMARY A 61-year-old man presented with complaint of a large left inguinal mass that had appeared suddenly, after a slight exertion. Ultrasonography revealed an omental inguinal hernia. During further clinical examination, an enormous palpable abdominal mass, continuing from the left inguinal location, was observed. CT revealed a giant RLPS, with remarkable mass effect and wide visceral dislocation. After multidisciplinary consultation, surgical intervention was performed. Subsequent neoadjuvant chemotherapy and radiotherapy were precluded by the mass' large size and retroperitoneal localization, features typically associated with non-response to these types of treatment. Instead, the patient underwent conservative treatment via radical surgical excision. After 1 year, his clinical condition remained good, with no radiological signs of recurrence. CONCLUSION Conservative treatment via surgery resulted in a successful outcome for a large RLPS.
Collapse
Affiliation(s)
- Eva Lieto
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| | - Francesca Cardella
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| | - Silvia Erario
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| | - Giovanni Del Sorbo
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples 80138, Campania, Italy
| | - Gennaro Galizia
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| | - Fabrizio Urraro
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples 80138, Campania, Italy
| | - Iacopo Panarese
- Depatment of Pathology Unit-Menthal Health, University of Campania "L. Vanvitelli", Naples 80132, Campania, Italy
| | - Annamaria Auricchio
- Department of Traslational Medical Sciences, University of Campania "L. Vanvitelli", Naples 80128, Campania, Italy
| |
Collapse
|
34
|
Wang S, Chen FE. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur J Med Chem 2022; 236:114334. [DOI: 10.1016/j.ejmech.2022.114334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
|
35
|
NF90-NF45 is essential for β cell compensation under obesity-inducing metabolic stress through suppression of p53 signaling pathway. Sci Rep 2022; 12:8837. [PMID: 35614067 PMCID: PMC9132887 DOI: 10.1038/s41598-022-12600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/09/2022] [Indexed: 01/10/2023] Open
Abstract
The Nuclear Factor 90 (NF90)-NF45 complex has been known to regulate the progression of transcription, mRNA stability, translational inhibition, RNA export and microRNA biogenesis. However, the physiological functions of the NF90-NF45 complex remain unclear. We newly discovered that the NF90-NF45 complex was expressed in primary β cells and established cell lines. Therefore, in this study, we focused on the function of the endogenous NF90-NF45 complex in the β cells. To investigate this issue, we generated β-cell-specific NF90-NF45 deficient mice. These mice exhibited hyperglycaemia and lower plasma insulin levels under a high fat diet together with decreased islet mass. To uncover this mechanism, we performed a whole-genome expression microarray of the total RNA prepared from β cell lines treated with siRNAs targeting both NF90 and NF45. In this result, we found an activation of p53 signaling in the NF90-NF45-knockdown cells. This activation was supported by elevation of luciferase activity derived from a reporter plasmid harboring p53 binding sites in the NF90-NF45-knockdown cells. Furthermore, the knockdown of NF90-NF45 resulted in a significant retardation of the β cell line growth rates. Importantly, a dominant negative form of p53 rescues the growth retardation in BTC6 cells depleted of NF90-NF45, suggesting that NF90-NF45 would be positively involved in β cell proliferation through suppression of p53 signal pathway. Taken together, NF90-NF45 is essential for β cell compensation under obesity-inducing metabolic stress via repression of p53 signaling.
