1
|
Schrader L, Brischke C, Trautner J, Tebbe CC. Microbial decay of wooden structures: actors, activities and means of protection. Appl Microbiol Biotechnol 2025; 109:59. [PMID: 40044964 PMCID: PMC11882669 DOI: 10.1007/s00253-025-13443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Wood decay fungi and bacteria play a crucial role in natural ecosystems, contributing to the decomposition of lignocellulosic materials and nutrient cycling. However, their activity poses significant challenges in timber durability, impacting industries reliant on wood as a construction material. This review examines the diversity of microorganisms damaging timber used indoors and outdoors. Additionally, traditional and advanced methods for microbial identification are discussed, with a focus on DNA-based, culture-independent sequencing methods whose importance has increased massively in recent years. It also provides an overview of the various options for wood protection, starting from wood protection by design, to chemical wood preservation and wood modification methods. This should illustrate how important it is to combine an ecological understanding of the decay organisms, precise identification and innovative wood protection methods in order to achieve a long-term and thus resource-saving use of wood. KEY POINTS: • Fungi and bacteria play a crucial role in the decomposition of timber wood. • Traditional and advanced DNA-based methods for microbial identification are discussed. • An overview of the various options for wood protection is provided.
Collapse
Affiliation(s)
- Lauritz Schrader
- Thünen Institut Für Holzforschung, Leuschnerstraße 91, 21031, Hamburg, Germany
| | - Christian Brischke
- Thünen Institut Für Holzforschung, Leuschnerstraße 91, 21031, Hamburg, Germany
| | - Jochen Trautner
- Thünen Institut Für Holzforschung, Leuschnerstraße 91, 21031, Hamburg, Germany
| | - Christoph C Tebbe
- Thünen Institut Für Biodiversität, Bundesallee 65, 38116, Braunschweig, Germany.
| |
Collapse
|
2
|
Han M, Yin J, Wang X, Yang R, Dong Z, Ning J, Xu Y, Shao B. Pentachlorophenol increases diabetes risk by damaging β-cell secretion and disrupting gut microbial-related amino acids and fatty acids biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136103. [PMID: 39405696 DOI: 10.1016/j.jhazmat.2024.136103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Pentachlorophenol (PCP), a ubiquitous environmental pollutant, has been reported as a possible contributor to diabetes. However, evidence for general population is scarce while related mechanisms are largely unknown. Using a representative population-based case-control study in Beijing (n = 1796), we found a positive association between PCP exposure and diabetes risk with the odds ratio reaching 1.68 (95 % confidence interval: 1.30 to 2.18). A further rat experiment revealed that low-dose PCP mimicking real-world human exposure can significantly impair glycemic homeostasis by inducing pancreatic β-cell dysfunction, with non-linear dose-response relationships. Subsequent multi-omics analysis suggested that low-dose PCP led to notable gut microbiota dysbiosis (especially the species from genus Prevotella, such as intermedia, dentalis, ruminicola, denticola, melaninogenica, and oris), decreased serum amino acids (L-phenylalanine, L-tyrosine, and L-tryptophan) and increased serum fatty acids (oleic and palmitic acid) in rats, while strong correlations were observed among alterations of gut microbes, serum metabolites and glycemic-related biomarkers (e.g., fasting blood glucose and insulin). Collectively, these results imply PCP may increase diabetes risk by disrupting gut microbial-related amino acids and fatty acids biosynthesis. This will help guide future in-depth studies on the roles of PCP in the development of human diabetes.
Collapse
Affiliation(s)
- Muke Han
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China; Peking Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Beijing 100083, PR China
| | - Jie Yin
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Xinyi Wang
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Runhui Yang
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Zhong Dong
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Junyu Ning
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Yajun Xu
- Peking Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Beijing 100083, PR China; Peking Univ, Beijing Key Lab Toxicol Res & Risk Assessment Food, Beijing 100083, PR China
| | - Bing Shao
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China; Xihua Univ, Sch Food & Bioengn, Food Microbiol Key Lab Sichuan Prov, Chengdu 610039, PR China.
| |
Collapse
|
3
|
Li Z, Ru S, Li J, Yang Y, Wang W. Continuous exposure to bisphenol S increases the accumulation of endogenous metabolic toxicants by obstructing the glucuronic acid pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122433. [PMID: 37659633 DOI: 10.1016/j.envpol.2023.122433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Uridine diphosphate glucuronic acid (UDPGA) is an essential substrate in the glucuronidation of exogenous and endogenous lipophilic compounds via the liver glucuronic acid pathway, and its synthesis depends on glucose and energy in the body. Bisphenol S (BPS), as a lipophilic environmental pollutant, has been widely utilized in the manufacturing of daily necessities. The biological effect of BPS in interference with liver energy metabolism might affect UDPGA synthesis and the excretion of lipophilic compounds, but this was not clearly revealed. Here, female zebrafish that were exposed to BPS for 35 days exhibited a significant decrease in UDPGA in the liver with significant accumulation of exogenous BPS and endogenous bilirubin in the body. One vital reason may be that the exposure to BPS for 35 days promoted the lipid formation through PPARg signaling and reduced energy levels in the liver, resulting in the decreased raw materials for UDPGA production in glucuronic acid pathway. Meanwhile, transcriptome analysis showed that BPS inhibited the mRNA expression levels of genes related to the glucuronic acid pathway. The accumulation of endogenous and exogenous lipophilic compounds can trigger a variety of toxicological effect. Thus, weakened liver detoxification might be the primary cause of the toxicological effects of lipophilic pollutants.
Collapse
Affiliation(s)
- Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Yadav S, Kumar S, Haritash AK. A comprehensive review of chlorophenols: Fate, toxicology and its treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118254. [PMID: 37295147 DOI: 10.1016/j.jenvman.2023.118254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Chlorophenols represent one of the most abundant families of toxic pollutants emerging from various industrial manufacturing units. The toxicity of these chloroderivatives is proportional to the number and position of chlorine atoms on the benzene ring. In the aquatic environment, these pollutants accumulate in the tissues of living organisms, primarily in fishes, inducing mortality at an early embryonic stage. Contemplating the behaviour of such xenobiotics and their prevalence in different environmental components, it is crucial to understand the methods used to remove/degrade the chlorophenol from contaminated environment. The current review describes the different treatment methods and their mechanism towards the degradation of these pollutants. Both abiotic and biotic methods are investigated for the removal of chlorophenols. Chlorophenols are either degraded through photochemical reactions in the natural environment, or microbes, the most diverse communities on earth, perform various metabolic functions to detoxify the environment. Biological treatment is a slow process because of the more complex and stable structure of pollutants. Advanced Oxidation Processes are effective in degrading such organics with enhanced rate and efficiency. Based on their ability to generate hydroxyl radicals, source of energy, catalyst type, etc., different processes such as sonication, ozonation, photocatalysis, and Fenton's process are discussed for the treatment or remediation efficiency towards the degradation of chlorophenols. The review entails both advantages and limitations of treatment methods. The study also focuses on reclamation of chlorophenol-contaminated sites. Different remediation methods are discussed to restore the degraded ecosystem back in its natural condition.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| | - Sunil Kumar
- Solaris Chemtech Industries, Bhuj, Gujarat, India
| | - A K Haritash
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
5
|
Maheshwari N, Khan AA, Mahmood R, Salam S. Pentachlorophenol-induced hemotoxicity diminishes antioxidant potential and oxidizes proteins, thiols, and lipids in rat blood: An in vivo study. Heliyon 2023; 9:e16240. [PMID: 37234629 PMCID: PMC10205642 DOI: 10.1016/j.heliyon.2023.e16240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Pentachlorophenol (PCP) is an excessively used wood preservative and pesticide, which has resulted in human exposure raising concerns about its potential toxic effects. This study is designed to evaluate the hemotoxicity of PCP in adult rats. Wistar rats were orally administered PCP (25-150 mg/kg bw) for five days while untreated (control) rats received corn oil. Animals were sacrificed, blood was taken and fractionated into plasma and red blood cells (RBC). PCP administration increased methemoglobin formation but decreased methemoglobin reductase activity. Significantly increased hydrogen peroxide level indicates initiation of oxidative stress condition in blood. PCP increased the oxidation of thiols, proteins and lipids, lowered glutathione levels, and compromised the antioxidant status of RBC in treated rats. Enzymes of the pathways of glucose breakdown, glycolysis and phosphogluconate pathway, were inhibited. Markers of liver damage were increased in the plasma of PCP-treated rats suggesting hepatotoxicity. This was confirmed by histopathological analysis of stained liver sections. Activity of xanthine oxidase, a reactive oxygen species (ROS) generating pro-oxidant enzyme, was increased. These hematological changes could be a result of the increased generation of ROS or direct chemical transformation by transient reaction species. These results show that PCP induces redox imbalance, diminishes antioxidant potential, inhibits metabolic pathways, and oxidizes cellular components in rat blood. This study suggests an elaborated possible molecular mechanism of PCP toxicity, and similar compounds so that methods can be devised to minimize its damaging effect.
