1
|
Abdel-Monsef MM, Darwish DA, Zidan HA, Hamed AA, Ibrahim MA. Characterization, antimicrobial and antitumor activity of superoxide dismutase extracted from Egyptian honeybee venom (Apis mellifera lamarckii). J Genet Eng Biotechnol 2023; 21:21. [PMID: 36807019 PMCID: PMC9941395 DOI: 10.1186/s43141-023-00470-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/15/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Superoxide dismutase is an important antioxidative stress enzyme which is found in honeybee venom and has a wide pharmaceutical and medical applications. RESULTS We reported the purification and characterization of venom SOD from Egyptian honeybee Apis mellifera lamarckii and termed BVSOD. It was purified to homogeneity from the Egyptian honeybee venom. The purification procedures included crude extraction, DEAE-cellulose anion exchange column chromatography, and Sephacryl S-300 gel filtration column chromatography. The purified BVSOD is found to be homogeneous as investigated by native PAGE. It exhibited homodimeric structure with a molecular weight of native form of 32 kDa and subunits of 16.0 kDa. It displayed the maximum activity at pH 7.4. CuCl2, ZnCl2, and MgCl2 and elevated the activity of BVSOD, while CoCl2, FeCl2, and NiCl2 inhibited BVSOD activity. Potassium cyanide and hydrogen peroxide were most potent inhibitors for BVSOD activity suggesting that it is a Cu/Zn-SOD type. CONCLUSIONS The purified BVSOD is found to have antimicrobial and antitumor activities which can be used for various medical and clinical applications.
Collapse
Affiliation(s)
- Mohamed M. Abdel-Monsef
- grid.419725.c0000 0001 2151 8157Molecular Biology Department National Research Centre, Protium Research Laboratory, Dokki, Giza, Egypt
| | - Doaa A. Darwish
- grid.419725.c0000 0001 2151 8157Molecular Biology Department National Research Centre, Protium Research Laboratory, Dokki, Giza, Egypt
| | - Hind A. Zidan
- grid.418376.f0000 0004 1800 7673Agricultural Research Center, Plant Protection Research Institute, Giza, Egypt
| | - Ahmed A. Hamed
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mahmoud A. Ibrahim
- grid.419725.c0000 0001 2151 8157Molecular Biology Department National Research Centre, Protium Research Laboratory, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Yatoo MI, Parray OR, Mir M, Bhat RA, Malik HU, Fazili MUR, Qureshi S, Mir MS, Yousuf RW, Tufani NA, Dhama K, Bashir ST. Comparative evaluation of different therapeutic protocols for contagious caprine pleuropneumonia in Himalayan Pashmina goats. Trop Anim Health Prod 2019; 51:2127-2137. [PMID: 31076996 DOI: 10.1007/s11250-019-01913-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/29/2019] [Indexed: 01/02/2023]
Abstract
Therapeutic management of contagious caprine pleuroneumonia (CCPP) involves mostly the use of oxytetracycline followed by enrofloxacin and rarely tylosin. In many parts of the world including India, the former antibiotics are commonly available than the latter. Therefore, prolonged use of the same leads to the development of antibiotic resistance and decreased efficacy of drug. Besides, inflammatory and allergic pathogenesis of CCPP envisages combination therapy. In this study, we evaluated the effectiveness of the combination therapy using different antibiotics (oxytetracycyline @ 10: group I, enrofloxacin @ 5 group II, and tylosin: group III, @ 10 mg/kg body weight), along with anti-inflammatory (meloxicam @ 0.5 mg/kg) and anti-allergic (pheneramine maleate @ 1.0 mg/kg) drugs. These drugs were given intramuscularly at the interval of 48 h for four times in three test groups (n = 10) of Pashmina goats, viz. groups I, II, and III, respectively, affected with CCPP. Group IV (n = 10) was kept as healthy control