Collapse
|
36
|
Sadoughi F, Dana PM, Asemi Z, Shafabakhash R, Mohammadi S, Heidar Z, Mirzamoradi M, Targhazeh N, Mirzaei H. Molecular and cellular mechanisms of melatonin in breast cancer. Biochimie 2022; 202:26-33. [PMID: 35341930 DOI: 10.1016/j.biochi.2022.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Breast cancer is considered as one of the most important health problems due to its poor prognosis and high rate of mortality and new diagnosed cases. Annually, a great number of deaths are reported in men and women; this means that despite all the improvements in cancer diagnosis and treatment, still, an intense need for more effective approaches exists. Melatonin is a multivalent compound which has a hand in several cellular and molecular processes and therefore, is an appropriate candidate for treatment of many diseases like cancer. Currently, considerable properties of this agent have oriented the research towards investigating its effects specifically in breast cancer. In this review, we gathered a bunch of evidence in order to give a new sight for breast cancer treatment utilizing melatonin. We expect that in coming years, melatonin will become one of the most common therapeutic drugs with lesser side-effects than other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Rana Shafabakhash
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
37
|
Zheng H, Fu J, Chen Z, Yang G, Yuan G. Dlx3 Ubiquitination by Nuclear Mdm2 Is Essential for Dentinogenesis in Mice. J Dent Res 2022; 101:1064-1074. [PMID: 35220830 DOI: 10.1177/00220345221077202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dentin is a major mineralized component of teeth. Odontoblasts are responsible for synthesis and secretion of dentin matrix. Previously, it has been demonstrated in a cell culture system that the E3 ubiquitin ligase, murine double minute 2 (Mdm2), promotes odontoblast-like differentiation of mouse dental papilla cells (mDPCs) by ubiquitinating p53 and the odontoblast-specific substrate Dlx3. However, whether Mdm2 plays an essential role in vivo in odontoblast differentiation and dentin formation remains unknown. In this study, we investigated the in vivo functions of Mdm2 using Dmp1-Cre;Mdm2 flox/flox mice combined with multiple histological and molecular biological methods. The results showed that Mdm2 deletion in the odontoblast layer led to defects in odontoblast differentiation and dentin formation. Unexpectedly, specific inhibition of the Mdm2-p53 axis in wild-type mice by injection of a small-molecule inhibitor Nutlin-3a indicated that the role of Mdm2 in dentinogenesis was p53 independent, which was inconsistent with the previous in vitro study. In situ proximity ligation assay (PLA) showed that Mdm2 interacted with and ubiquitinated Dlx3 in the odontoblast nucleus of mouse molars. Dlx3 promoted the translocation of Mdm2 to the nucleus, and in turn, the nuclear Mdm2 mediated ubiquitination of Dlx3 and promoted the odontoblast-like differentiation of mDPCs. Dlx3 interacted with Mdm2 through its C-terminal domain. Deletion of the C-terminal domain of Dlx3 reversed the enhanced odontoblast-like differentiation and the activation of Dspp promoter mediated by overexpression of wild-type or nuclear Mdm2. Our findings suggest that nuclear Mdm2 mediates ubiquitination of the transcription factor Dlx3, which is essential for Dlx3 transcriptional activity on Dspp as well as subsequent odontoblast differentiation and dentin formation.
Collapse
Affiliation(s)
- H. Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - J. Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Z. Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G. Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G. Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Suppression of the doxorubicin response by hypoxia-inducible factor-1α is strictly dependent on oxygen concentrations under hypoxic conditions. Eur J Pharmacol 2022; 920:174845. [PMID: 35202675 DOI: 10.1016/j.ejphar.2022.174845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) and p53 are involved in anticancer drug resistance under hypoxic conditions. Here, we found that the cytotoxicity of anticancer drugs (doxorubicin, gemcitabine, and cisplatin) was lower at 1% O2 than at 5% O2. We examined the effects of these drugs on HIF-1α and p53 expression under different hypoxic oxygen concentrations. At 5% O2, the drugs decreased HIF-1α expression and increased p53 levels. At 1% O2, the drugs increased HIF-1α expression but did not alter p53 levels. When the HIF-1α protein was stabilized by DMOG under normoxic conditions, doxorubicin did not increase the level of p53 expression. These results show that the maintenance of HIF-1α expression blocked doxorubicin-dependent increases in p53 expression. We hypothesized the mechanism of HIF-1α protein translation might be different between at 5% and at 1% O2, because many reports indicate that the same mechanism of HIF-1α protein stabilization occurs under hypoxic conditions, such as 5% and 1% O2. The level of phosphorylated-4E-BP1, which causes translation of HIF-1α, was higher at 1% O2 than at 5% O2. Our results suggest that the sensitivity of tumor cells to anticancer drugs is dependent oxygen concentrations under hypoxic conditions, and involves 4E-BP1-dependent stabilization of the HIF-1α protein.