Collapse
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Aijaz Ahmed Khan
- Department of Anatomy, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Samreen Salam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| |
Collapse
|
6
|
Huo Y, Wan Y, Qian X, Mahai G, Wang A, He Z, Xu S, Xia W. Variability, determinants, and associations with oxidative stress biomarkers of pentachlorophenol among Chinese pregnant women: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158843. [PMID: 36122716 DOI: 10.1016/j.scitotenv.2022.158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Pentachlorophenol (PCP) is ubiquitous and moderately persistent in the environment, and it is an identified human carcinogen. Previous animal experiments indicate that toxic mechanisms of PCP include oxidative stress. However, no epidemiological study has reported the association between PCP exposure and oxidative stress; such association in pregnant women, a vulnerable population, is of particular interest. This study aimed to characterize PCP concentrations in 2304 urine samples from 768 pregnant women, explore its determinants, and evaluate the associations between PCP exposure and three oxidative stress biomarkers across three trimesters. The median concentrations of PCP (100% detected) in the first, second, and third trimester were 0.61, 0.59, and 0.48 ng/mL, respectively, with a significant decrease trend. The intraclass correlation coefficient of specific gravity (SG)-adjusted PCP was 0.26, indicating high variability for PCP across the three trimesters. PCP concentrations were significantly higher in older, pre-pregnancy overweight, multiparous, high-income, and employed women during pregnancy. Urinary PCP was markedly lower in samples collected during spring compared to other seasons. Linear mixed effect models for repeated measures revealed that ln-transformed SG-adjusted PCP was significantly associated with increased 8-hydroxy-2'-deoxyguanosine (8-OHdG; percent change [%Δ] caused by each interquartile range increase of PCP: 46.2, 95% confidence interval [CI]: 40.2, 52.5) and 8-hydroxyguanosine (8-OHG;%Δ [95% CI]: 44.8 [40.1, 49.8]), but the positive association with 4-hydroxy2-nonenal-mercapturic acid (HNE-MA) was not significant. PCP was also positively associated with increased 8-OHdG and 8-OHG in each trimester using general linear models, and its associations with HNE-MA were only significant at T1 (%Δ [95% CI]: 19.1 [1.05, 40.3]) and T2 (%Δ [95% CI]: 12.6 [0.32, 26.3]). Our findings provide valuable information about PCP exposure characteristics during pregnancy and the potential effects of PCP exposure on oxidative stress in pregnant women.
Collapse
Affiliation(s)
- Yitao Huo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
7
|
Markovich ZR, Hartman JH, Ryde IT, Hershberger KA, Joyce AS, Ferguson PL, Meyer JN. Mild pentachlorophenol-mediated uncoupling of mitochondria depletes ATP but does not cause an oxidized redox state or dopaminergic neurodegeneration in Caenorhabditis elegans. Curr Res Toxicol 2022; 3:100084. [PMID: 35957653 PMCID: PMC9361317 DOI: 10.1016/j.crtox.2022.100084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Aims Mitochondrial dysfunction is implicated in several diseases, including neurological disorders such as Parkinson's disease. However, there is uncertainty about which of the many mechanisms by which mitochondrial function can be disrupted may lead to neurodegeneration. Pentachlorophenol (PCP) is an organic pollutant reported to cause mitochondrial dysfunction including oxidative stress and mitochondrial uncoupling. We investigated the effects of PCP exposure in Caenorhabditis elegans, including effects on mitochondria and dopaminergic neurons. We hypothesized that mild mitochondrial uncoupling by PCP would impair bioenergetics while decreasing oxidative stress, and therefore would not cause dopaminergic neurodegeneration. Results A 48-hour developmental exposure to PCP causing mild growth delay (∼10 % decrease in growth during 48 h, covering all larval stages) reduced whole-organism ATP content > 50 %, and spare respiratory capacity ∼ 30 %. Proton leak was also markedly increased. These findings suggest a main toxic mechanism of mitochondrial uncoupling rather than oxidative stress, which was further supported by a concomitant shift toward a more reduced cellular redox state measured at the whole organism level. However, exposure to PCP did not cause dopaminergic neurodegeneration, nor did it sensitize animals to a neurotoxic challenge with 6-hydroxydopamine. Whole-organism uptake and PCP metabolism measurements revealed low overall uptake of PCP in our experimental conditions (50 μM PCP in the liquid exposure medium resulted in organismal concentrations of < 0.25 μM), and no measurable production of the oxidative metabolites tetra-1,4-benzoquinone and tetrachloro-p-hydroquinone. Innovation This study provides new insights into the mechanistic interplay between mitochondrial uncoupling, oxidative stress, and neurodegeneration in C. elegans. These findings support the premise of mild uncoupling-mediated neuroprotection, but are inconsistent with proposed broad "mitochondrial dysfunction"-mediated neurodegeneration models, and highlight the utility of the C. elegans model for studying mitochondrial and neurotoxicity. Conclusions Developmental exposure to pentachlorophenol causes gross toxicological effects (growth delay and arrest) at high levels. At a lower level of exposure, still causing mild growth delay, we observed mitochondrial dysfunction including uncoupling and decreased ATP levels. However, this was associated with a more-reduced cellular redox tone and did not exacerbate dopaminergic neurotoxicity of 6-hydroxydopamine, instead trending toward protection. These findings may be informative of efforts to define nuanced mitochondrial dysfunction-related adverse outcome pathways that will differ depending on the form of initial mitochondrial toxicity.
Collapse
Affiliation(s)
| | - Jessica H. Hartman
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
| | | | - Abigail S. Joyce
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Patrick L. Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
| |
Collapse
|
8
|
Thota S, Begum R, Kaur G, Bagam P, Dorsey W, Batra S. Pentachlorophenol mediated regulation of DAMPs and inflammation: In vitro study. Toxicol In Vitro 2022; 83:105378. [PMID: 35550411 DOI: 10.1016/j.tiv.2022.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/09/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
Pentachlorophenol (PCP) was once widely employed organochlorine pesticide and wood preservative in United States. Due to its toxicity, the U.S. Environmental Protection Agency classified it as a restricted-use pesticide and established as a liver carcinogen. Earlier reports have indicated increased production of inflammatory mediators like IL-1β and TNF-α by immune cells, including NK cells, lymphocytes, or monocytes, on PCP exposure. Yet, there is little to no knowledge regarding the molecular mechanisms affected by acute and chronic exposure to PCP in humans. Considering this, we examined PCP-induced inflammation and downstream signaling in-(a) human lung adenocarcinoma cells (A549) with type II alveolar epithelial characteristics; and (b) human liver carcinoma cells (HepG2). We treated A549 and HepG2 cells with 1 μM and 10 μM of PCP for 24 h duration. We observed a significant induction of cytokine/chemokine production (IL-1β, IL-6, TNF-α, IL-8, CCL2, and CCL5) in PCP-treated- HepG2 and A549 cells. The mRNA expression analyses showed upregulated levels of danger associated molecular patterns (DAMPs)-HMGB1 and heat shock protein 70 (Hsp70); and TLR-4 receptor in PCP-challenged cells. Increased expression of transcription factors-NF-kB and STAT3 provide further insights into PCP-induced molecular mechanisms. Interestingly, antibody mediated blocking of DAMPs abrogated PCP-mediated transcriptional induction of cytokines/chemokines and transcription factors in HepG2 and A549 cells. Overall, our findings demonstrate important role of DAMPs in PCP-induced inflammatory responses.