when group V (n = 10) treated with oxytetracycline @ 10 mg/kg alone was used as positive control. Clinical signs, clinical parameters, pro-inflammatory cytokine (tumor necrosis factor alpha (TNF-α)), and oxidative stress indices (total oxidant status (TOS), total antioxidant status (TAS)) were evaluated at hours 0, 48, 96, and 144 of experimental trial. Tylosin-based combination therapy resulted in a rapid and favorable recovery resulting in restoration of normal body temperature (102.46 ± 0.31 °F), respiration rate (16.30 ± 0.79 per minute), and heart rate (89.50 ± 2.63 per minute) compared to the oxytetracycline (102.95 ± 0.13, 21.30 ± 1.12, 86.00 ± 2.33, respectively) and enrofloxacin (102.97 ± 0.19, 21.00 ± 1.25, 90.00 ± 2.58, respectively) treated groups. By hour 144, all the groups showed restoration of clinical parameters of normal health and diminishing signs of CCPP, viz. fever, dyspnea, coughing, nasal discharge, weakness, and pleurodynia. Significant (P ≤ 0.05) decrease in levels of TNF-α and non-significant (P > 0.05) decrease in levels of TOS and an increase in levels of TAS were noted from hour 0 to 144 in all the test groups. Within the groups, no significant (P > 0.05) change was noted in TNF-α, TOS, and TAS levels; however, TNF-α levels were comparatively lower in group III. Hematological parameters did not differ significantly (P > 0.05). From these findings, it can be inferred that tylosin-based combination therapy is relatively better for early, rapid, and safe recovery besides minimizing inflammatory and oxidative cascade in CCPP affected Pashmina goats compared to oxytetracycline- and enrofloxacin-based therapies.
Collapse
Affiliation(s)
- Mohd Iqbal Yatoo
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India.
| | - Oveas Raffiq Parray
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Muheet Mir
- Division of Clinical Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Riyaz Ahmed Bhat
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Hamid Ullah Malik
- Division of Clinical Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Mujeeb Ur Rehman Fazili
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Sabia Qureshi
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Masood Salim Mir
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Raja Wasim Yousuf
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Noor Alam Tufani
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Kuldeep Dhama
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly, Uttar Pradesh, 243422, India
| | - Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Champaign, IL, 61801, USA
| |
Collapse
|
3
|
On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants (Basel) 2017; 6:antiox6040082. [PMID: 29084153 PMCID: PMC5745492 DOI: 10.3390/antiox6040082] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022] Open
Abstract
The field of free radical biology originated with the discovery of superoxide dismutase (SOD) in 1969. Over the last 5 decades, a plethora of research has been performed in species ranging from bacteria to mammals that has elucidated the molecular reaction, subcellular location, and specific isoforms of SOD. However, while humans have only begun to study this class of enzymes over the past 50 years, it has been estimated that these enzymes have existed for billions of years, and may be some of the original enzymes found in primitive life. As life evolved over this expanse of time, these enzymes have taken on new and different functional roles potentially in contrast to how they were originally derived. Herein, examination of the evolutionary history of these enzymes provides both an explanation and further inquiries into the modern-day role of SOD in physiology and disease.