Collapse
|
39
|
Pant V, Aryal NK, Xiong S, Chau GP, Fowlkes NW, Lozano G. Alterations of the MDM2 C-terminus differentially impact its function in vivo. Cancer Res 2022; 82:1313-1320. [PMID: 35078816 PMCID: PMC8983537 DOI: 10.1158/0008-5472.can-21-2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 01/10/2023]
Abstract
Murine double minute 2 (Mdm2) is the principal E3-ubiquitin ligase for p53 and contains a C2H2C4 type RING domain wherein the last cysteine residue is followed by an evolutionarily conserved 13 amino acid C-terminal tail. Previous studies have indicated that integrity of the C-terminal tail is critical for Mdm2 function. Recently, a mutation extending the MDM2 length by five amino acids was identified and associated with enhanced p53 response in fibroblasts and premature aging in a human patient. To investigate the importance of the conserved Mdm2 C-terminal length on p53 regulatory function in vivo, we engineered three novel mouse alleles using CRISPR-Cas9 technology. Genetic studies with these murine models showed that curtailing Mdm2 C-terminal length by even a single amino acid leads to p53-dependent embryonic lethality. Extension of the Mdm2 C-terminal length by five amino acids (QLTCL) yielded viable mice that are smaller in size, exhibit fertility problems, and have a shortened life span. Analysis of early passage mouse embryonic fibroblasts indicated impaired Mdm2 function correlates with enhanced p53 activity under stress conditions. Furthermore, analysis in mice showed tissue-specific alterations in p53 target gene expression and enhanced radiosensitivity. These results confirm the physiological importance of the evolutionarily conserved Mdm2 C-terminus in regulating p53 functions. SIGNIFICANCE This in vivo study highlights that alterations to the C-terminus of Mdm2 perturb its regulation of the tumor suppressor p53.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Neeraj K. Aryal
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Current address: Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451
| | - Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Gilda P Chau
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Corresponding author: Guillermina Lozano, PhD, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, Tel. 713 834 6386,
| |
Collapse
|
40
|
Owosho AA, Ladeji AM, Adesina OM, Adebiyi KE, Olajide MA, Okunade T, Palmer J, Kehinde T, Vos JA, Cole G, Summersgill KF. SATB2 and MDM2 Immunoexpression and Diagnostic Role in Primary Osteosarcomas of the Jaw. Dent J (Basel) 2021; 10:dj10010004. [PMID: 35049602 PMCID: PMC8775091 DOI: 10.3390/dj10010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Primary osteosarcomas of the jaw (OSJ) are rare, accounting for 6% of all osteosarcomas. This study aims to determine the value of SATB2 and MDM2 immunohistochemistry (IHC) in differentiating OSJ from other jawbone mimickers, such as benign fibro-osseous lesions (BFOLs) of the jaw or Ewing sarcoma of the jaw. Certain subsets of osteosarcoma harbor a supernumerary ring and/or giant marker chromosomes with amplification of the 12q13-15 region, including the murine double-minute type 2 (MDM2) and cyclin-dependent kinase 4 (CDK4) genes. Special AT-rich