1
|
Louge Uriarte EL, González Pasayo RA, Massó M, Carrera Paez L, Domínguez Moncla M, Donis N, Malena R, Méndez A, Morrell E, Giannitti F, Armendano JI, Faverin C, Centrón D, Parreño V, Odeón AC, Quiroga MP, Moreira AR. Molecular characterization of multidrug-resistant Escherichia coli of the phylogroups A and C in dairy calves with meningitis and septicemia. Microb Pathog 2022; 163:105378. [PMID: 34982979 DOI: 10.1016/j.micpath.2021.105378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli is an important cause of septicemia (SEPEC) and neonatal meningitis (NMEC) in dairy calves. However, the diversity of virulence profiles, phylogroups, antimicrobial resistance patterns, carriage of integron structures, and fluoroquinolone (FQ) resistance mechanisms have not been fully investigated. Also, there is a paucity of knowledge about the virulence profiles and frequency of potential SEPEC in feces from calves with or without diarrhea. This study aimed to characterize the virulence potential, phylogroups, antimicrobial susceptibility, integron content, and FQ-resistance mechanisms in Escherichia coli isolated from calves with meningitis and septicemia. Additionally, the virulence genes (VGs) and profiles of E. coli isolated from diarrheic and non-diarrheic calves were compared between them and together with NMEC and SEPEC in order to identify shared profiles. Tissue and fluid samples from eight dairy calves with septicemia, four of which had concurrent meningitis, were processed for bacteriology and histopathology. Typing of VGs was assessed in 166 isolates from diverse samples of each calf. Selected isolates were evaluated for antimicrobial susceptibility by the disk diffusion test. Phylogroups, integron gene cassettes cartography, and FQ-resistance determinants were analyzed by PCR, sequencing, and bioinformatic tools. Furthermore, 109 fecal samples and 700 fecal isolates from dairy calves with or without diarrhea were evaluated to detect 19 VGs by uniplex PCR. Highly diverse VG profiles were characterized among NMEC and SEPEC isolates, but iucD was the predominant virulence marker. Histologic lesions in all calves supported their pathogenicity. Selected isolates mainly belonged to phylogroups A and C and showed multidrug resistance. Classic (dfrA17 and arr3-dfrA27) and complex (dfrA17-aadA5::ISCR1::blaCTX-M-2) class 1 integrons were identified. Target-site mutations in GyrA (S83L and D87N) and ParC (S80I) encoding genes were associated with FQ resistance. The VGs detected more frequently in fecal samples included f17G (50%), papC (30%), iucD (20%), clpG (19%), eae (16%), and afaE-8 (13%). Fecal isolates displaying the profiles of f17 or potential SEPEC were found in 25% of calves with and without diarrhea. The frequency of E. coli VGs and profiles did not differ between both groups (p > 0.05) and were identical or similar to those found in NMEC and SEPEC. Overall, multidrug-resistant E. coli isolates with diverse VG profiles and belonging to phylogroups A and C can be implicated in natural cases of meningitis and septicemia. Their resistance phenotypes can be partially explained by class 1 integron gene cassettes and target-site mutations in gyrA and parC. These results highlight the value of antimicrobial resistance surveillance in pathogenic bacteria isolated from food-producing animals. Besides, calves frequently shed potential SEPEC in their feces as commensals ("Trojan horse"). Thus, these bacteria may be disseminated in the farm environment, causing septicemia and meningitis under predisposing factors.
Collapse
Affiliation(s)
- Enrique L Louge Uriarte
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina.
| | - Ramón A González Pasayo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Mariana Massó
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Laura Carrera Paez
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Manuel Domínguez Moncla
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Nicolás Donis
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Rosana Malena
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Alejandra Méndez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Eleonora Morrell
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Federico Giannitti
- Instituto Nacional de Investigación Agropecuaria (INIA), Ruta 50 km 11, Estación Experimental La Estanzuela, Semillero, 70006, Colonia, Uruguay
| | - Joaquín I Armendano
- Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil, 7000, Argentina
| | - Claudia Faverin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Daniela Centrón
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Viviana Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, 1712, Buenos Aires, Argentina
| | - Anselmo C Odeón
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - María Paula Quiroga
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.