Collapse
|
4
|
Li Y, Jiang Z, Xue D, Deng G, Li M, Liu X, Wang Y. Mycoplasma ovipneumoniae induces sheep airway epithelial cell apoptosis through an ERK signalling-mediated mitochondria pathway. BMC Microbiol 2016; 16:222. [PMID: 27663303 PMCID: PMC5035462 DOI: 10.1186/s12866-016-0842-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 09/17/2016] [Indexed: 01/29/2023] Open
Abstract
Background Mycoplasma ovipneumoniae (M. ovipneumoniae) is a species of Mycoplasma bacteria that specifically infects sheep and goat, causing ovine infectious pleuropneumonia. However, the mechanism underlying the pathogen-host interaction between M. ovipneumoniae and airway epithelial cells is unknown. Methods A primary air-liquid interface (ALI) epithelial culture model generated from the bronchial epithelial cells of Ningxia Tan sheep (ovis aries) was employed to explore the potential mechanism of M. ovipneumoniae-induced cell apoptosis by characterizing the production of reactive oxygen species (ROS), methane dicarboxylic aldehyde (MDA) and anti-oxidative enzymes, as well as the mitochondrial membrane potentials, cytochrome C release, and activities of ERK and caspase signalling pathways. Results Increased ROS production and MDA concentration with mitochondrial membrane dysfunction and apoptotic cell death but decreased expression of the antioxidant enzymes catalase (CAT), glutathione synthetase (GSS), total superoxide dismutaes (T-SOD) and Mn-SOD were observed in sheep airway epithelial cells infected with M. ovipneumoniae. Mechanistically, the M. ovipneumoniae-induced cell apoptosis and disruption of mitochondrial integrity reflected mechanisms by which pathogen-activated mitogen-activated protein kinase (MAPK) signalling sequentially led to mitochondrial damage and release of Cyt-C into the cytoplasm, which in turn triggered the activation of caspase signalling cascade, resulting in the apoptosis of host cells. Conclusions These results suggest that M. ovipneumoniae-induced ROS and MAPK signalling-mediated mitochondrial apoptotic pathways might play key roles in the pathogenesis of M. ovipneumoniae infection in sheep lungs. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0842-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanan Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, Ningxia, 750021, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Zhongjia Jiang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, Ningxia, 750021, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Di Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, Ningxia, 750021, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, Ningxia, 750021, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, Ningxia, 750021, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, Ningxia, 750021, China. .,College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China. .,Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, Ningxia, 750021, China. .,College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
5
|
Blair MW, Wu X, Bhandari D, Astudillo C. Genetic Dissection of ICP-Detected Nutrient Accumulation in the Whole Seed of Common Bean (Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2016; 7:219. [PMID: 27014282 PMCID: PMC4782139 DOI: 10.3389/fpls.2016.00219] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/08/2016] [Indexed: 05/19/2023]
Abstract
Nutrient transport to grain legume seeds is not well studied and can benefit from modern methods of elemental analysis including spectroscopic techniques. Some cations such as potassium (K) and magnesium (Mg) are needed for plant physiological purposes. Meanwhile, some minerals such as copper (Cu), iron (Fe), molybdenum (Mo), and zinc (Zn) are important micronutrients. Phosphorus (P) is rich in legumes, while sulfur (S) concentration is related to essential amino acids. In this research, the goal was to analyze a genetic mapping population of common bean (Phaseolus vulgaris L.) with inductively coupled plasma (ICP) spectrophotometry to determine concentrations of and to discover quantitative trait loci (QTL) for 15 elements in ground flour of whole seeds. The population was grown in randomized complete block design experiments that had been used before to analyze Fe and Zn. A total of 21 QTL were identified for nine additional elements, of which four QTL were found for Cu followed by three each for Mg, Mn, and P. Fewer QTL were found for K, Na and S. Boron (B) and calcium (Ca) had only one QTL each. The utility of the QTL for breeding adaptation to element deficient soils and association with previously discovered nutritional loci are discussed.