sequence-binding protein 2 (SATB2) is an immunophenotypic marker for osteoblastic differentiation. Cases of OSJ, BFOLs (ossifying fibroma and fibrous dysplasia) of the jaw, and Ewing sarcoma of the jaw were retrieved from the Departments of Oral Pathology and Oral Medicine, Faculty of Dentistry, Obafemi Awolowo University and Lagos State University College of Medicine, Nigeria. All OSJ retrieved showed histologic features of high-grade osteosarcoma. IHC for SATB2 (clone EP281) and MDM2 (clone IF2), as well as fluorescence in situ hybridization (FISH) for MDM2 amplification, were performed on all cases. SATB2 was expressed in a strong intensity and diffuse staining pattern in all cases (11 OSJ, including a small-cell variant, 7 ossifying fibromas, and 5 fibrous dysplasias) except in Ewing sarcoma, where it was negative in neoplastic cells. MDM2 was expressed in a weak to moderate intensity and scattered focal to limited diffuse staining pattern in 27% (3/11) of cases of OSJ and negative in all BFOLs and the Ewing sarcoma. MDM2 amplification was negative by FISH in interpretable cases. In conclusion, the three cases of high-grade OSJs that expressed MDM2 may have undergone transformation from a low-grade osteosarcoma (LGOS). SATB2 is not a dependable diagnostic marker to differentiate OSJ from BFOLs of the jaw; however, it could serve as a valuable diagnostic marker in differentiating the small-cell variant of OSJ from Ewing sarcoma of the jaw, while MDM2 may be a useful diagnostic marker in differentiating OSJ from BFOLs of the jaw, especially in the case of an LGOS or high-grade transformed osteosarcoma.
Collapse
Affiliation(s)
- Adepitan A. Owosho
- Missouri School of Dentistry and Oral Health, A.T. Still University, Kirksville, MO 63501, USA;
- Correspondence: ; Tel.: +1-660-626-2843
| | - Adeola M. Ladeji
- Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, Lagos State University, Lagos 101233, Nigeria; (A.M.L.); (K.E.A.); (M.A.O.)
| | - Olufunlola M. Adesina
- Department of Oral Medicine and Oral Pathology, Faculty of Dentistry, Obafemi Awolowo University, Ile-Ife 220282, Nigeria; (O.M.A.); (T.O.)
| | - Kehinde E. Adebiyi
- Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, Lagos State University, Lagos 101233, Nigeria; (A.M.L.); (K.E.A.); (M.A.O.)
| | - Mofoluwaso A. Olajide
- Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, Lagos State University, Lagos 101233, Nigeria; (A.M.L.); (K.E.A.); (M.A.O.)
| | - Toluwaniyin Okunade
- Department of Oral Medicine and Oral Pathology, Faculty of Dentistry, Obafemi Awolowo University, Ile-Ife 220282, Nigeria; (O.M.A.); (T.O.)
| | - Jacob Palmer
- Missouri School of Dentistry and Oral Health, A.T. Still University, Kirksville, MO 63501, USA;
| | - Temitope Kehinde
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University, Morgantown, WV 26506, USA; (T.K.); (J.A.V.)
| | - Jeffrey A. Vos
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University, Morgantown, WV 26506, USA; (T.K.); (J.A.V.)
| | - Grayson Cole
- Department of Diagnostic Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.C.); (K.F.S.)
| | - Kurt F. Summersgill
- Department of Diagnostic Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.C.); (K.F.S.)