| | - Ana Rita Moreira
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| |
Collapse
|
7
|
La Ragione RM, McLaren IM, Foster G, Cooley WA, Woodward MJ. Phenotypic and genotypic characterization of avian Escherichia coli O86:K61 isolates possessing a gamma-like intimin. Appl Environ Microbiol 2002; 68:4932-42. [PMID: 12324341 PMCID: PMC126447 DOI: 10.1128/aem.68.10.4932-4942.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Escherichia coli O86:K61 has long been associated with outbreaks of infantile diarrhea in humans and with diarrheal disease in many animal species. Studies in the late 1990s identified E. coli O86:K61 as the cause of mortality in a variety of wild birds, and in this study, 34 E. coli O86:K61 isolates were examined. All of the isolates were nonmotile, but most elaborated at least two morphologically distinct surface appendages that were confirmed to be type 1 and curli fimbriae. Thirty-three isolates were positive for the eaeA gene encoding a gamma type of intimin. No phenotypic or genotypic evidence was obtained for elaboration of Shiga-like toxins, but most isolates possessed the gene coding for the cytolethal distending toxin. Five isolates were selected for adherence assays performed with tissue explants and HEp-2 cells, and four of these strains produced attaching and effacing lesions on HEp-2 cells and invaded the cells, as determined by transmission electron microscopy. Two of the five isolates were inoculated orally into 1-day-old specific-pathogen-free chicks, and both of these isolates colonized, invaded, and persisted well in this model. Neither isolate produced attaching and effacing lesions in chicks, although some pathology was evident in the alimentary tract. No deaths were recorded in inoculated chicks. These findings are discussed in light of the possibility that wild birds are potential zoonotic reservoirs of attaching and effacing E. coli.
Collapse
Affiliation(s)
- R M La Ragione
- Department of Bacterial Diseases, VLA (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Orden JA, Cid D, Ruiz-Santa-Quiteria JA, García S, Martínez S, de la Fuente R. Verotoxin-producing Escherichia coli (VTEC), enteropathogenic E. coli (EPEC) and necrotoxigenic E. coli (NTEC) isolated from healthy cattle in Spain. J Appl Microbiol 2002; 93:29-35. [PMID: 12067371 DOI: 10.1046/j.1365-2672.2002.01649.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To determine the prevalence and characteristics of verotoxigenic Escherichia coli (VTEC), enteropathogenic E. coli (EPEC) and necrotoxigenic E. coli (NTEC) in healthy cattle. METHODS AND RESULTS Faecal samples from 412 healthy cattle were screened for the presence of VTEC, EPEC and NTEC. Four isolates from each sample were studied. VTEC, EPEC and NTEC were isolated in 8.7%, 8.2% and 9.9% of the animals, respectively. VTEC and NTEC were isolated more frequently from calves and heifers than from adults. Seventy (4.2%), 69 (4.2%) and 74 (4.5%) of the 1648 E. coli isolates were VTEC, EPEC and NTEC, respectively. Seventeen (24.3%) of the VTEC strains were eae-positive. Thirty-six (51.4%) of VTEC strains belonged to E. coli serogroups associated with haemorrhagic colitis and haemolytic uraemic syndrome in humans. The serogroups most prevalent among the EPEC strains were O10, O26, O71, O145 and O156. CONCLUSIONS Healthy cattle are a reservoir of VTEC, EPEC and NTEC. SIGNIFICANCE AND IMPACT OF THE STUDY Although most of the VTEC strains were eae-negative, a high percentage of VTEC strains belonged to serogroups associated with severe disease in humans.