Collapse
Affiliation(s)
- Matthew Wohlgemuth Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, NashvilleTN, USA
- *Correspondence: Matthew Wohlgemuth Blair,
| | - Xingbo Wu
- Department of Agricultural and Environmental Sciences, Tennessee State University, NashvilleTN, USA
| | - Devendra Bhandari
- Department of Agricultural and Environmental Sciences, Tennessee State University, NashvilleTN, USA
| | | |
Collapse
|
6
|
Abstract
UNLABELLED Superoxide dismutases (SODs) are metalloproteins that protect organisms from toxic reactive oxygen species by catalyzing the conversion of superoxide anion to hydrogen peroxide and molecular oxygen. Chlorovirus PBCV-1 encodes a 187-amino-acid protein that resembles a Cu-Zn SOD with all of the conserved amino acid residues for binding copper and zinc (named cvSOD). cvSOD has an internal Met that results in a 165-amino-acid protein (named tcvSOD). Both cvSOD and tcvSOD recombinant proteins inhibited nitroblue tetrazolium reduction of superoxide anion generated in a xanthine-xanthine oxidase system in solution. tcvSOD was chosen for further characterization because it was easier to produce. Recombinant tcvSOD also inhibited a riboflavin photochemical reduction system in a polyacrylamide gel assay, which was blocked by the Cu-Zn SOD inhibitor cyanide but not by azide, which inhibits Fe and Mn SODs. A k(cat)/K(m) value for cvSOD was determined by stop-flow spectrophotometry as 1.28 × 10(8) M(-1) s(-1), suggesting that cvSOD-catalyzed O2 (-) dismutation was not a diffusion controlled encounter. The cvsod gene was expressed as a late gene, and cvSOD activity was detected in purified virions. Superoxide accumulated rapidly during virus infection, and circumstantial evidence indicates that cvSOD aids its decomposition to benefit virus replication. Cu-Zn SOD homologs have been described to occur in 3 other families of large DNA viruses, poxviruses, baculoviruses, and mimiviruses, which group as a clade. Interestingly, cvSOD does not group in the same clade as the other virus SODs but instead groups in an expanded clade that includes Cu-Zn SODs from many cellular organisms. IMPORTANCE Virus infection often leads to an increase in toxic reactive oxygen species in the host, which can be detrimental to virus replication. Viruses have developed various ways to overcome this barrier. As reported in this article, the chloroviruses often encode and package a functional Cu-Zn superoxide dismutase in the virion that presumably lowers the concentration of reactive oxygen induced early during virus infection.
Collapse
|
7
|
Kornspan JD, Ginsburg I, Rottem S. The oxidant scavenging capacity of the oral Mycoplasma salivarium. Arch Oral Biol 2013; 58:1378-84. [PMID: 23735812 DOI: 10.1016/j.archoralbio.2013.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/21/2013] [Accepted: 05/05/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Mycoplasma salivarium is a human oral potential pathogen that preferentially resides in dental plaques and gingival sulci. It has been suggested that this organism may play an etiological role in inflammatory processes in the oral cavity. The aim of this work was to determine whether M. salivarium possesses a potent oxidant scavenging capacity (OSC). DESIGN The OSC of M. salivarium was quantified by a highly sensitive luminal-dependent chemiluminescence assay in the presence of cocktails that induced a constant flux of luminescence resulting from the generation of peroxide, hydroxyl radical (cocktail A) and NO, superoxide and peroxynitrites (cocktail B). RESULTS M. salivarium markedly reduced oxidative stress by scavenging both free reactive oxygen and nitrogen species. The OSC of M. salivarium was much higher than that of other Mycoplasma species. Most of M. salivarium OSC was confined to the cytosolic fraction and was markedly increased in the presence of tannic acid, red blood cells or mucin. The cytosolic OSC of M. salivarium was heat stable and not affected by sodium azide or prolonged proteolysis. However, it was markedly decreased upon dialysis, suggesting that the major reducing activity is not enzymatic but rather, a low molecular weight compound(s). CONCLUSIONS The ability of M. salivarium to scavenge oxidants may play a role in the survival and pathogenicity of this microorganism. The enhanced OSC of M. salivarium in the presence of tannic acid, red blood cells or mucin might have a significant importance to assess complex interactions with polyphenols from nutrients, salivary proteins and red blood cells extravasated from injured capillaries during infection and inflammation in oral tissues.