Collapse
Affiliation(s)
- Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA
| | - Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA
| | - Waneene Dorsey
- Department of Biological Sciences, Grambling State University, Grambling, Louisiana, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA.
| |
Collapse
|
9
|
Zhu BZ, Tang M, Huang CH, Mao L. Detecting and Quantifying Polyhaloaromatic Environmental Pollutants by Chemiluminescence-Based Analytical Method. Molecules 2021; 26:molecules26113365. [PMID: 34199613 PMCID: PMC8199721 DOI: 10.3390/molecules26113365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhaloaromatic compounds (XAr) are ubiquitous and recalcitrant in the environment. They are potentially carcinogenic to organisms and may induce serious risks to the ecosystem, raising increasing public concern. Therefore, it is important to detect and quantify these ubiquitous XAr in the environment, and to monitor their degradation kinetics during the treatment of these recalcitrant pollutants. We have previously found that unprecedented intrinsic chemiluminescence (CL) can be produced by a haloquinones/H2O2 system, a newly-found ●OH-generating system different from the classic Fenton system. Recently, we found that the degradation of priority pollutant pentachlorophenol by the classic Fe(II)-Fenton system could produce intrinsic CL, which was mainly dependent on the generation of chloroquinone intermediates. Analogous effects were observed for all nineteen chlorophenols, other halophenols and several classes of XAr, and a novel, rapid and sensitive CL-based analytical method was developed to detect these XAr and monitor their degradation kinetics. Interestingly, for those XAr with halohydroxyl quinoid structure, a Co(II)-mediated Fenton-like system could induce a stronger CL emission and higher degradation, probably due to site-specific generation of highly-effective ●OH. These findings may have broad chemical and environmental implications for future studies, which would be helpful for developing new analytical methods and technologies to investigate those ubiquitous XAr.
Collapse
Affiliation(s)
- Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (C.-H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.-Z.Z.); (L.M.); Tel.: +86-10-62849030 (B.-Z.Z.)
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (C.-H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (C.-H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (C.-H.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.-Z.Z.); (L.M.); Tel.: +86-10-62849030 (B.-Z.Z.)
| |
Collapse
|
10
|
Maheshwari N, Mahmood R. 3,4-Dihydroxybenzaldehyde attenuates pentachlorophenol-induced cytotoxicity, DNA damage and collapse of mitochondrial membrane potential in isolated human blood cells. Drug Chem Toxicol 2020; 45:1225-1242. [DOI: 10.1080/01480545.2020.1811722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
11
|
Modulation and Protection Effects of Antioxidant Compounds against Oxidant Induced Developmental Toxicity in Zebrafish. Antioxidants (Basel) 2020; 9:antiox9080721. [PMID: 32784515 PMCID: PMC7463582 DOI: 10.3390/antiox9080721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The antioxidant effect of compounds is regularly evaluated by in vitro assays that do not have the capability to predict in vivo protective activity or to determine their underlying mechanisms of action. The aim of this study was to develop an experimental system to evaluate the in vivo protective effects of different antioxidant compounds, based on the zebrafish embryo test. Zebrafish embryos were exposed to tert-butyl hydroperoxide (tBOOH), tetrachlorohydroquinone (TCHQ) and lipopolysaccharides from Escherichia coli (LPS), chemicals that are known inducers of oxidative stress in zebrafish. The developmental toxic effects (lethality or dysmorphogenesis) induced by these chemicals were modulated with n-acetyl l-cysteine and Nω-nitro l-arginine methyl ester hydrochloride, dimethyl maleate and dl-buthionine sulfoximine in order to validate the oxidant mechanism of oxidative stress inducers. The oxidant effects of tBOOH, TCHQ, and LPS were confirmed by the determination of significant differences in the comparison between the concentration–response curves of the oxidative stress inducers and of the modulators of antioxidant status. This concept was also applied to the study of the effects of well-known antioxidants, such as vitamin E, quercetin, and lipoic acid. Our results confirm the zebrafish model as an in vivo useful tool to test the protective effects of antioxidant compounds.
Collapse
|
12
|
Du XM, Zhao B, Yang Q, Wang JS, Xie FY, Yu HY, Li Y, Ma YX, Ruan WJ. Dual-emissive dye@MOF composite for ratiometric detection and discrimination of two isomers of tetrachlorobenzenediol. NEW J CHEM 2020. [DOI: 10.1039/d0nj04058d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dye@MOF composite was screened out for the ratiometric fluorescent detection and discrimination of the two isomers of tetrachlorobenzenediol.
Collapse
Affiliation(s)
- Xiao-Meng Du
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Bo Zhao
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Qi Yang
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Jia-Si Wang
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Feng-Yang Xie
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Hong-Yi Yu
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yue Li
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| | - Yu-Xin Ma
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wen-Juan Ruan
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| |
Collapse
|
13
|
Bekhouche K, Ozen T, Boussaha S, Demirtas I, Kout M, Yildirim K, Zama D, Benayache F, Benayache S. Hepatoprotective effects of the n-butanol extract from Perralderia coronopifolia Coss. against PCP-induced toxicity in Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31215-31224. [PMID: 31463753 DOI: 10.1007/s11356-019-06231-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
In the present study, in vivo antioxidant properties of the n-butanol extract obtained from aerial parts of Perralderia coronopifolia were investigated in term of its hepatoprotective effect of female Wistar albino rats (n, 36; average age, 48 ± 5 days; weighing 150 ± 18 g) against PCP (pentachlorphenol)-induced toxicity. PCP (20 mg/kg b.w.) and plant extract (50 mg/kg b.w.) were administered daily by gavages for 2 weeks. Vitamin E (100 mg/kg b.w.) was given intraperitoneally as a positive control. Lipid peroxidation (LPO) levels, reduced glutathione (GSH) levels, and glutathione peroxidase (GPx) activities were evaluated in liver homogenates. While, aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol, and triglyceride parameters were analyzed in serums. The liver fragments were observed using light microscopy. Experimental results exhibited that PCP-treated group has a significant increase in the liver lipid peroxidation (LPO) levels of animals while decreased in plant extract-treated group. In addition, PCP caused significant decreases in glutathione peroxidase (GPx) activities and reduced glutathione (GSH) levels. Moreover, PCP induced hepatotoxicity by increasing serum transaminase enzymes, cholesterol, and triglyceride levels. While, these levels were restored to control value in animals treated with plant extract. The regularized levels of LPO, GSH, cholesterol, triglyceride, transaminase enzymes, and GPx activities revealed the antioxidant properties of the extract plant as well as of the vitamin E. The histological study showed the hepatoprotective effect of our extracts against PCP-induced acute intoxication, protecting the hepatic architecture and decreasing the functional and structural alterations of the liver. The plant extract had high antioxidant potential and completely prevented the toxic effect of PCP on the above of liver and serum parameters.