Collapse
Affiliation(s)
- J A Orden
- Departamento de Patología Animal I, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Mainil JG, Jacquemin E, Pohl P, Fairbrother JM, Ansuini A, Le Bouguénec C, Ball HJ, De Rycke J, Oswald E. Comparison of necrotoxigenic Escherichia coli isolates from farm animals and from humans. Vet Microbiol 1999; 70:123-35. [PMID: 10591503 DOI: 10.1016/s0378-1135(99)00134-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Necrotoxigenic Escherichia coli (NTEC) isolated from animals and humans can belong to the same serogroups/types and produce or carry the genes coding for fimbrial and afimbrial adhesins of the same family, P, S, F17, and/or AFA, raising the question of a potential zoonotic source of human infection. The main purpose of this study was to compare 239 NTEC1 strains (45 from cattle, 65 from humans and 129 from piglets) and 98 NTEC2 strains from cattle, using a uniform and standardized typing scheme. The O serogroups and the biotypes recognized amongst NTEC1 and NTEC2 strains were quite varied, although some were more frequently observed (serogroups O2, O4, O6, O8, O18, O78, and O83 and biotypes 1, 2, 5, 6, and 9). Hybridization, results with gene probes for the P family (PAP probe), S family (SFA probe), AFA family (AFA probe), F17 family (F17 probe) of fimbrial and afimbrial adhesins, could differentiate most NTEC1 strains, which are PAP-, SFA- and/or AFA-positive, from NTEC2 strains, which are mainly F17- and/or AFA-positive, but were of no help in differentiating between NTEC1 strains from cattle, humans, and piglets. All but seven (98%) NTEC1 and NTEC2 strains were serum resistant, 199 (59%) produced an aerobactin, and colicin (I, V, or unidentified) was produced by 22-34% of them. On the other hand, more than 90% of the NTEC1 strains were haemolytic on sheep blood agar compared with only 40% of the NTEC2 strains. Production of a classical haemolysin, active on sheep erythrocytes, and hybridization with the PAP probe were associated in a majority of NTEC1 strains (63-81%), but very rarely in NTEC2 strains (3%). Production of enterohaemolysin and hybridization with the PAP probe were much less frequently associated in NTEC strains (1-9%). It was thus possible neither to completely differentiate NTEC1 strains from cattle, humans, and pigs, nor to define a signature for the NTEC strains. Necrotoxigenic E. coli must still be identified on the basis of the production of the Cytotoxic Necrotizing Factors 1 or 2 (or of their encoding genes) and complete differentiation of NTEC1 strains from cattle, humans, and piglets, use additionnal methods.
Collapse
Affiliation(s)
- J G Mainil
- Chaire de Bactériologie et de Pathologie Bactérienne, Faculté de Médecine Vétérinaire, Université de Liège, Campus du Sart Tilman, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Orden JA, Ruiz-Santa-Quiteria JA, Cid D, García S, de la Fuente R. Prevalence and characteristics of necrotoxigenic Escherichia coli (NTEC) strains isolated from diarrhoeic dairy calves. Vet Microbiol 1999; 66:265-73. [PMID: 10384887 DOI: 10.1016/s0378-1135(99)00012-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fecal samples from 246, 1-90-days old diarrhoeic dairy calves in 72 herds were screened for the presence of cytotoxic necrotizing factors (CNF)-producing Escherichia coli (NTEC). NTEC were detected by tissue culture assays and PCR in 39 (15.8%) of the diarrheic calves, and the majority of these animals (34 of 39, ca. 87.2%) were infected by NTEC producing CNF2. Calves were grouped according to their age (1-7 days, 8-14 days, 15-21 days, 22-30 days and 31-90 days) and analyses of prevalence were done by the Mantel-Haenzsel chi2-test for trend. A significant age-associated increase in the prevalence of NTEC producing CNF2 (p<0.0001) was found. Eighty-one (8.4%) of the 958 E. coli isolates from the 246 diarrheic calves were positive for CNF in the tissue culture assays. These strains were analyzed by PCR and this technique showed that three (3.7%) strains were CNF1-positive and 75 (92.6%) were CNF2-positive. Moreover, three of the strains positive in the tissue culture assays were negative by PCR. These strains were subsequently assayed in several biological tests (rabbit skin test, mouse intraperitoneal test and mouse footpad test) which showed that they were really NTEC, probably producing CNF2, but with some different properties to classical strains producing CNF2. NTEC strains producing CNF2 belonged to different serogroups (O2, O7, O9, O14, O15, O41, O43, O45, O55, O76, O86, O88, O109, O115, O123, O128, O153 and O159) than strains producing CNF1 (O11 and O32) or PCR-negative strains (O111). Moreover, a strong association between CNF2 and F17 fimbriae was found (78.6% of CNF2-positive strains were F17-positive, whereas only 22.9% of CNF2-negative strains were F17-positive).
Collapse
Affiliation(s)
- J A Orden
- Departamento Patología Animal I, Facultad de Veterinaria, Universidad Compultense, Madrid, Spain
| | | | | | | | | |
Collapse
|