Collapse
Affiliation(s)
- J D Kornspan
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
8
|
Ibrahim MA, Mohamed MM, Ghazy AHM, Masoud HMM. Superoxide dismutases from larvae of the camel tick Hyalomma dromedarii. Comp Biochem Physiol B Biochem Mol Biol 2013; 164:221-8. [PMID: 23333534 DOI: 10.1016/j.cbpb.2013.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 11/26/2022]
Abstract
Three superoxide dismutases (EC 1.15.1.1) (TLSOD1, TLSOD2 and TLSOD3) were purified from larvae of the camel tick Hyalomma dromedarii by ammonium sulfate precipitation, ion exchange and gel filtration columns. SDS-PAGE revealed that the subunit molecular masses of the SODs are 40±2 kDa, 67±1.5 kDa and 45±2.6 kDa for TLSOD1, TLSOD2 and TLSOD3, respectively. TLSOD1 and TLSOD2 are monomeric proteins, while TLSOD3 isoenzyme exhibits dimeric structure with native molecular mass of 90 kDa. The pI values are estimated at pH 8.0, pH 7.2 and pH 6.6 for the three SODs which displayed pH optima at 7.6, 8.0 and 7.8, respectively. CuCl(2) and ZnCl(2) increase the activity of TLSOD2 and TLSOD3, while MnCl(2) increases the activity of TLSOD1. KCN inhibits the activity of TLSOD2 and TLSOD3, while a remarkable resistance of TLSOD1 isoenzyme was detected. TLSOD1 is suggested to be a manganese containing isoenzyme while TLSOD2 and TLSOD3 are suggested to be copper/zinc-containing isoenzymes. These results indicate the presence of three different forms of SODs in the larval stage of camel tick. This finding will contribute to our understanding of the physiology of these ectoparasites and the development of non-traditional methods to control them.
Collapse
Affiliation(s)
- Mahmoud A Ibrahim
- Molecular Biology Department, National Research Centre, El-Tahrir st., Dokki, Cairo, Egypt.
| | | | | | | |
Collapse
|
9
|
Miura C, Sugawara K, Neriya Y, Minato N, Keima T, Himeno M, Maejima K, Komatsu K, Yamaji Y, Oshima K, Namba S. Functional characterization and gene expression profiling of superoxide dismutase from plant pathogenic phytoplasma. Gene 2012; 510:107-12. [PMID: 22982017 DOI: 10.1016/j.gene.2012.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/24/2012] [Accepted: 09/01/2012] [Indexed: 11/26/2022]
Abstract
The rapid production of huge amounts of reactive oxygen species (ROS) is one of the responses of animal and plant cells induced under stress conditions, such as pathogenic bacterial infection. To protect against the cytotoxic ROS, it is important for pathogenic bacteria to inactivate ROS by employing their antioxidant enzymes like superoxide dismutase (SOD). Here, we cloned and characterized the sodA gene from the plant pathogenic bacterium, 'Candidatus Phytoplasma asteris' OY-W strain. This is the first description of gene expression and antioxidant enzymatic activity of SOD from a phytoplasma. We also demonstrated the sodA gene product (OY-SOD) functions as Mn-type SOD. Since other Mollicutes bacteria such as mycoplasmas do not possess sodA probably due to reductive evolution, it is intriguing that phytoplasmas possess sodA despite their lack of many metabolic genes, suggesting that OY-SOD may play an important role in the phytoplasma colonization of plants and insects. Moreover, Western blot analysis and real-time PCR revealed that OY-SOD is expressed when the phytoplasma is grown in both plant and insect hosts, suggesting it is functioning in both hosts. Possible role of SOD in protection against damage by host-derived ROS is discussed.