Collapse
Affiliation(s)
- Khadidja Bekhouche
- Department of Animal Biology, Faculty of Nature and Life Sciences, University Frères Mentouri 1, Constantine, Algeria
| | - Tevfik Ozen
- Department of Chemistry, Faculty of Science and Letters, Ondokuz Mayis University, Samsun, Turkey.
| | - Sara Boussaha
- Research Unit: Valuation of Natural Resources, Bioactive Molecules, Physicochemical and Biological Analyzes (VARENBIOMOL), University Frères Mentouri 1, Constantine, Algeria
| | - Ibrahim Demirtas
- Plant Research Laboratory, Department of Chemistry, University of Cankiri, Karatekin, Turkey
| | - Mounir Kout
- Anatomic and Pathologic Cytology Laboratory, University Hospital Center, Constantine, Algeria
| | - Kemal Yildirim
- Department of Chemistry, Faculty of Science and Letters, Ondokuz Mayis University, Samsun, Turkey
| | - Djamila Zama
- Department of Animal Biology, Faculty of Nature and Life Sciences, University Frères Mentouri 1, Constantine, Algeria
- Research Unit: Valuation of Natural Resources, Bioactive Molecules, Physicochemical and Biological Analyzes (VARENBIOMOL), University Frères Mentouri 1, Constantine, Algeria
| | - Fadila Benayache
- Research Unit: Valuation of Natural Resources, Bioactive Molecules, Physicochemical and Biological Analyzes (VARENBIOMOL), University Frères Mentouri 1, Constantine, Algeria
| | - Samir Benayache
- Research Unit: Valuation of Natural Resources, Bioactive Molecules, Physicochemical and Biological Analyzes (VARENBIOMOL), University Frères Mentouri 1, Constantine, Algeria
| |
Collapse
|
14
|
Maheshwari N, Khan FH, Mahmood R. Pentachlorophenol-induced cytotoxicity in human erythrocytes: enhanced generation of ROS and RNS, lowered antioxidant power, inhibition of glucose metabolism, and morphological changes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12985-13001. [PMID: 30895543 DOI: 10.1007/s11356-019-04736-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Pentachlorophenol (PCP) is a class 2B human carcinogen that is used as an insecticide, herbicide, and wood preservative. PCP is rapidly absorbed and enters the blood where it can interact with erythrocytes. We have examined the effect of PCP on human erythrocytes. Treatment of erythrocytes with PCP increased the intracellular generation of reactive oxygen and nitrogen species. It also increased lipid and protein oxidation accompanied by decrease in glutathione levels and total sulfhydryl content. The activities of all major antioxidant enzymes were altered. The antioxidant power was significantly impaired resulting in lower free radical quenching and metal reducing ability of the PCP-treated cells. PCP exposure also inhibited the activities of enzymes of glycolysis and pentose phosphate shunt, the two pathways of glucose metabolism in erythrocytes. Heme degradation was enhanced leading to the release of free iron. Incubation of erythrocytes with PCP caused significant cell lysis suggesting plasma membrane damage which was also evident from inhibition of bound enzymes. Scanning electron microscopy of erythrocytes confirmed these biochemical results and showed that PCP treatment converted the normal biconcave discoids to echinocytes and other irregularly shaped cells. Thus, PCP induces oxidative and nitrosative stress in erythrocytes, alters the enzymatic and nonenzymatic antioxidant defense systems, inhibits glucose metabolism, and causes significant modifications in cellular morphology.
Collapse
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
15
|
Chalouati H, Ben Sâad MM, Payrastre L. Hepatoprotective effects of vitamin E against hexachlorobenzene-induced hepatotoxicity and oxidative stress in rats: histological, biochimical and antioxidant status changes. Toxicol Mech Methods 2018; 29:18-25. [PMID: 30064338 DOI: 10.1080/15376516.2018.1506847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The protective effects of α-Tocopherol (vitamin E) on liver injury induced by hexachlorobenzene (HCB) were investigated in adult male rats of Wistar strain. Animals were randomly divided into six groups of eight rats each. Group 1 and 2 have received HCB, dissolved in olive oil, at a dose of 4 mg or 16 mg/kg b.w., respectively. Group 3 and 4 were treated by the same doses of HCB (4 mg and 16 mg/kg b.w.) after 1 h of pretreatment with α-tocopherol at a dose of 100 mg kg-1 b.w. The other two groups served as controls; which received either olive oil only, a solvent of HCB, or α-tocopherol. A significant increase in hepatic lipid peroxidation (LPO) and GSH activity were observed following HCB administration. The activities of antioxidant enzymes like superoxide dismutase and catalase were significantly decreased while glutathione peroxidase was significantly increased following HCB administration. Similarly, a significant increase in plasma levels of various marker enzymes [aminotransferase (aspartate aminotransférase (AST) and alanine aminotransferase (ALT)), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)] and a decrease of total protein level were observed. Pretreatment with vitamin E of HCB treated rats ameliorated all biochemical parameters to near normal values. Liver histological study confirmed biochemical parameters and the beneficial role of vitamin E.
Collapse
Affiliation(s)
- Hela Chalouati
- a Laboratoire de Physiologie Animale, Département des Sciences Biologiques, Faculté des Sciences de Tunis , Université Tunis el Manar , Tunis , Tunisie.,b INRA UMR 1331Toxalim (Research center in food Toxicology) , Toulouse , France
| | - Mohamed Moncef Ben Sâad
- a Laboratoire de Physiologie Animale, Département des Sciences Biologiques, Faculté des Sciences de Tunis , Université Tunis el Manar , Tunis , Tunisie
| | - Laurence Payrastre
- b INRA UMR 1331Toxalim (Research center in food Toxicology) , Toulouse , France
| |
Collapse
|
16
|
Verbrugge LA, Kahn L, Morton JM. Pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge, Alaska USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19187-19195. [PMID: 29858999 PMCID: PMC6061508 DOI: 10.1007/s11356-018-2269-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2018] [Indexed: 06/04/2023]
Abstract
Composite surface soil samples were collected at 0, 25, and 50 cm from the base of 12 utility poles on the Kenai National Wildlife Refuge in Alaska, to assess the extent to which pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans may have leached from pentachlorophenol-treated poles. Six pairs of utility poles were included, consisting of an "old" pole manufactured in 1959 or 1963, a "new" pole manufactured within the past 20 years, and a suitable background soil sample from the same vicinity. Old poles had greater concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TEQs) near the pole base and at 25 cm than "new" poles did. For all 12 poles combined, the mean pentachlorophenol levels in soil were 1810, 157, and 17.8 ppm dry weight (d.w.) near the pole bases, at 25 and 50 cm from the poles, respectively, while the mean total TEQ levels in soil were 15,200, 5170, and 1510 parts per trillion d.w. at those distances. Surface soil levels of pentachlorophenol and TCDD-TEQs exceeded both human health and ecological risk-based screening levels. The design and results of this study were similar to another project in Montreal, Quebec in Canada. Together the results are cause for concern, indicating that millions of similarly treated utility poles in North America may be point sources of pentachlorophenol and dioxins/furans to soil.
Collapse
Affiliation(s)
- Lori A Verbrugge
- U.S. Fish and Wildlife Service, Alaska Regional Office, 1011 E. Tudor Rd, Anchorage, AK, USA.
| | - Lynnda Kahn
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, P.O. Box 2139, Soldotna, AK, USA
| | - John M Morton
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, P.O. Box 2139, Soldotna, AK, USA
| |
Collapse
|
17
|
Ameliorative effect of carvacrol against propiconazole-induced neurobehavioral toxicity in rats. Neurotoxicology 2018; 67:141-149. [DOI: 10.1016/j.neuro.2018.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/04/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
|
18
|
Ya Y, Jiang C, Yan F, Xie L, Li T, Wang Y, Wei L. A novel electrochemical sensor for chlorophenols based on the enhancement effect of Al-doped mesoporous cellular foam. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Freitas RB, Rômulo DN, Bianca GM, Eliziária CS, Murilo SA, Luciano GF, Luciana ML, Maria do Carmo P, Reggiani VG, João Paulo VL. Euterpe edulis extracts positively modulates the redox status and expression of inflammatory mediators. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1360255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- R. B. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Brazil
| | - D. N. Rômulo
- Department of Cell, Tissue and Developmental Biology, Federal University of Alfenas, Alfenas, Brazil
| | - G. M. Bianca
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Brazil
| | - C. S. Eliziária
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - S. A. Murilo
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Brazil
| | - G. F. Luciano
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Brazil
| | - M. L. Luciana
- Department of Medical and nursing, Federal University of Viçosa, Viçosa, Brazil
| | - P. Maria do Carmo
- Department of Nutrition, Federal University of Viçosa, Viçosa, Brazil
| | - V. G. Reggiani
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Brazil
| | - V. L. João Paulo
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
20
|
Fu J, Zhang X, Chen P, Zhang Y. Endoplasmic reticulum stress is involved in 2,4-dichlorophenol-induced hepatotoxicity. J Toxicol Sci 2017; 41:745-756. [PMID: 27853103 DOI: 10.2131/jts.41.745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
2,4-Dichlorophenol (2,4-DCP) is an environmental pollutant exhibiting a wide spectrum of toxic effects. We investigated the toxic effects and potential mechanisms underlying 2,4-DCP-induced hepatotoxicity. In vitro, 2,4-DCP caused hepatotoxicity manifested by a decrease in cell viability and inhibition of colony formation. Bip and CHOP expression was up-regulated at the mRNA and protein levels. Moreover, 2,4-DCP induced eIF2α phosphorylation and Xbp1 mRNA splicing, indicating that endoplasmic reticulum (ER) stress was activated after exposure of HL7702 cells to 2,4-DCP for 12 hr. Furthermore, the mitochondrial membrane potential collapsed and apoptosis was triggered after exposure to 2,4-DCP for 24 hr. In vivo, 2,4-DCP caused histological changes in the liver, and dramatically elevated the serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels of mice. ER stress was also triggered in the liver of mice on days 1 and 3. The ER stress inhibitor TUDCA could partly relieve the liver damage, as indicated by the restoration of serum ALT and AST levels. Taken together, our results demonstrated that ER stress may serve as an early warning mechanism against 2,4-DCP-induced hepatotoxicity, and severe ER stress may lead to apoptosis.
