1
|
Warren MR, Radulescu A, Dornbos P, Cuomo D, Zumwalt S, Bueso-Mendoza D, Nitcher M, LaPres JJ, Threadgill DW. Peanut butter as an alternative dose delivery method to prevent strain-dependent orogastric gavage-induced stress in mouse teratogenicity studies. J Pharmacol Toxicol Methods 2020; 107:106948. [PMID: 33387613 DOI: 10.1016/j.vascn.2020.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Animal-based studies are essential for assessing toxicity to environmental pollutants, especially when the potential targets are specific developmental time points, teratogenic, or multi-organ systems that cannot be modeled in vitro. Orogastric gavage is a widely used technique for exposure because of its increased accuracy of dose administration over free feeding. However, repeated use of this method has been reported to cause physiological stress on the exposed animals that could interfere with interpretation of results. Previous studies have shown that genetic background also contributes to the level of stress and can affect individual response. METHODS To evaluate the impact of stress on repeated orogastric gavage, we exposed C67BL/6J and 129S1/SvImJ inbred mouse strains to 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), a potent xenobiotic that has been extensively studied in vivo. Pregnant females were dosed for ten days after mating using orogastric gavage with olive oil as vehicle or through diet using peanut butter as vehicle. Serum corticosterone levels, body weight, and reproduction endpoints were measured to evaluate levels of stress induced by the dosing technique. RESULTS The levels of stress caused by orogastric gavage was strongly dependent on strain background and on the phenotypic endpoint. Orogastric gavage-induced stress was more detrimental in 129S1/SvlmJ pregnant female mice than in C57BL/6J. CONCLUSION These results show that administration of xenobiotics via controlled diet can improve the reproducibility and rigor of exposure studies requiring orogastric delivery.
Collapse
Affiliation(s)
- Melanie R Warren
- Interdisciplinary Faculty of Toxicology, Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA; Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX, USA
| | - Andreea Radulescu
- Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX, USA
| | - Peter Dornbos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX, USA
| | - Shelby Zumwalt
- Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX, USA
| | - Diana Bueso-Mendoza
- Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX, USA
| | - Megan Nitcher
- Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX, USA
| | - John J LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - David W Threadgill
- Interdisciplinary Faculty of Toxicology, Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA; Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, TX, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States of America.
| |
Collapse
|
2
|
Rusyn I, Kleeberger SR, McAllister KA, French JE, Svenson KL. Introduction to mammalian genome special issue: the combined role of genetics and environment relevant to human disease outcomes. Mamm Genome 2018; 29:1-4. [PMID: 29460122 DOI: 10.1007/s00335-018-9740-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| | | | | | - John E French
- UNC Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
3
|
Lee S, Lee MS, Park J, Zhang JY, Jin DI. Oxidative stress in the testis induced by tamoxifen and its effects on early embryo development in isogenic mice. J Toxicol Sci 2012; 37:675-9. [DOI: 10.2131/jts.37.675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sunghak Lee
- Department of Animal Science & Biotechnology, Chungnam National University, Korea
| | | | | | - Jin Yu Zhang
- Department of Animal Science & Biotechnology, Chungnam National University, Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology, Chungnam National University, Korea
| |
Collapse
|
4
|
Rusyn I, Gatti DM, Wiltshire T, Wilshire T, Kleeberger SR, Threadgill DW. Toxicogenetics: population-based testing of drug and chemical safety in mouse models. Pharmacogenomics 2010; 11:1127-36. [PMID: 20704464 DOI: 10.2217/pgs.10.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The rapid decline in the cost of dense genotyping is paving the way for new DNA sequence-based laboratory tests to move quickly into clinical practice, and to ultimately help realize the promise of 'personalized' therapies. These advances are based on the growing appreciation of genetics as an important dimension in science and the practice of investigative pharmacology and toxicology. On the clinical side, both the regulators and the pharmaceutical industry hope that the early identification of individuals prone to adverse drug effects will keep advantageous medicines on the market for the benefit of the vast majority of prospective patients. On the environmental health protection side, there is a clear need for better science to define the range and causes of susceptibility to adverse effects of chemicals in the population, so that the appropriate regulatory limits are established. In both cases, most of the research effort is focused on genome-wide association studies in humans where de novo genotyping of each subject is required. At the same time, the power of population-based preclinical safety testing in rodent models (e.g., mouse) remains to be fully exploited. Here, we highlight the approaches available to utilize the knowledge of DNA sequence and genetic diversity of the mouse as a species in mechanistic toxicology research. We posit that appropriate genetically defined mouse models may be combined with the limited data from human studies to not only discover the genetic determinants of susceptibility, but to also understand the molecular underpinnings of toxicity.