Collapse
Affiliation(s)
- Chihiro Miura
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Das S. Potential of the homeopathic remedy, Arnica Montana 30C, to reduce DNA damage in Escherichia coli exposed to ultraviolet irradiation through up-regulation of nucleotide excision repair genes. ACTA ACUST UNITED AC 2012; 10:337-46. [DOI: 10.3736/jcim20120314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
De A. Potentized homeopathic drug Arsenicum Album 30C inhibits intracellular reactive oxygen species generation and up-regulates expression of arsenic resistance gene in arsenite-exposed bacteria Escherichia coli. ACTA ACUST UNITED AC 2012; 10:210-27. [DOI: 10.3736/jcim20120212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal 2011; 2012:185942. [PMID: 22550465 PMCID: PMC3322544 DOI: 10.1100/2012/185942] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/20/2011] [Indexed: 11/21/2022] Open
Abstract
Phytoplasmas are specialised bacteria that are obligate parasites of plant phloem tissue and insects. These bacteria have resisted all attempts of cell-free cultivation. Genome research is of particular importance to analyse the genetic endowment of such bacteria. Here we review the gene content of the four completely sequenced ‘Candidatus Phytoplasma' genomes that include those of ‘Ca. P. asteris' strains OY-M and AY-WB, ‘Ca. P. australiense,' and ‘Ca. P. mali'. These genomes are characterized by chromosome condensation resulting in sizes below 900 kb and a G + C content of less than 28%. Evolutionary adaption of the phytoplasmas to nutrient-rich environments resulted in losses of genetic modules and increased host dependency highlighted by the transport systems and limited metabolic repertoire. On the other hand, duplication and integration events enlarged the chromosomes and contribute to genome instability. Present differences in the content of membrane and secreted proteins reflect the host adaptation in the phytoplasma strains. General differences are obvious between different phylogenetic subgroups. ‘Ca. P. mali' is separated from the other strains by its deviating chromosome organization, the genetic repertoire for recombination and excision repair of nucleotides or the loss of the complete energy-yielding part of the glycolysis. Apart from these differences, comparative analysis exemplified that all four phytoplasmas are likely to encode an alternative pathway to generate pyruvate and ATP.
Collapse
Affiliation(s)
- Michael Kube
- Department of Crop and Animal Sciences, Humboldt-University of Berlin, Lentzeallee 55/57, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
13
|
Belane AK, Dakora FD. Levels of nutritionally-important trace elements and macronutrients in edible leaves and grain of 27 nodulated cowpea (Vigna unguiculata L. Walp.) genotypes grown in the Upper West Region of Ghana. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.08.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Machado CX, Pinto PM, Zaha A, Ferreira HB. A peroxiredoxin from Mycoplasma hyopneumoniae with a possible role in H2O2 detoxification. MICROBIOLOGY-SGM 2009; 155:3411-3419. [PMID: 19589831 DOI: 10.1099/mic.0.030643-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia, which affects pig farms worldwide, causing heavy economic losses. In the infection process, this bacterium is exposed to reactive oxygen species (ROS) from its own metabolism or generated by the host as one of the strategies used to neutralize the pathogen. Although the presence of classical antioxidant enzymes would be expected in M. hyopneumoniae, important genes directly related to protection against ROS, such as superoxide dismutase, catalases and glutathione peroxidase, have not been identified by sequence homology in the genome sequence annotation. Among the few identified M. hyopneumoniae genes coding for proteins possibly involved with suppression of ROS-mediated damage, one (tpx) coding for a peroxiredoxin (MhPrx) has been recognized. The sequence and phylogenetic analyses perfomed in this study indicate that MhPrx is closely related to the atypical 2-Cys peroxiredoxin subfamily, although it has only one cysteine in its sequence. The MhPrx coding DNA sequence was cloned and expressed in Escherichia coli to produce a recombinant MhPrx (rMhPrx), which was purified and used to immunize mice and produce an anti-MhPrx polyclonal antiserum. Probing of M. hyopneumoniae extracts with this antiserum demonstrated that MhPrx is expressed in all three tested strains (J, 7422 and 7448). Cross-linking assays and size-exclusion chromatography indicate that rMhPrx forms dimers, as has been established for atypical 2-Cys peroxiredoxins. Furthermore, a metal-catalysed oxidation system was used to assay the activity of rMhPrx, showing that it can protect DNA from ROS-mediated damage and may play an essential role during infection.