| |
Collapse
|
41
|
AaTs-1: A Tetrapeptide from Androctonus australis Scorpion Venom, Inhibiting U87 Glioblastoma Cells Proliferation by p53 and FPRL-1 Up-Regulations. Molecules 2021; 26:molecules26247610. [PMID: 34946686 PMCID: PMC8704564 DOI: 10.3390/molecules26247610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma is an aggressive cancer, against which medical professionals are still quite helpless, due to its resistance to current treatments. Scorpion toxins have been proposed as a promising alternative for the development of effective targeted glioblastoma therapy and diagnostic. However, the exploitation of the long peptides could present disadvantages. In this work, we identified and synthetized AaTs-1, the first tetrapeptide from Androctonus australis scorpion venom (Aa), which exhibited an antiproliferative effect specifically against human glioblastoma cells. Both the native and synthetic AaTs-1 were endowed with the same inhibiting effect on the proliferation of U87 cells with an IC50 of 0.56 mM. Interestingly, AaTs-1 was about two times more active than the anti-glioblastoma conventional chemotherapeutic drug, temozolomide (TMZ), and enhanced its efficacy on U87 cells. AaTs-1 showed a significant similarity with the synthetic peptide WKYMVm, an agonist of a G-coupled formyl-peptide receptor, FPRL-1, known to be involved in the proliferation of glioma cells. Interestingly, the tetrapeptide triggered the dephosphorylation of ERK, p38, and JNK kinases. It also enhanced the expression of p53 and FPRL-1, likely leading to the inhibition of the store operated calcium entry. Overall, our work uncovered AaTs-1 as a first natural potential FPRL-1 antagonist, which could be proposed as a promising target to develop new generation of innovative molecules used alone or in combination with TMZ to improve glioblastoma treatment response. Its chemical synthesis in non-limiting quantity represents a valuable advantage to design and develop low-cost active analogues to treat glioblastoma cancer.
Collapse
|
42
|
Bizzarri AR, Cannistraro S. Direct Interaction of miRNA and circRNA with the Oncosuppressor p53: An Intriguing Perspective in Cancer Research. Cancers (Basel) 2021; 13:6108. [PMID: 34885216 PMCID: PMC8657023 DOI: 10.3390/cancers13236108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are linear single-stranded non-coding RNAs oligonucleotides, widely distributed in cells, playing a key role as regulators of gene expression at post-transcriptional level. Circular RNAs (circRNAs) are single-stranded RNA oligonucleotides forming a covalently closed continuous loop, which confers them a high structural stability and which may code for proteins or act as gene regulators. Abnormal levels or dysregulation of miRNA or circRNA are linked to several cancerous pathologies, so that they are receiving a large attention as diagnostic and prognostic tools. Some miRNAs and circRNAs are strongly involved in the regulatory networks of the transcription factor p53, which plays a pivotal role as tumor suppressor. Overexpression of miRNAs and/or circRNAs, as registered in a number of cancers, is associated to a concomitant inhibition of the p53 onco-suppressive function. Among other mechanisms, it was recently suggested that a functional inhibition of p53 could arise from a direct interaction between p53 and oncogenic miRNAs or circRNAs; a mechanism that might be reminiscent of the p53 inhibition by some E3 ubiquitin ligase such as MDM2 and COP1. Such evidence might deserve important implications for restoring the p53 anticancer functionality, and pave the way to intriguing perspectives for novel therapeutic strategies. In the present paper, the experimental evidence of the interaction between p53 and miRNAs and/or circRNAs is reviewed and discussed in connection with the development of new anticancer approaches.
Collapse
|
43
|
TP53 in Acute Myeloid Leukemia: Molecular Aspects and Patterns of Mutation. Int J Mol Sci 2021; 22:ijms221910782. [PMID: 34639121 PMCID: PMC8509740 DOI: 10.3390/ijms221910782] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
Mutation of the tumor suppressor gene, TP53, is associated with abysmal survival outcomes in acute myeloid leukemia (AML). Although it is the most commonly mutated gene in cancer, its occurrence is observed in only 5–10% of de novo AML, and in 30% of therapy related AML (t-AML). TP53 mutation serves as a prognostic marker of poor response to standard-of-care chemotherapy, particularly in t-AML and AML with complex cytogenetics. In light of a poor response to traditional chemotherapy and only a modest improvement in outcome with hypomethylation-based interventions, allogenic stem cell transplant is routinely recommended in these cases, albeit with a response that is often short lived. Despite being frequently mutated across the cancer spectrum, progress and enthusiasm for the development of p53 targeted therapeutic interventions is lacking and to date there is no approved drug that mitigates the effects of TP53 mutation. There is a mounting body of evidence indicating that p53 mutants differ in functionality and form from typical AML cases and subsequently display inconsistent responses to therapy at the cellular level. Understanding this pathobiological activity is imperative to the development of effective therapeutic strategies. This review aims to provide a comprehensive understanding of the effects of TP53 on the hematopoietic system, to describe its varying degree of functionality in tumor suppression, and to illustrate the need for the adoption of personalized therapeutic strategies to target distinct classes of the p53 mutation in AML management.