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Environmental Sciences & Engineering, 0031 Michael Hooker Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
5
|
Harrill AH, Ross PK, Gatti DM, Threadgill DW, Rusyn I. Population-based discovery of toxicogenomics biomarkers for hepatotoxicity using a laboratory strain diversity panel. Toxicol Sci 2009; 110:235-43. [PMID: 19420014 DOI: 10.1093/toxsci/kfp096] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Toxicogenomic studies are increasingly used to uncover potential biomarkers of adverse health events, enrich chemical risk assessment, and to facilitate proper identification and treatment of persons susceptible to toxicity. Current approaches to biomarker discovery through gene expression profiling usually utilize a single or few strains of rodents, limiting the ability to detect biomarkers that may represent the wide range of toxicity responses typically observed in genetically heterogeneous human populations. To enhance the utility of animal models to detect response biomarkers for genetically diverse populations, we used a laboratory mouse strain diversity panel. Specifically, mice from 36 inbred strains derived from Mus mus musculus, Mus mus castaneous, and Mus mus domesticus origins were treated with a model hepatotoxic agent, acetaminophen (300 mg/kg, ig). Gene expression profiling was performed on liver tissue collected at 24 h after dosing. We identified 26 population-wide biomarkers of response to acetaminophen hepatotoxicity in which the changes in gene expression were significant across treatment and liver necrosis score but not significant for individual mouse strains. Importantly, most of these biomarker genes are part of the intracellular signaling involved in hepatocyte death and include genes previously associated with acetaminophen-induced hepatotoxicity, such as cyclin-dependent kinase inhibitor 1A (p21) and interleukin 6 signal transducer (Il6st), and genes not previously associated with acetaminophen, such as oncostatin M receptor (Osmr) and MLX interacting protein like (Mlxipl). Our data demonstrate that a multistrain approach may provide utility for understanding genotype-independent toxicity responses and facilitate identification of novel targets of therapeutic intervention.
Collapse
Affiliation(s)
- Alison H Harrill
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Weselak M, Arbuckle TE, Foster W. Pesticide exposures and developmental outcomes: the epidemiological evidence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2007; 10:41-80. [PMID: 18074304 DOI: 10.1080/10937400601034571] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Since the advent of DDT as an insecticide in the late 1930s, billions of kilograms of pesticide active ingredient have been sold in North America and around the world. In recent years, there has been a heightened public awareness of pesticides and child health and a number of epidemiologic studies linked pre- and postnatal exposures to pesticides to a number of adverse developmental outcomes, including fetal death, intrauterine growth restriction, preterm birth, and birth defects. Given this, it was felt prudent to critically appraise the evidence for periconceptual pesticide exposures and developmental outcomes. The epidemiological evidence for specific pesticide classes, families, and active ingredients were examined and summarized and recommendations were made for how to improve future studies in order to address the current pitfalls and gaps in the studies in this area. Many of the studies suffered from poor exposure estimation, relying on job title only and/or the exposure category "any pesticide" as a measure of exposure, and there was limited or inadequate evidence to support causality for all associations examined.
Collapse
Affiliation(s)
- M Weselak
- OMNI Research Group, Ottawa Hospital Research Institute, Ottawa, Ontaria.
| | | | | |
Collapse
|
8
|
Welch KD, Reilly TP, Bourdi M, Hays T, Pise-Masison CA, Radonovich MF, Brady JN, Dix DJ, Pohl LR. Genomic identification of potential risk factors during acetaminophen-induced liver disease in susceptible and resistant strains of mice. Chem Res Toxicol 2006; 19:223-33. [PMID: 16485898 DOI: 10.1021/tx050285z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Drug-induced liver disease (DILD) continues to cause significant morbidity and mortality and impair new drug development. Mounting evidence suggests that DILD is a complex, multifactorial disease in which no one factor is likely to be an absolute indicator of susceptibility. As an approach to better understand the multifactorial basis of DILD, we recently compared the hepatic proteomes of mice that were resistant (SJL) and susceptible (C57Bl/6) to APAP-induced liver disease (AILD) wherein we identified potential risk factors and mechanistic pathways responsible for DILD. In this study, we have uncovered additional potential risk factors by comparing hepatic mRNA expression profiles of the same two strains of mice with that of SJLxB6-F1 hybrid (F1) mice, which were found to be of intermediate susceptibility to AILD. Global hepatic gene expression profiling over a 24 h period following APAP treatment revealed elevated patterns in the mRNA expression of cytoprotective genes in resistant SJL mice as compared to susceptible B6 mice, while F1 mice had intermediate mRNA expression levels of these genes. One of these genes encoded for heat shock protein (HSP) 70 whose relative protein expression among the three strains of mice was found to parallel that of their mRNA levels, suggesting that this protein had a protective role against AILD. However, there was no difference in the susceptibility of HSP70 knockout (KO) mice to AILD as compared to wild-type (WT) mice. There were also protoxicant genes, such as osteopontin (OPN), with elevated mRNA expression levels in the B6 mice as compared to the SJL mice and with intermediate levels in the F1 mice, suggesting that they may play a role in exacerbating liver injury after APAP treatment. In support of this hypothesis, OPN KO mice were found to be more resistant to AILD than WT mice. Additionally, the results from both the proteomic and the genomic studies were compared. The two approaches were found to be complementary to each other and not simply overlapping. Our findings suggest that comparative gene expression analysis of susceptible and resistant mouse strains may lead to the identification of factors that could have a role in determining the susceptibility of individuals to DILD.