Collapse
Affiliation(s)
- Jianbo Fu
- Institute of Life Science, Nanchang University, China
| | | | | | | |
Collapse
|
21
|
Jiang P, Wang J, Zhang J, Dai J. Effects of pentachlorophenol on the detoxification system in white-rumped munia (Lonchura striata). J Environ Sci (China) 2016; 44:224-234. [PMID: 27266319 DOI: 10.1016/j.jes.2015.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 06/06/2023]
Abstract
Pentachlorophenol (PCP), a priority pollutant due to its persistence and high toxicity, has been used worldwide as a pesticide and biocide. To understand the adverse effects of PCP, adult male white-rumped munias (Lonchura striata) were orally administrated commercial PCP mixed with corn oil at dosages of 0, 0.05, 0.5, and 5mg/(kg·day) for 42day. Gas chromatography-mass spectrometry (GC-MS) analysis found that PCP was preferentially accumulated in the kidney rather than in the liver and muscle in all exposure groups. To examine the function of CYP1A in pollutant metabolism, we isolated two full-length cDNA fragments (designated as CYP1A4 and CYP1A5) from L. striata liver using reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. PCP induced the expression of CYP1A5, although no obvious change was observed in CYP1A4 expression. Furthermore, PCP significantly elevated the activities of ethoxyresorufin O-deethylase and methoxyresorufin O-demethylase and decreased the activity of benzyloxy-trifluoromethyl-coumarin, with no significant responses observed in benzyloxyresorufin O-debenzylase. PCP induced significant changes in antioxidant enzyme (superoxide dismutase and catalase) activities and malondialdehyde content, but decreased glutathione peroxidase (GSH-Px) and glutathione S-transferase activities and GSH content in the liver of L. striata. The present study demonstrated that PCP had hepatic toxic effects by affecting CYP1As and anti-oxidative status.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jianshe Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
22
|
Kim HJ, Koedrith P, Seo YR. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism. Int J Mol Sci 2015; 16:12261-87. [PMID: 26035755 PMCID: PMC4490443 DOI: 10.3390/ijms160612261] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 01/02/2023] Open
Abstract
Due to the rapid advent in genomics technologies and attention to ecological risk assessment, the term “ecotoxicogenomics” has recently emerged to describe integration of omics studies (i.e., transcriptomics, proteomics, metabolomics, and epigenomics) into ecotoxicological fields. Ecotoxicogenomics is defined as study of an entire set of genes or proteins expression in ecological organisms to provide insight on environmental toxicity, offering benefit in ecological risk assessment. Indeed, Daphnia is a model species to study aquatic environmental toxicity designated in the Organization for Economic Co-operation and Development’s toxicity test guideline and to investigate expression patterns using ecotoxicology-oriented genomics tools. Our main purpose is to demonstrate the potential utility of gene expression profiling in ecotoxicology by identifying novel biomarkers and relevant modes of toxicity in Daphnia magna. These approaches enable us to address adverse phenotypic outcomes linked to particular gene function(s) and mechanistic understanding of aquatic ecotoxicology as well as exploration of useful biomarkers. Furthermore, key challenges that currently face aquatic ecotoxicology (e.g., predicting toxicant responses among a broad spectrum of phytogenetic groups, predicting impact of temporal exposure on toxicant responses) necessitate the parallel use of other model organisms, both aquatic and terrestrial. By investigating gene expression profiling in an environmentally important organism, this provides viable support for the utility of ecotoxicogenomics.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
- Department of Life Science, Dongguk University Biomedi Campus 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
| | - Preeyaporn Koedrith
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
- Faculty of Environment and Resource Studies, Mahidol University, 999 Phuttamonthon 4 Rd., Phuttamonthon District, Nakhon Pathom 73170, Thailand.
| | - Young Rok Seo
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
- Department of Life Science, Dongguk University Biomedi Campus 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
| |
Collapse
|
23
|
Su C, Zhang P, Song X, Shi Q, Fu J, Xia X, Bai H, Hu L, Xu D, Song E, Song Y. Tetrachlorobenzoquinone Activates Nrf2 Signaling by Keap1 Cross-Linking and Ubiquitin Translocation but Not Keap1-Cullin3 Complex Dissociation. Chem Res Toxicol 2015; 28:765-74. [DOI: 10.1021/tx500513v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chuanyang Su
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Pu Zhang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xiufang Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Qiong Shi
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Juanli Fu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xiaomin Xia
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Huiyuan Bai
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Lihua Hu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Demei Xu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yang Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
24
|
Chen HM, Lee YH, Wang YJ. ROS-triggered signaling pathways involved in the cytotoxicity and tumor promotion effects of pentachlorophenol and tetrachlorohydroquinone. Chem Res Toxicol 2015; 28:339-50. [PMID: 25608107 DOI: 10.1021/tx500487w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Free radical-triggered tissue damage is believed to play an essential role in a variety of human diseases. Pentachlorophenol (PCP) is applied as a pesticide worldwide in both industries and homes. It is used extensively as a biocide and wood preservative. Tetrachlorohydroquinone (TCHQ) was proved as a major toxic metabolite of PCP, contributing the release of free radicals during PCP metabolism. PCP has been proposed as a tumor promoter; however, only limited knowledge is available regarding the mechanisms of tumor promotion induced by PCP and its metabolite, TCHQ. A growing amount of literature suggests that a link between reactive oxygen species (ROS) and tumor promotion could exist. Herein, we summarize the findings regarding the ROS-triggered signaling pathways involved in the cytotoxicity and tumor promotion effects of PCP and TCHQ. Some of the notable findings demonstrated that TCHQ can induce DNA lesions and glutathione depletion in mammalian cells; meanwhile, oxidative stress and apoptosis/necrosis can be found both in vivo and in vitro. Interestingly, PCP and TCHQ were proved as mild tumor promoters in two-stage tumorigenesis models, in which the possible mechanism could be through ROS generation and changed Bcl-2 gene expression. We also found significant effects of antioxidants in attenuating the oxidative stress, cyto- and genotoxicity, and apoptosis/necrosis induced by PCP and/or TCHQ. In addition, mitogen-activated protein kinase (MAPK) activation is involved in PCP/TCHQ-triggered cytotoxicity, as evidenced by the finding that higher doses of TCHQ could lead to necrosis of freshly isolated splenocytes through the production of a large amount of ROS and sustained ERK activation. These results could explain partly the underlying molecular mechanisms contributing to the tumorigenesis induced by PCP. However, the detailed mechanisms of free radicals in triggering PCP/TCHQ-mediated tumor promotion and toxicity are still not completely resolved and need to be investigated further.