Collapse
|
44
|
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. MOLECULAR BIOMEDICINE 2021; 2:23. [PMID: 35006464 PMCID: PMC8607428 DOI: 10.1186/s43556-021-00043-2] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3 ligases might be involved in regulating various biological processes and cellular responses to stress signal associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.
Collapse
Affiliation(s)
- Quan Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
45
|
He S, Ma J, Fang Y, Liu Y, Wu S, Dong G, Wang W, Sheng C. Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharm Sin B 2021; 11:1617-1628. [PMID: 34221872 PMCID: PMC8245912 DOI: 10.1016/j.apsb.2020.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
The dose-related adverse effects of MDM2‒P53 inhibitors have caused significant concern in the development of clinical safe anticancer agents. Herein we report an unprecedented homo-PROTAC strategy for more effective disruption of MDM2‒P53 interaction. The design concept is inspired by the capacity of sub-stoichiometric catalytic PROTACs enabling to degrade an unwanted protein and the dual functions of MDM2 as an E3 ubiquitin ligase and a binding protein with tumor suppressor P53. The new homo-PROTACs are designed to induce self-degradation of MDM2. The results of the investigation have shown that PROTAC 11a efficiently dimerizes MDM2 with highly competitive binding activity and induces proteasome-dependent self-degradation of MDM2 in A549 non-small cell lung cancer cells. Furthermore, markedly, enantiomer 11a-1 exhibits potent in vivo antitumor activity in A549 xenograft nude mouse model, which is the first example of homo-PROTAC with in vivo therapeutic potency. This study demonstrates the potential of the homo-PROTAC as an alternative chemical tool for tumorigenic MDM2 knockdown, which could be developed into a safe therapy for cancer treatment.
Collapse
Affiliation(s)
- Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Junhui Ma
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuxin Fang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Shanchao Wu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel./fax: +86 21 81871239.
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Corresponding authors. Tel./fax: +86 21 81871239.
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- School of Medicine, Tongji University, Shanghai 200072, China
- Corresponding authors. Tel./fax: +86 21 81871239.
| |
Collapse
|
46
|
Lim CC, Chan SK, Lim YY, Ishikawa Y, Choong YS, Nagaoka Y, Lim TS. Development and structural characterisation of human scFv targeting MDM2 spliced variant MDM2 15kDa. Mol Immunol 2021; 135:191-203. [PMID: 33930714 DOI: 10.1016/j.molimm.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 01/10/2023]
Abstract
The murine double minute 2 (MDM2) protein is a major negative regulator of the tumour suppressor protein p53. Under normal conditions, MDM2 constantly binds to p53 transactivation domain and/or ubiquinates p53 via its role as E3 ubiquitin ligase to promote p53 degradation as well as nuclear export to maintain p53 levels in cells. Meanwhile, amplification of MDM2 and appearance of MDM2 spliced variants occur in many tumours and normal tissues making it a prognostic indicator for human cancers. The mutation or deletion of p53 protein in half of human cancers inactivates its tumour suppressor activity. However, cancers with wild type p53 have its function effectively inhibited through direct interaction with MDM2 oncoprotein. Here, we described the construction of a MDM2 spliced variant (rMDM215kDa) consisting of SWIB/MDM2 domain and its central region for antibody generation. Biopanning with a human naïve scFv library generated four scFv clones specific to rMDM215kDa. Additionally, the selected scFv clones were able to bind to the recombinant full length MDM2 (rMDM2-FL). Computational prediction showed that the selected scFv clones potentially bind to exon 7-8 of MDM2 while leaving the MDM2/SWIB domain free for p53 interaction. The developed antibodies exhibit good specificity can be further investigated for downstream biomedical and research applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yee Ying Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yuya Ishikawa
