1
|
Zehr JD, Kosakovsky Pond SL, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic feline coronavirus phenotypes. Virus Evol 2023; 9:vead019. [PMID: 37038392 PMCID: PMC10082545 DOI: 10.1093/ve/vead019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Feline coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed feline enteric coronavirus [FECV]), with around 12 per cent developing into deadly feline infectious peritonitis (FIP; feline infectious peritonitis virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV- and FECV-specific signals of positive selection. We analyzed full-length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site (FCS) and the other within the fusion domain of Spike. We also found fifteen sites subject to positive selection associated with FIPV within Spike, eleven of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were fourteen sites (twelve novel sites) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 FCS and adjacent to C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype and included twenty-four positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV-wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that it is unlikely to be one singular 'switch' mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas 78352, France
| | - Ximena A Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alexander G Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Laura B Goodman
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Zehr JD, Pond SLK, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic Feline Coronavirus phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523607. [PMID: 36712007 PMCID: PMC9882035 DOI: 10.1101/2023.01.11.523607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Feline Coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed Feline Enteric Coronavirus [FECV]), with around 12% developing into deadly Feline Infectious Peritonitis (FIP; Feline Infectious Peritonitis Virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV and FECV specific signals of positive selection. We analyzed full length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site, and the other within the fusion domain of Spike. We also found 15 sites subject to positive selection associated with FIPV within Spike, 11 of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were 14 sites (12 novel) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 furin cleavage site and adjacent C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype, and included 24 positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that is unlikely to be one singular "switch" mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouyen-Josas, France
| | - Ximena A. Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Alexander G. Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D. Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M. Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Annette Choi
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gary R. Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Laura B. Goodman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Abstract
Feline infectious peritonitis (FIP) is one of the most important fatal infectious diseases of cats, the pathogenesis of which has not yet been fully revealed. The present review focuses on the biology of feline coronavirus (FCoV) infection and the pathogenesis and pathological features of FIP. Recent studies have revealed functions of many viral proteins, differing receptor specificity for type I and type II FCoV, and genomic differences between feline enteric coronaviruses (FECVs) and FIP viruses (FIPVs). FECV and FIP also exhibit functional differences, since FECVs replicate mainly in intestinal epithelium and are shed in feces, and FIPVs replicate efficiently in monocytes and induce systemic disease. Thus, key events in the pathogenesis of FIP are systemic infection with FIPV, effective and sustainable viral replication in monocytes, and activation of infected monocytes. The host's genetics and immune system also play important roles. It is the activation of monocytes and macrophages that directly leads to the pathologic features of FIP, including vasculitis, body cavity effusions, and fibrinous and granulomatous inflammatory lesions. Advances have been made in the clinical diagnosis of FIP, based on the clinical pathologic findings, serologic testing, and detection of virus using molecular (polymerase chain reaction) or antibody-based methods. Nevertheless, the clinical diagnosis remains challenging in particular in the dry form of FIP, which is partly due to the incomplete understanding of infection biology and pathogenesis in FIP. So, while much progress has been made, many aspects of FIP pathogenesis still remain an enigma.
Collapse
Affiliation(s)
- A Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland.
| | | |
Collapse
|
4
|
Tanaka Y, Sasaki T, Matsuda R, Uematsu Y, Yamaguchi T. Molecular epidemiological study of feline coronavirus strains in Japan using RT-PCR targeting nsp14 gene. BMC Vet Res 2015; 11:57. [PMID: 25889235 PMCID: PMC4359392 DOI: 10.1186/s12917-015-0372-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 02/24/2015] [Indexed: 12/05/2022] Open
Abstract
Background Feline infectious peritonitis is a fatal disease of cats caused by infection with feline coronavirus (FCoV). For detecting or genotyping of FCoV, some RT-PCR plus nested PCR techniques have been reported previously. However, referring to the whole genome sequences (WGSs) registered at NCBI, there are no detection methods that can tolerate the genetic diversity among FCoV population. In addition, the quasispecies nature of FCoV, which consists of heterogeneous variants, has been also demonstrated; thus, a universal method for heteropopulations of FCoV variants in clinical specimens is desirable. Results To develop an RT-PCR method for detection and genotyping of FCoV, we performed comparative genome analysis using WGSs of 32 FCoV, 7 CCoV and 5 TGEV strains obtained from NCBI. As the PCR target, we focused on the nsp14 coding region, which is highly conserved and phylogenetically informative, and developed a PCR method targeting nsp14 partial sequences. Among 103 ascites, 45 pleural effusion and 214 blood specimens from clinically ill cats, we could detect FCoV in 55 (53.4%), 14 (31.1%) and 19 (8.9%) specimens using the present method. Direct sequencing of PCR products and phylogenetic analysis allowed discrimination between type I- and II-FCoV serotypes. Our nsp14 amino acid sequence typing (nsp14 aa ST) showed that the FCoV clone with sequence type (ST) 42, which was the most predominant genotype of WGS strains, was prevalent in domestic cats in Japan. Conclusions Our nsp14 PCR scheme will contribute to virus detection, epidemiology and ecology of FCoV strains. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0372-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan.