Collapse
Affiliation(s)
- Hsiu-Min Chen
- Department of Environmental and Occupational Health, National Cheng Kung University , Tainan, Taiwan
| | | | | |
Collapse
|
25
|
Morales M, Martínez-Paz P, Martín R, Planelló R, Urien J, Martínez-Guitarte JL, Morcillo G. Transcriptional changes induced by in vivo exposure to pentachlorophenol (PCP) in Chironomus riparius (Diptera) aquatic larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:1-9. [PMID: 25306060 DOI: 10.1016/j.aquatox.2014.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Pentachlorophenol (PCP) has been extensively used worldwide as a pesticide and biocide and is frequently detected in the aquatic environment. In the present work, the toxicity of PCP was investigated in Chironomus riparius aquatic larvae. The effects following short- and long-term exposures were evaluated at the molecular level by analyzing changes in the transcriptional profile of different endocrine genes, as well as in genes involved in the stress response and detoxification. Interestingly, although no differences were found after 12- and 24-h treatments, at 96-h exposures PCP was able to induce significant increases in transcripts from the ecdysone receptor gene (EcR), the early ecdysone-inducible E74 gene, the estrogen-related receptor gene (ERR), the Hsp70 gene and the CYP4G gene. In contrast, the Hsp27 gene appeared to be downregulated, while the ultraspiracle gene (usp) (insect ortholog of the retinoid X receptor) was not altered in any of the conditions assayed. Moreover, Glutathione-S-Transferase (GST) activity was not affected. The results obtained show the ability of PCP to modulate transcription of different biomarker genes from important cellular metabolic activities, which could be useful in genomic approaches to monitoring. In particular, the significant upregulation of hormonal genes represents the first evidence at the genomic level of the potential endocrine disruptive effects of PCP on aquatic invertebrates.
Collapse
Affiliation(s)
- Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain.
| | - Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| | - Raquel Martín
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| | - Josune Urien
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, Madrid 28040, Spain
| |
Collapse
|
26
|
Cytotoxic effects exerted by pentachlorophenol by targeting nodal pro-survival signaling pathways in human pancreatic cancer cells. Toxicol Rep 2014; 1:1162-1174. [PMID: 28962326 PMCID: PMC5598403 DOI: 10.1016/j.toxrep.2014.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 01/10/2023] Open
Abstract
Pancreatic adenocarcinoma is one of the deadliest human solid tumors in the developed countries characterized by high resistance toward chemotherapeutic treatment. We have previously shown that silencing of the pro-survival protein kinase CK2 by RNA interference contributes to enhance the cytotoxicity of the chemotherapeutic agent 2′,2′-difluoro 2′-deoxycytidine (gemcitabine). Initial experiments showed that pentachlorophenol (PCP) inhibits CK2 and induces cell death in human pancreatic cancer cell lines. We report here evidence that exposure of this type of cells to PCP induces caspase-mediated apoptosis, inhibition of the lysosome cysteine protease cathepsin B and mitochondrial membrane depolarization. Beside cellular inhibition of CK2, the analysis of signaling pathways deregulated in pancreatic cancer cells revealed that PCP causes decreased phosphorylation levels of NF-κB/p65, suppresses its nuclear translocation and leads to activation of JNK-mediated stress response. Surprisingly, exposure to PCP results in increased phosphorylation levels of AKT at the canonical S473 and T308 activation sites supporting previous data showing that AKT phosphorylation is not predictive of tumor cell response to treatment. Taken together, our study provides novel insights into the effects induced by the exposure of pancreatic cancer cells to chlorinated aromatic compounds posing the basis for more advanced studies in vivo.
Collapse
|
27
|
de Oliveira TF, da Silva ALM, de Moura RA, Bagattini R, de Oliveira AAF, de Medeiros MHG, Di Mascio P, de Arruda Campos IP, Barretto FP, Bechara EJH, de Melo Loureiro AP. Luminescent threat: toxicity of light stick attractors used in pelagic fishery. Sci Rep 2014; 4:5359. [PMID: 24942522 PMCID: PMC5381548 DOI: 10.1038/srep05359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/30/2014] [Indexed: 11/13/2022] Open
Abstract
Light sticks (LS) are sources of chemiluminescence commonly used in pelagic fishery, where hundreds are discarded and reach the shores. Residents from fishing villages report an improper use of LS contents on the skin. Given the scarce information regarding LS toxicity, the effects of LS solutions in cell cultures were evaluated herein. Loss of viability, cell cycle changes and DNA fragmentation were observed in HepG2 cell line and skin fibroblasts. A non-cytotoxic LS concentration increased the occurrence of the mutagenic lesion 1,N(6)-εdAdo in HepG2 DNA by three-fold. Additionally, in vitro incubations of spent LS contents with DNA generated dGuo-LS adducts, whose structure elucidation revealed the presence of a reactive chlorinated product. In conclusion, the LS contents were found to be highly cyto- and genotoxic. Our data indicate an urgent need for LS waste management guidelines and for adequate information regarding toxic outcomes that may arise from human exposure.
Collapse
Affiliation(s)
- Tiago Franco de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
- These authors contributed equally to this work
| | - Amanda Lucila Medeiros da Silva
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
- These authors contributed equally to this work
| | - Rafaela Alves de Moura
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raquel Bagattini
- Instituto de Ciências e Saúde, Universidade Paulista, São Paulo, SP, Brazil
| | - Antonio Anax Falcão de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Etelvino José Henriques Bechara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Ana Paula de Melo Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Xu D, Hu L, Xia X, Song J, Li L, Song E, Song Y. Tetrachlorobenzoquinone induces acute liver injury, up-regulates HO-1 and NQO1 expression in mice model: the protective role of chlorogenic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1212-1220. [PMID: 24816176 DOI: 10.1016/j.etap.2014.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/15/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Tetrachlorobenzoquinone (TCBQ) is an active metabolite of pentachlorophenol (PCP). Although PCP has been investigated extensively, there are only a few reports describing the toxicity effect of TCBQ, and no report regarding TCBQ-induced liver injury in vivo. In the current study, we aimed to examine the acute hepatic toxicity of TCBQ in the mice model. Chlorogenic acid (CGA) exhibits promising antioxidant activity in the past studies, thus, the second aim of this study was to evaluate the protective effect of CGA on TCBQ-induced liver injury. Our results indicated TCBQ-intoxication caused marked liver cell necrosis and inflammation but not apoptosis, and this damage was alleviated by CGA treatment. Meantime, TCBQ-intoxication enhanced serum ALT, AST activities, TBIL content, hepatic oxidative stress and lipid peroxidation, decreased GSH content and inhibited the activities of antioxidant enzymes. Western blot and immunohistochemical analysis showed that TCBQ marked up-regulated HO-1 and NQO1 expression. On the other hand, pretreatment of CGA reduced TCBQ-induced liver damage remarkably. Taking together, these results revealed that TCBQ has strong hepatic toxic effect, and at least a part of this effect is initiated by free radical and relieved with CGA administration.
Collapse
Affiliation(s)
- Demei Xu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lihua Hu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Jianbo Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lingrui Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
29
|
Chen HM, Zhu BZ, Chen RJ, Wang BJ, Wang YJ. The pentachlorophenol metabolite tetrachlorohydroquinone induces massive ROS and prolonged p-ERK expression in splenocytes, leading to inhibition of apoptosis and necrotic cell death. PLoS One 2014; 9:e89483. [PMID: 24586814 PMCID: PMC3935892 DOI: 10.1371/journal.pone.0089483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/20/2014] [Indexed: 12/01/2022] Open
Abstract
Pentachlorophenol (PCP) has been used extensively as a biocide and a wood preservative and has been reported to be immunosuppressive in rodents and humans. Tetrachlorohydroquinone (TCHQ) is a major metabolite of PCP. TCHQ has been identified as the main cause of PCP-induced genotoxicity due to reactive oxidant stress (ROS). However, the precise mechanisms associated with the immunotoxic effects of PCP and TCHQ remain unclear. The aim of this study was to examine the effects of PCP and TCHQ on the induction of ROS and injury to primary mouse splenocytes. Our results shown that TCHQ was more toxic than PCP and that a high dose of TCHQ led to necrotic cell death of the splenocytes through induction of massive and sudden ROS and prolonged ROS-triggered ERK activation. Inhibition of ROS production by N-acetyl-cysteine (NAC) partially restored the mitochondrial membrane potential, inhibited ERK activity, elevated caspase-3 activity and PARP cleavage, and, eventually, switched the TCHQ-induced necrosis to apoptosis. We suggest that prolonged ERK activation is essential for TCHQ-induced necrosis, and that ROS play a pivotal role in the different TCHQ-induced cell death mechanisms.