Collapse
Affiliation(s)
- Kevin D Welch
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vaughan S. Concluding Note: Activities and Resources that Focus on Reduction. Altern Lab Anim 2004; 32 Suppl 2:95-8. [PMID: 15601233 DOI: 10.1177/026119290403202s17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sylvia Vaughan
- FRAME, Russell & Burch House, 96-98 North Sherwood Street, Nottingham NG1 4EE, UK
| |
Collapse
|
10
|
Hallgrímsson B, Willmore K, Dorval C, Cooper DML. Craniofacial variability and modularity in macaques and mice. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 302:207-25. [PMID: 15211683 DOI: 10.1002/jez.b.21002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Evolutionary developmental biology of primates will be driven largely by the developmental biology of the house mouse. Inferences from how known developmental perturbations produce phenotypic effects in model organisms, such as mice, to how the same perturbations would affect craniofacial form in primates must be informed by comparisons of phenotypic variation and variability in mice and the primate species of interest. We use morphometric methods to compare patterns of cranial variability in homologous datasets obtained for two strains of laboratory mice and rhesus macaques. C57BL/6J represents a common genetic background for transgenic models. A/WySnJ mice exhibit altered facial morphology which results from reduction in the growth of the maxillary process during formation of the face. This is relevant to evolutionary changes in facial prognathism in nonhuman primate and human evolution. Rhesus macaques represent a nonhuman primate about which a great deal of phenotypic and genetic information is available. We find significant similarities in covariation patterns between the C57BL/6J mice and macaques. Among-trait variation in genetic and phenotypic variances are fairly concordant among the three groups, but among-trait variation in developmental stability is not. Finally, analysis of modularity based on phenotypic and genetic correlations did not reveal a consistent pattern in the three groups. We discuss the implications of these results for the study of evolutionary developmental biology of primates and outline a research strategy for integrating mouse genomics and developmental biology into this emerging field.
Collapse
Affiliation(s)
- Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy and the Joint Injury and Arthritis Research Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | |
Collapse
|
11
|
Rhodes MC, Seidler FJ, Qiao D, Tate CA, Cousins MM, Slotkin TA. Does pharmacotherapy for preterm labor sensitize the developing brain to environmental neurotoxicants? Cellular and synaptic effects of sequential exposure to terbutaline and chlorpyrifos in neonatal rats. Toxicol Appl Pharmacol 2004; 195:203-17. [PMID: 14998686 DOI: 10.1016/j.taap.2003.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 11/10/2003] [Indexed: 11/29/2022]
Abstract
It is increasingly clear that environmental toxicants target specific human subpopulations. In the current study, we examined the effects of prior developmental exposure to a beta(2)-adrenoceptor agonist used to arrest preterm labor, terbutaline, on the subsequent effects of exposure to the organophosphate insecticide, chlorpyrifos (CPF). Neonatal rats were given terbutaline on postnatal day (PN) 2-5, followed by CPF on PN11-14. Although neither treatment affected growth or viability, each elicited alterations in indices of brain cell differentiation and cholinergic innervation in the immediate posttreatment period (PN15), persisting into adulthood (PN60). Biomarkers of brain cell number (DNA concentration and content), cell size (protein/DNA ratio) and neuritic projections (membrane/total protein) were affected by either agent alone, with patterns consistent with neuronal and neuritic damage accompanied by reactive gliosis. The combined exposure augmented these effects by both additive and synergistic mechanisms. Similarly, choline acetyltransferase (ChAT), a constitutive marker for cholinergic nerve terminals, was affected only by combined exposure to both terbutaline and CPF. Indices of cholinergic synaptic activity [hemicholinium-3 and m(2)-muscarinic acetylcholine receptor binding] showed impairment after exposure to either terbutaline or CPF but the effects were more severe when the treatments were combined. These findings suggest that terbutaline, like CPF, is a developmental neurotoxicant, and that its use in the therapy of preterm labor may create a subpopulation that is sensitized to the adverse neural effects of a subsequent exposure to organophosphate insecticides.
Collapse
Affiliation(s)
- Melissa C Rhodes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|