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho Suita, Osaka, 564-8680, Japan
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho Suita, Osaka, 564-8680, Japan
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
47
|
Sciot R. MDM2 Amplified Sarcomas: A Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11030496. [PMID: 33799733 PMCID: PMC8001728 DOI: 10.3390/diagnostics11030496] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
Murine Double Minute Clone 2, located at 12q15, is an oncogene that codes for an oncoprotein of which the association with p53 was discovered 30 years ago. The most important function of MDM2 is to control p53 activity; it is in fact the best documented negative regulator of p53. Mutations of the tumor suppressor gene p53 represent the most frequent genetic change in human cancers. By overexpressing MDM2, cancer cells have another means to block p53. The sarcomas in which MDM2 amplification is a hallmark are well-differentiated liposarcoma/atypical lipomatous tumor, dedifferentiated liposarcoma, intimal sarcoma, and low-grade osteosarcoma. The purpose of this review is to summarize the typical clinical, histopathological, immunohistochemical, and genetic features of these tumors.
Collapse
Affiliation(s)
- Raf Sciot
- Department of Pathology, University Hospital, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Mozuraitiene J, Gudleviciene Z, Vincerzevskiene I, Laurinaviciene A, Pamedys J. Expression levels of FBXW7 and MDM2 E3 ubiquitin ligases and their c-Myc and p53 substrates in patients with dysplastic nevi or melanoma. Oncol Lett 2020; 21:37. [PMID: 33262829 PMCID: PMC7693127 DOI: 10.3892/ol.2020.12298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are of interest as drug targets due to their involvement in the regulation of the functions and interactions of several proteins. Various E3 ligase complexes are considered oncogenes or tumor suppressors associated with the development of melanoma. These proteins regulate the functions of various signaling pathways and proteins, such as p53 and Notch. The aim of the present study was to determine the expression levels of F-box and WD repeat domain-containing 7 (FBXW7), c-Myc, MDM2 and p53 proteins in samples from patients with dysplastic nevi or melanoma, and to evaluate their association with clinicopathological parameters and prognosis of the disease. Paraffin blocks with postoperative material from 100 patients diagnosed with dysplastic moles or melanoma were used in the present study. Tissue microarrays and immunohistochemistry were used to examine FBXW7, c-Myc, MDM2 and p53 protein expression. The results revealed that there was significantly lower FBXW7 expression in advanced melanoma compared with dysplastic nevus, melanoma in situ and stage pT1 melanoma (P<0.001). Additionally, there was a statistically significant association between the expression levels of FBXW7 and the morphological type of the tumor (P<0.001). In addition, there was a strong positive association between FBXW7 expression and the changes in c-Myc expression (P<0.02), and a strong trend was observed between decreased FBXW7 expression and a higher risk of death in patients, with the major factor in patient mortality being the stages of melanoma. Additionally, p53 expression was associated with the depth of melanoma invasion and the morphological type of the tumor. In summary, FBXW7 expression exhibited the highest statistically significant prognostic value and associations with advanced melanoma. As the majority of FBXW7 substrates are oncoproteins, their degradation by FBXW7 may highlight these proteins as potential targets for the treatment of melanoma.