Collapse
Affiliation(s)
- Hsiu-Min Chen
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Rong-Jane Chen
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | - Bour-Jr. Wang
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- * E-mail: (Y-JW); (B-JW)
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
- * E-mail: (Y-JW); (B-JW)
| |
Collapse
|
30
|
Evaluation of N-acetyl-cysteine against tetrachlorobenzoquinone-induced genotoxicity and oxidative stress in HepG2 cells. Food Chem Toxicol 2014; 64:291-7. [DOI: 10.1016/j.fct.2013.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 11/21/2022]
|
31
|
Chen Y, Huang J, Xing L, Liu H, Giesy JP, Yu H, Zhang X. Effects of multigenerational exposures of D. magna to environmentally relevant concentrations of pentachlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:234-243. [PMID: 23636589 DOI: 10.1007/s11356-013-1692-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
The re-emergence of schistosomiasis has given rise to ubiquitous concentrations of the primary control agent pentachlorophenol (PCP) in the environment, especially in the surface waters of China. In this study, the effects of environmentally relevant concentrations of PCP, namely, 0.0002, 0.002, 0.02, 0.2, and 2 μmol/L on survival, age at first reproduction, fecundity, length of mothers, and number of molts of Daphnia magna were studied over three generations. The survival of D. magna exposed to 2 μmol/L was significantly affected in the three generations. Toxic effects were enhanced in later generations. Age at first reproduction of F1 and F2 D. magna was significantly slower than that of the controls. The total number of offspring per female exposed to concentrations of 0.002 μmol/L or greater was less (23.5 to 67.6, 9.4 to 73.7, and 3.6 to 83.7%) than that of the controls in the F0, F1, and F2 generations, respectively. The body length of mothers significantly decreased (4.7 to 6.8, 9.6 to 15.1, and 13.3 to 23.2%) after exposure to 0.002 μmol/L or greater than those of unexposed individuals in the F0, F1, and F2 generations, respectively. Dose-response relationships between concentrations of PCP and length and number of molts of D. magna were observed in the F0 to F2 generations. PCP concentrations on the surface waters of China caused adverse effects to D. magna, which increased over successive generations. Significant effects were observed in the third generation. The multigenerational studies were more sensitive than the single-generation experiments. Thus, multigenerational exposure may be more predictive of chronic exposure under field conditions.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Shan G, Ye M, Zhu B, Zhu L. Enhanced cytotoxicity of pentachlorophenol by perfluorooctane sulfonate or perfluorooctanoic acid in HepG2 cells. CHEMOSPHERE 2013; 93:2101-2107. [PMID: 23972907 DOI: 10.1016/j.chemosphere.2013.07.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Chlorinated phenols and perfluoroalkyl acids (PFAAs) are two kinds of pollutants which are widely present in the environment. Considering liver is the primary toxic target organ for these two groups of chemicals, it is interesting to evaluate the possible joint effects of them on liver. In this work, the combined toxicity of pentachlorophenol (PCP) and perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) were investigated using HepG2 cells. The results indicated that PFOS and PFOA could strengthen PCP's hepatotoxicity. Further studies showed that rather than intensify the oxidative stress or promote the biotransformation of PCP, PFOS (or PFOA) might lead to strengthening of the oxidative phosphorylation uncoupling of PCP. By measuring the intracellular PCP concentration and the cell membrane properties, it was suggested that PFOS and PFOA could disrupt the plasma membrane and increase the membrane permeability. Thus, more cellular accessibility of PCP was induced when they were co-exposed to PCP and PFOS (or PFOA), leading to increased cytotoxicity. Further research is warranted to better understand the combined toxicity of PFAAs and other environmental pollutants.
Collapse
Affiliation(s)
- Guoqiang Shan
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071, PR China
| | | | | | | |
Collapse
|
33
|
Tasaki M, Kuroiwa Y, Inoue T, Hibi D, Matsushita K, Kijima A, Maruyama S, Nishikawa A, Umemura T. Lack of nrf2 results in progression of proliferative lesions to neoplasms induced by long-term exposure to non-genotoxic hepatocarcinogens involving oxidative stress. ACTA ACUST UNITED AC 2013; 66:19-26. [PMID: 23988840 DOI: 10.1016/j.etp.2013.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/27/2013] [Accepted: 07/16/2013] [Indexed: 01/06/2023]
Abstract
To explore the role of oxidative stress in chemical carcinogenesis driven by non-genotoxic mechanisms, nrf2-deficient (nrf2(-/-)) and nrf2-wild-type (nrf2(+/+)) mice were exposed to pentachlorophenol (PCP) at concentrations of 600 or 1200 ppm for 60 weeks, or piperonyl butoxide (PBO) at concentrations of 3000 or 6000 ppm in the diet for 52 weeks, respectively. Additional studies were performed to examine 8-hydroxydeoxyguanosine (8-OHdG) levels in liver DNA and hepatotoxicological parameters in serum following 8 weeks of exposure of each group to PBO at the same doses as in the long-term study. Exposure to 600 ppm PCP caused cholangiofibrosis (CF) only in nrf2(-/-) mice, while 1200 ppm PCP induced CF in both genotypes. Moreover, cholangiocarcinomas were found with significant incidence only in nrf2(-/-) mice treated with 1200 ppm PCP. Short-term exposure to 6000 ppm PBO caused significant elevation of 8-OHdG levels in both genotypes, while exposure to 3000 ppm caused a significant increase in 8-OHdG only in nrf2(-/-) mice. There were no inter-genotype changes in the incidences of regenerative hepatocellular hyperplasia (RHH) following long-term exposure to PBO. However, the incidence and multiplicity of hepatocellular adenomas, especially those observed in RHH, were much higher in nrf2-/- mice treated with 6000 ppm PBO than in nrf2+/+ mice treated with 6000 ppm PBO. Therefore, oxidative stress generated through PCP or PBO metabolism may promote the proliferation and progression of preneoplastic lesions to neoplasms.
Collapse
Affiliation(s)
- Masako Tasaki
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Igbinosa EO, Odjadjare EE, Chigor VN, Igbinosa IH, Emoghene AO, Ekhaise FO, Igiehon NO, Idemudia OG. Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective. ScientificWorldJournal 2013; 2013:460215. [PMID: 23690744 PMCID: PMC3649668 DOI: 10.1155/2013/460215] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Abstract
Chlorophenol compounds and their derivatives are ubiquitous contaminants in the environment. These compounds are used as intermediates in manufacturing agricultural chemicals, pharmaceuticals, biocides, and dyes. Chlorophenols gets into the environment from a variety of sources such as industrial waste, pesticides, and insecticides, or by degradation of complex chlorinated hydrocarbons. Thermal and chemical degradation of chlorophenols leads to the formation of harmful substances which constitute public health problems. These compounds may cause histopathological alterations, genotoxicity, mutagenicity, and carcinogenicity amongst other abnormalities in humans and animals. Furthermore, the recalcitrant nature of chlorophenolic compounds to degradation constitutes an environmental nuisance, and a good understanding of the fate and transport of these compounds and their derivatives is needed for a clearer view of the associated risks and mechanisms of pathogenicity to humans and animals. This review looks at chlorophenols and their derivatives, explores current research on their effects on public health, and proffers measures for mitigation.