| | - Takashi Sasaki
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan.
| | - Ryo Matsuda
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan.
| | - Yosuke Uematsu
- Canine Lab., Inc., Nokodai-Tamakoganei Venture Port 302, 2-24-16, Koganei, Tokyo, 184-0012, Japan.
| | - Tomohiro Yamaguchi
- Canine Lab., Inc., Nokodai-Tamakoganei Venture Port 302, 2-24-16, Koganei, Tokyo, 184-0012, Japan.
| |
Collapse
|
5
|
Paltrinieri S, Rossi G, Giordano A. Relationship between rate of infection and markers of inflammation/immunity in Holy Birman cats with feline coronavirus. Res Vet Sci 2014; 97:263-70. [PMID: 25241387 PMCID: PMC7111858 DOI: 10.1016/j.rvsc.2014.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/09/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022]
Abstract
The aim of this study was to assess whether Holy Birman cats (HB) have a peculiar immune profile and a higher rate of infection by feline coronaviruses (FCoV). Leucocyte and lymphocyte subsets, antibody titers, α1-acid glycoprotein (AGP), globulin fractions, IL-4, IL-12 and IFN-γ in blood and fecal FCoV excretion were determined in HB (n = 75) and in cats from other breeds (n = 94). Significantly higher CD4/CD8 ratio, IFN-γ concentration and IL12/IL4 ratio and significantly lower IL-4 concentration and proportion of shedders were found in HB than in other breeds. No other differences were found. In conclusion, this study did not provide evidence of peculiar immune profiles in HB, except for a prevalent Th1 profile, that may explain why in our caseload the rate of shedders was lower in HB than in other breeds.
Collapse
Affiliation(s)
- S Paltrinieri
- Department of Veterinary Sciences and Public Health, University of Milan, Via Celoria 10, 20133, Milan, Italy.
| | - G Rossi
- Department of Veterinary Sciences and Public Health, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - A Giordano
- Department of Veterinary Sciences and Public Health, University of Milan, Via Celoria 10, 20133, Milan, Italy
| |
Collapse
|
6
|
Borschensky CM, Reinacher M. Mutations in the 3c and 7b genes of feline coronavirus in spontaneously affected FIP cats. Res Vet Sci 2014; 97:333-40. [PMID: 25128417 PMCID: PMC7111757 DOI: 10.1016/j.rvsc.2014.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 07/17/2014] [Accepted: 07/25/2014] [Indexed: 01/26/2023]
Abstract
ORF 3c is affected by deletions and stop codons more frequently than ORF 7b. Deletions in ORF 3c are not a compelling feature of FIPV. Sequences of different tissue specimens within one cat are mostly identical. PCR amplification of ORF 7b is more efficiently than that of ORF 3c.
Feline infectious peritonitis (FIP) is the most frequent lethal infectious disease in cats. However, understanding of FIP pathogenesis is still incomplete. Mutations in the ORF 3c/ORF 7b genes are proposed to play a role in the occurrence of the fatal FIPV biotype. Here, we investigated 282 tissue specimens from 28 cats that succumbed to FIP. Within one cat, viral sequences from different organs were similar or identical, whereas greater discrepancies were found comparing sequences from various cats. Eleven of the cats exhibited deletions in the 3c gene, resulting in truncated amino acid sequences. The 7b gene was affected by deletions only in one cat. In three of the FIP cats, coronavirus isolates with both intact 3c genes as well as 7b genes of full length could also be detected. Thus, deletions or stop codons in the 3c sequence seem to be a frequent but not compelling feature of FIPVs.
Collapse
Affiliation(s)
- C M Borschensky
- Institut für Veterinär-Pathologie, Justus-Liebig-Universität Gießen, 35393 Gießen, Germany.
| | - M Reinacher
- Institut für Veterinär-Pathologie, Justus-Liebig-Universität Gießen, 35393 Gießen, Germany
| |
Collapse
|
7
|
Myrrha LW, Silva FMF, Peternelli EFDO, Junior AS, Resende M, de Almeida MR. The paradox of feline coronavirus pathogenesis: a review. Adv Virol 2011; 2011:109849. [PMID: 22312333 PMCID: PMC3265210 DOI: 10.1155/2011/109849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 12/04/2022] Open
Abstract
Feline coronavirus (FCoV) is an enveloped single-stranded RNA virus, of the family Coronaviridae and the order Nidovirales. FCoV is an important pathogen of wild and domestic cats and can cause a mild or apparently symptomless enteric infection, especially in kittens. FCoV is also associated with a lethal, systemic disease known as feline infectious peritonitis (FIP). Although the precise cause of FIP pathogenesis remains unclear, some hypotheses have been suggested. In this review we present results from different FCoV studies and attempt to elucidate existing theories on the pathogenesis of FCoV infection.