Collapse
Affiliation(s)
- Cláudio X Machado
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo M Pinto
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Arnaldo Zaha
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre-RS, Brazil.,Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique B Ferreira
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre-RS, Brazil.,Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Li AH, Kong Y, Cho SH, Lee HW, Na BK, Pak JK, Kim TS. Molecular cloning and characterization of the copper/zinc and manganese superoxide dismutase genes from the human parasiteClonorchis sinensis. Parasitology 2005; 130:687-97. [PMID: 15977906 DOI: 10.1017/s003118200400695x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A copper/zinc superoxide dismutase (Cu/ZnSOD) gene and a manganese superoxide dismutase (MnSOD) gene of the human parasiteClonorchis sinensishave been cloned and their gene products functionally characterized. GenesCu/ZnSODandMnSODencode proteins of 16 kDa and 25·4 kDa, respectively. The deduced amino acid sequences of the two genes contained highly conserved residues required for activity and secondary structure formation of Cu/ZnSOD and MnSOD, respectively, and show up to 73·7% and 75·4% identities with their counterparts in other animals. The genomic DNA sequence analysis of Cu/ZnSOD gene revealed this as an intronless gene. Inhibitor studies with purified recombinant Cu/ZnSOD and MnSOD, both of which were functionally expressed inEscherichia coli, confirmed that they are copper/zinc and manganese-containing SOD, respectively. Immunoblots showed that bothC. sinensisCu/ZnSOD and MnSOD should be antigenic for humans, and both, especially theC. sinensisMnSOD, exhibit extensive cross-reactions with sera of patients infected by other trematodes or cestodes. RT-PCR and SOD activity staining of parasite lysates indicate that there are no significant differences in mRNA level or SOD activity for both species of SOD, indicating cytosolic Cu/ZnSOD and MnSOD might play a comparatively important role in theC. sinensisantioxidant system.
Collapse
Affiliation(s)
- A H Li
- Department of Tropical and Endemic Parasitic Diseases, National Institute of Health, Seoul 122-701, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Becker MN, Greenleaf WB, Ostrov DA, Moyer RW. Amsacta moorei entomopoxvirus expresses an active superoxide dismutase. J Virol 2004; 78:10265-75. [PMID: 15367592 PMCID: PMC516379 DOI: 10.1128/jvi.78.19.10265-10275.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The entomopoxvirus from Amsacta moorei serves as the prototype of the group B entomopoxviruses. One of the interesting genes found in Amsacta moorei entomopoxvirus (AmEPV) is a superoxide dismutase (sod) (open reading frame AMV255). Superoxide dismutases (SODs) catalyze the conversion of superoxide radicals to hydrogen peroxide and oxygen. Many vertebrate poxviruses contain a sod gene, but to date, none have been demonstrated to be active. There are three families of SODs, characterized by their metal ion-binding partners, Fe, Mn, or Cu and Zn. Poxvirus enzymes belong to the Cu-Zn SOD family. Unlike inactive vertebrate poxvirus SODs, AMVSOD contains all the amino acids necessary for function. We expressed and purified a 6X-His-tagged version of the AMVSOD in Escherichia coli. The recombinant AMVSOD demonstrates superoxide dismutase activity both in an in situ gel assay and by stopped flow spectrophotometry. The k(cat)/K(m) for AMVSOD is 4 x 10(7) M(-1)s(-1). In infected cells, the AMVSOD protein behaves as a dimer and is catalytically active; however, disruption of the gene in AMEPV has little or no effect on growth of the virus in cell culture. An analysis of mRNA expression indicates that AMVsod is expressed late during infection of Lymantria dispar (Ld652) cells and produces a discrete nonpolydisperse transcript. Characterization of protein expression with a monoclonal antibody generated against AMVSOD confirms that the AMVSOD protein can be classified as a late, postreplicative gene. Therefore, AMVSOD is the first example of an active poxvirus SOD.