Collapse
Affiliation(s)
- Julija Mozuraitiene
- Outpatient Clinic, National Cancer Institute, LT-08660 Vilnius, Lithuania.,Clinic of Internal Diseases, Family Medicine and Oncology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | | | - Ieva Vincerzevskiene
- Laboratory of Clinical Oncology, National Cancer Institute, LT-08660 Vilnius, Lithuania.,Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aida Laurinaviciene
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania.,National Center of Pathology Affiliated to Vilnius University Hospital SantarosKlinikos, LT-08406 Vilnius, Lithuania
| | - Justinas Pamedys
- National Center of Pathology Affiliated to Vilnius University Hospital SantarosKlinikos, LT-08406 Vilnius, Lithuania
| |
Collapse
|
49
|
Cai W, Zhou W, Han Z, Lei J, Zhuang J, Zhu P, Wu X, Yuan W. Master regulator genes and their impact on major diseases. PeerJ 2020; 8:e9952. [PMID: 33083114 PMCID: PMC7546222 DOI: 10.7717/peerj.9952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Master regulator genes (MRGs) have become a hot topic in recent decades. They not only affect the development of tissue and organ systems but also play a role in other signal pathways by regulating additional MRGs. Because a MRG can regulate the concurrent expression of several genes, its mutation often leads to major diseases. Moreover, the occurrence of many tumors and cardiovascular and nervous system diseases are closely related to MRG changes. With the development in omics technology, an increasing amount of investigations will be directed toward MRGs because their regulation involves all aspects of an organism’s development. This review focuses on the definition and classification of MRGs as well as their influence on disease regulation.
Collapse
Affiliation(s)
- Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wanbang Zhou
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Zhe Han
- University of Maryland School of Medicine, Center for Precision Disease Modeling, Baltimore, MD, USA
| | - Junrong Lei
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
50
|
Nientiedt M, Müller K, Nitschke K, Erben P, Steidler A, Porubsky S, Popovic ZV, Waldbillig F, Mühlbauer J, Kriegmair MC. B-MYB-p53-related relevant regulator for the progression of clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2020; 147:129-138. [PMID: 32951068 DOI: 10.1007/s00432-020-03392-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the mRNA expression of B-MYB and MDM2 together with their p53 relatedness in clear cell renal cell carcinoma (ccRCC). METHODS Genes were screened for their mRNA expression from 529 patients in a publicly available ccRCC cohort (TCGA). A cohort of 101 patients with ccRCC served as validation by qRT-PCR mRNA tissue expression analysis. RESULTS Expression: B-MYB expression was significantly higher in high-grade tumours (p < 0.0001 and p = 0.048) and in advanced stages (p = 0.005 and p = 0.037) in both cohorts. Correlation: p53-B-MYB as well as MDM2-B-MYB showed significant correlations in local and low-grade ccRCCs, but not in high grade tumours or advanced stages (r < 0.3 and/or p > 0.05). Survival: Multivariable Cox regression of the TCGA cohort revealed B-MYB upregulation and low MDM2 expression as predictors for an impaired overall survival (OS) (HR 1.97; p = 0.0003; HR 2.94, p < 0.0001) and progression-free survival (PFS) (HR 2.86; p = 0.0005; HR 1.58, p = 0.046). In the validation cohort, the results were confirmed for OS by univariable, but not multivariable regression: high B-MYB expression (HR = 3.05, p = 0.035) and low MDM2 expression (HR 3.81, p value 0.036). CONCLUSION In ccRCC patients with high-grade tumours and advanced stages, high B-MYB expression is common and is associated with poorer OS and PFS. These patients show a loss of their physiological B-MYB-p53 network correlation, suggesting an additional, alternative regulatory, oncogenic mechanism. Assuming further characterization of its signalling pathways, B-MYB could be a potential therapy target for ccRCC.
Collapse
Affiliation(s)
- M Nientiedt
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - K Müller
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - K Nitschke
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - P Erben
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - A Steidler
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - S Porubsky
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Z V Popovic
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - F Waldbillig
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - J Mühlbauer
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - M C Kriegmair
- Department of Urology and Urosurgery, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|