Collapse
Affiliation(s)
- Luciana Wanderley Myrrha
- Laboratório de Infectologia Molecular Animal (LIMA), Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n Campus Universitário, 36570-000 Vicosa, MG, Brazil
| | - Fernanda Miquelitto Figueira Silva
- Laboratório de Infectologia Molecular Animal (LIMA), Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n Campus Universitário, 36570-000 Vicosa, MG, Brazil
| | - Ethel Fernandes de Oliveira Peternelli
- Laboratório de Infectologia Molecular Animal (LIMA), Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n Campus Universitário, 36570-000 Vicosa, MG, Brazil
| | - Abelardo Silva Junior
- Laboratório de Infectologia Molecular Animal (LIMA), Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n Campus Universitário, 36570-000 Vicosa, MG, Brazil
| | - Maurício Resende
- Laboratório de Doença das Aves, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627—Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Márcia Rogéria de Almeida
- Laboratório de Infectologia Molecular Animal (LIMA), Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n Campus Universitário, 36570-000 Vicosa, MG, Brazil
| |
Collapse
|
8
|
Vogel L, Van der Lubben M, te Lintelo EG, Bekker CPJ, Geerts T, Schuijff LS, Grinwis GCM, Egberink HF, Rottier PJM. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats. Vet Res 2010; 41:71. [PMID: 20663472 PMCID: PMC2939696 DOI: 10.1051/vetres/2010043] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/20/2010] [Indexed: 11/23/2022] Open
Abstract
Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed.
Collapse
Affiliation(s)
- Liesbeth Vogel
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Poncelet L, Coppens A, Peeters D, Bianchi E, Grant CK, Kadhim H. Detection of antigenic heterogeneity in feline coronavirus nucleocapsid in feline pyogranulomatous meningoencephalitis. Vet Pathol 2008; 45:140-53. [PMID: 18424826 DOI: 10.1354/vp.45-2-140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new monoclonal antibody (mAb), CCV2-2, was compared with the widely used FIPV3-70 mAb, both directed against canine coronavirus (CCoV), as a diagnostic and research tool. Western blot showed that both anti-CCoV mAbs only reacted with a protein of 50 kD, a weight consistent with the feline coronavirus (FCoV) viral nucleocapsid. A competitive inhibition enzyme-linked immunosorbent assay showed that the 2 recognized epitopes are distinct. Preincubation of CCV2-2 mAb with FCoV antigen suppressed the immunostaining. Formalin-fixed, paraffin-embedded sections from brains of 15 cats with the dry form of feline infectious peritonitis (FIP) were examined by immunohistochemistry. Immunohistochemistry was performed with both anti-CCoV mAbs, either on consecutive or on the same sections. A myeloid-histiocytic marker, MAC 387, was also used to identify FIP virus-infected cells. In all regions where MAC 387-positive cells were present, positive staining with the CCV2-2 mAb was systematically detected, except at some levels in 1 cat. In contrast, none or only a few cells were positive for the FIPV3-70 mAb. Double immunostaining showed macrophages that were immunopositive for either CCV2-2 alone or alternatively for CCV2-2 and FIPV3-70 mAbs. This reveals the coexistence of 2 cohorts of phagocytes whose FIP viral contents differed by the presence or absence of the FIPV3-70-recognized epitope. These findings provide evidence for antigenic heterogeneity in coronavirus nucleocapsid protein in FIP lesions, a result that is in line with molecular observations. In addition, we provide for the first time morphologic depiction of viral variants distribution in these lesions.
Collapse
Affiliation(s)
- L Poncelet
- Anatomy/Embryology Department, CP 619, Faculty of Medicine, Free University of Brussels, Route de Lennik 808, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
10
|
Kummrow M, Meli ML, Haessig M, Goenczi E, Poland A, Pedersen NC, Hofmann-Lehmann R, Lutz H. Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:1209-15. [PMID: 16210485 PMCID: PMC1247821 DOI: 10.1128/cdli.12.10.1209-1215.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine the prevalence of antibodies to feline coronavirus (FCoV) serotypes 1 and 2 in Switzerland and their association with different disease manifestations, a serological study based on immunofluorescence tests was conducted with Swiss field cats using transmissible gastroenteritis virus (TGEV), FCoV type 1 and FCoV type 2 as antigens. A total of 639 serum samples collected in the context of different studies from naturally infected cats were tested. The current study revealed that, with an apparent prevalence of 83%, FCoV serotype 1 is the most prevalent serotype in Switzerland. FCoV type 1 viruses induced higher antibody titers than FCoV type 2, and were more frequently associated with clinical signs and/or feline infectious peritonitis. The antibody development in seven cats experimentally infected with FCoV type 1 revealed that, with progressing duration of infection, antibodies to FCoV type 1 significantly increased over those to FCoV type 2. There was a significant relationship between antibody titers against TGEV, FCoV 1, and FCoV 2 and TGEV antigen detected the highest proportion of seropositive cats. We conclude that a vaccine against FCoV should be based on FCoV type 1-related antigens and that for serodiagnosis of FCoV infection TGEV should be used to attain the highest diagnostic efficiency. When serology is used in addition to clinical signs, hematology, and clinical chemistry results as an aid to diagnose clinical FIP, TGEV shows a diagnostic efficiency equal to that of a FCoV antigen.