Collapse
Affiliation(s)
- M N Becker
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
17
|
Lü Z, Min H, Xia Y. The response of Escherichia coli, Bacillus subtilis, and Burkholderia cepacia WZ1 to oxidative stress of exposure to quinclorac. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2004; 39:431-441. [PMID: 15186032 DOI: 10.1081/pfc-120035928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The activity response of the antioxidant enzymes superoxide dismutase, catalase, ATP enzyme activities of Escherichia coli (G-), Bacillus subtilis (G+), and Burkholderia cepacia WZ1 (G-) following exposure to quinclorac was investigated. The bacterial strains were treated with the different concentrations of quinclorac (1.65, 16.5, 33.0, 165.0, 330.0, and 500.0 microg L(-1)). Results obtained indicated that SOD and CAT activities of these bacteria were induced positively and obviously by quinclorac, especially to gram-positive (G+) bacteria treated by lower than 330 microg L(-1) of quinclorac. The inhibition of ATPase in E. coli K12, B. subtilis, and B. cepacia WZ1 appeared stronger with the increase of quinclorac concentration, showing a striking dose response relationship, which can, therefore, be used as an available bioindicator for quinclorac pollution. The concentration of quinclorac applied in this research had significant effects on these three bacteria at the early stage of incubation, but none of which was persistent. Native polyacrylamide gel electrophoresis and activity staining of SOD revealed that quinclorac had effects on isoforms of E. coli and B. subtilis, and on the staining intensities of the isoforms of B. cepacia WZ1. When E. coli K12 was incubated with 330 microg L(-1) of quinclorac, the upper band of the isoforms of SOD tended to become slightly more apparent at 1 h after the quinclorac treatment, but the staining activity was slightly reduced after the prolonged treatment of quinclorac. No such changes of the isoforms of B. cepacia WZ1 was observed.
Collapse
Affiliation(s)
- Zhenmei Lü
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | | | | |
Collapse
|
18
|
Langford PR, Sansone A, Valenti P, Battistoni A, Kroll JS. Bacterial superoxide dismutase and virulence. Methods Enzymol 2002; 349:155-66. [PMID: 11912905 DOI: 10.1016/s0076-6879(02)49331-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Paul R Langford
- Molecular Infectious Diseases Group, Department of Paediatrics, Imperial College of Science, Technology and Medicine, St. Mary's Hospital Campus, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Chen J, Liao C, Mao SJ, Chen T, Weng C. A simple technique for the simultaneous determination of molecular weight and activity of superoxide dismutase using SDS-PAGE. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 47:233-7. [PMID: 11245894 DOI: 10.1016/s0165-022x(00)00162-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A direct and rapid SDS-PAGE staining method for in situ identification of activity and molecular weight of superoxide dismutase following denaturing treatment has been developed. This technique was based on the removal of SDS after SDS-PAGE and two-step staining procedures of the SDS-polyacrylamide gel to present the achromatic activity-zones of the enzymes. We demonstrated that the detection sensitivity of SDS-PAGE staining method was the same as the traditional xanthine oxidase-NBT solution assay. Through the SDS-PAGE staining method, three classes of superoxide dismutases with distinct molecular sizes were identified in situ. Moreover, activity of copper and zinc containing superoxide dismutase in crude extracts of Escherichia coli and Actinobacillus pleuropneumoniae was significantly enhanced using the two-step staining procedure.
Collapse
Affiliation(s)
- J Chen
- Department of Pathobiology, Pig Research Institute Taiwan, P.O. Box 23, Chunan, 35099, Miaoli, Taiwan, ROC
| | | | | | | | | |
Collapse
|