Collapse
Affiliation(s)
- Maya Kummrow
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kipar A, Baptiste K, Barth A, Reinacher M. Natural FCoV infection: cats with FIP exhibit significantly higher viral loads than healthy infected cats. J Feline Med Surg 2005; 8:69-72. [PMID: 16213766 PMCID: PMC7129897 DOI: 10.1016/j.jfms.2005.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2005] [Indexed: 11/16/2022]
Abstract
Natural feline coronavirus (FCoV) infection has been shown to not only induce intestinal infection with viral shedding, but also systemic infection which either remains without clinical signs or leads to feline infectious peritonitis (FIP). As systemic infection is not the key event in the development of FIP, the question arises as to whether a potential difference in viral load might be of importance. Therefore, the purpose of this study was to quantitatively assess feline coronavirus (FCoV) RNA loads in haemolymphatic tissues of healthy, long-term FCoV-infected cats and cats with FIP. In cats that died from FIP, viral loads were significantly higher, indicating a higher rate of viral replication or a reduced capacity for viral clearance in cats developing and/or suffering from FIP.
Collapse
Affiliation(s)
- Anja Kipar
- Institut für Veterinär-Pathologie, Justus-Liebig-Universität Giessen, Giessen, Germany.
| | | | | | | |
Collapse
|
12
|
Battilani M, Coradin T, Scagliarini A, Ciulli S, Ostanello F, Prosperi S, Morganti L. Quasispecies composition and phylogenetic analysis of feline coronaviruses (FCoVs) in naturally infected cats. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 39:141-7. [PMID: 14625097 PMCID: PMC7110359 DOI: 10.1016/s0928-8244(03)00237-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 08/04/2003] [Accepted: 08/04/2003] [Indexed: 11/15/2022]
Abstract
Quasispecies composition and tissue distribution of feline coronaviruses (FCoVs) were studied in naturally infected cats. The genomic complexity of FCoVs was investigated using single-strand conformational polymorphism (SSCP) analysis of N and ORF7b amplicons, and the evolutionary process was investigated by sequence-based phylogenetic analysis. SSCP analysis showed high heterogeneity of the FCoV genome which was correlated with the seriousness of the clinical form. The two genomic regions analysed showed different levels of variation; the N region demonstrated significant heterogeneity as compared to ORF7b. Phylogenetic analysis of the nucleotide sequences showed the clear separation of sequences analysed on the basis of virulence and geographical origin. A maximum likelihood analysis of N and ORF7b data sets showed a situation of strong heterogeneity for the N region.
Collapse
Affiliation(s)
- Mara Battilani
- Dipartimento di Sanità Pubblica Veterinaria e Patologia Animale-Servizio MIPAV, Alma Mater Studiorum, University of Bologna, Via Tolara di Sopra, 50, 40064 (Bo), Ozzano Emilia, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Pratelli A, Martella V, Elia G, Decaro N, Aliberti A, Buonavoglia D, Tempesta M, Buonavoglia C. Variation of the sequence in the gene encoding for transmembrane protein M of canine coronavirus (CCV). Mol Cell Probes 2001; 15:229-33. [PMID: 11513558 PMCID: PMC7135761 DOI: 10.1006/mcpr.2001.0364] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A nucleotide variability in the sequence of the gene encoding for the transmembrane protein M of canine coronavirus (CCV) is described. A total of 177 faecal samples from pups with enteritis were analysed by a PCR and n-PCR specific for CCV. Four samples, collected from a dog presenting a long-duration shedding of CCV, and a sample from another diarrhoeic dog, were found positive by PCR but negative by n-PCR. Sequence analysis of the samples revealed silent nucleotide substitutions in the binding site of the internal primer used for the n-PCR. Moreover, the nucleotide substitutions occurring over the whole fragment of the five samples analysed were similar.
Collapse
Affiliation(s)
- A Pratelli
- Department of Health and Animal Well-being, Faculty of Veterinary Medicine, 70010 Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|