Collapse
Affiliation(s)
- Etinosa O Igbinosa
- Department of Microbiology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fogel R, Limson JL. Electrochemically Predicting Phenolic Substrates’ Suitability for Detection by Amperometric Laccase Biosensors. ELECTROANAL 2013. [DOI: 10.1002/elan.201200642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Carillon J, Fouret G, Feillet-Coudray C, Lacan D, Cristol JP, Rouanet JM. Short-term assessment of toxicological aspects, oxidative and inflammatory response to dietary melon superoxide dismutase in rats. Food Chem Toxicol 2013; 55:323-8. [PMID: 23369932 DOI: 10.1016/j.fct.2013.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/13/2013] [Accepted: 01/17/2013] [Indexed: 01/10/2023]
Abstract
The protective effects of SODB, a gastro-resistant encapsulated melon superoxide dismutase, on haematological and biochemical parameters and inflammatory and oxidative status, were evaluated in the blood and liver tissue. The study consisted in a 28-day experiment on rats supplemented with three doses (10, 40 and 160USOD/day) of SODB-M, SODB-D or SODB-S, different depending on the nature of the coating (palm oil, shellac or gum Arabic respectively). No mortality, abnormal clinical signs, behavioural changes or macroscopic findings were observed whatever the groups. Haematological parameters (total red blood cell count, haemoglobin content, haematocrit, red cell indices, white blood cell count and platelets count) were not modified in SODB treated-groups. No marked change was recorded in biochemical parameters (plasma urea, creatinine, lipids, electrolytes, bilirubin, transaminases and gamma-glutamyl transferase). The liver endogenous antioxidant enzymes (copper/zinc and manganese superoxide dismutase) expressions were significantly increased in the rats receiving the highest dose of SODB (160USOD/day) whatever the coating. Moreover, interleukin-6, a marker of inflammation, was significantly decreased in these high dose-treated-groups. The present study indicates that dietary supplementation of SODB on rats has no harmful side effects and could be beneficial especially at high doses.
Collapse
Affiliation(s)
- Julie Carillon
- Nutrition & Métabolisme, UMR 204 NutriPass - Prévention des Malnutritions et des Pathologies Associées, Université Montpellier Sud de France, Montpellier, France; Bionov R & D Department SARL, Avignon, France
| | | | | | | | | | | |
Collapse
|
37
|
Carvalho M, Martins I, Medeiros J, Tavares S, Planchon S, Renaut J, Núñez O, Gallart-Ayala H, Galceran M, Hursthouse A, Silva Pereira C. The response of Mucor plumbeus to pentachlorophenol: A toxicoproteomics study. J Proteomics 2013. [DOI: 10.1016/j.jprot.2012.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Ruder AM, Yiin JH. Mortality of US pentachlorophenol production workers through 2005. CHEMOSPHERE 2011; 83:851-861. [PMID: 21440286 DOI: 10.1016/j.chemosphere.2011.02.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/27/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
A cohort of 2122 US pentachlorophenol (PCP) production workers from four plants in the National Institute for Occupational Safety and Health Dioxin Registry was exposed to PCP and to polychlorinated dibenzo-p-dioxin and dibenzofuran contaminants of PCP production. A subcohort of 720 was also exposed to 2,3,7,8-tetrachlorodibenzodioxin, a contaminant of trichlorophenol (TCP) while using TCP or a TCP derivative. PCP and several production contaminants have been implicated as animal carcinogens. A priori hypotheses were that the cohort would have elevated standardized mortality ratios (SMRs) for aplastic anemia, soft-tissue sarcoma, and non-Hodgkin lymphoma, as suggested by human studies, and for leukemia and liver, adrenal, thyroid, and parathyroid cancer, as suggested by animal studies. From 1940 to 2005 1165 deaths occurred with an overall SMR of 1.01 [95% confidence limits (CI), 0.95-1.07]. Overall cancer mortality (326 deaths, SMR 1.17, CI 1.05-1.31) was in statistically significant excess. There were excess deaths for trachea, bronchus and lung cancers (126 deaths, SMR 1.36, CI 1.13-1.62), non-Hodgkin lymphoma (17 deaths, SMR 1.77, CI 1.03-2.84), chronic obstructive pulmonary disease (63 deaths, SMR 1.38, CI 1.06-1.77), and medical complications (5 deaths, SMR 3.52, CI 1.14-8.22). In race- and sex-specific analyses, white males had increased non-Hodgkin lymphoma mortality (17 deaths, SMR 1.98, CI 1.15-3.17) and males of other races had increased leukemia mortality (four deaths, SMR 4.57, CI 1.25-11.7). The excess of cancers of a priori interest, non-Hodgkin lymphoma and leukemia, provide some support for the carcinogenicity of PCP, however, further studies with more detailed exposure assessment are needed.
Collapse
Affiliation(s)
- Avima M Ruder
- National Institute for Occupational Safety and Health, CDC, Cincinnati, OH 45226, USA.
| | | |
Collapse
|
39
|
Yadav V, Shitiz K, Pandey R, Yadav J. Chlorophenol stress affects aromatic amino acid biosynthesis-a genome-wide study. Yeast 2010; 28:81-91. [DOI: 10.1002/yea.1825] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/07/2010] [Indexed: 11/08/2022] Open
|
40
|
Li ZH, Zlabek V, Grabic R, Li P, Machova J, Velisek J, Randak T. Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+-K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:297-303. [PMID: 20363517 DOI: 10.1016/j.aquatox.2010.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/17/2010] [Accepted: 02/23/2010] [Indexed: 05/29/2023]
Abstract
Propiconazole (PCZ), a triazole fungicide, is widely present in the aquatic environment, but little is known regarding its chronic toxicity in the fish brain. This study assessed the effects of long-term exposure to PCZ on the antioxidant defense system and Na(+)-K(+)-ATPase activity of rainbow trout brain. Fish were exposed to sublethal concentrations of PCZ (0.2, 50, and 500 microg/l) for 7, 20, and 30 days, respectively. Oxidative stress indices (reactive oxygen species, lipid peroxidation, and carbonyl protein) and antioxidant parameters (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and reduced glutathione) were measured, as well as Na(+)-K(+)-ATPase activity. Adaptive responses to PCZ-induced stress were observed at 7 days. With prolonged exposure, significantly higher levels of oxidative indices were indicative of oxidative stress, as also were the significant inhibition of antioxidant enzyme activity and reduced glutathione content. Na(+)-K(+)-ATPase activity was significantly inhibited after prolonged exposure. Chemometrics of all parameters by principal component analysis, enabled the separation of sampled individuals into four groups with 93.39% of total accumulated variance. A low level of oxidative stress can induce the adaptive responses of the antioxidant defense system, while prolonged exposure to PCZ may lead to serious oxidative damage in fish brain. We suggest that selected biochemical markers in fish brain could be used as potential biomarkers for monitoring residual fungicides present in the aquatic environments.
Collapse
Affiliation(s)
- Zhi-Hua Li
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Jingzhou 434000, China.
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Department of Chemistry, Umea University, SE-90187 Umea, Sweden
| | - Ping Li
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Jingzhou 434000, China
| | - Jana Machova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| |
Collapse
|
41
|
Ivanković D, Pavicić J, Beatović V, Klobucar RS, Klobucar GIV. Inducibility of metallothionein biosynthesis in the whole soft tissue of zebra mussels Dreissena polymorpha exposed to cadmium, copper, and pentachlorophenol. ENVIRONMENTAL TOXICOLOGY 2010; 25:198-211. [PMID: 19365804 DOI: 10.1002/tox.20489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Freshwater mussels Dreissena polymorpha (Pallas, 1771) were exposed to the elevated concentrations of Cd (10, 50, 100, and 500 microg/L), Cu (10, 30, 50, and 80 microg/L), and an organochlorinated pesticide, pentachlorophenol (PCP) (1, 10, and 100 microg/L). Induced synthesis of biomarker metallothionein (MT) and changes in concentrations of cytosolic Cd, Cu, and Zn in the whole soft tissue of mussels were monitored after a 7-day laboratory exposure to the contaminants. A clear dose-dependent elevation in the MT concentration was observed after exposure to Cd at doses of 10-100 microg/L, and this increase of MT content was accompanied with a linear increase of cytosolic Cd. Cd concentration of 500 microg/L caused no additional increase of MT and Cd in mussel cytosol, suggesting possible toxic effects due to exceeding cellular inducible/defense capacity. Cu exposure resulted with variable changes in MT concentrations, with no clear linear relationship between MT and Cu concentrations in water, although a progressive dose-dependent accumulation of Cu in the soluble fraction of mussel tissues was recorded. A decrease of cytosolic Zn was evident at higher exposure concentrations of both metals used. PCP in concentrations applied was unable to induce MT synthesis, but the higher concentrations of PCP influenced the cytosolic metal concentrations. In conclusion, the results obtained confirm the specificity of MT induction in D. polymorpha as an biological response on metal stimulation, especially by cadmium, being more closely correlated to MT than copper within the ecologically relevant concentration range. The strong induction potential of cadmium as well as an absence of MT induction following exposure to PCP as an organic chemical contaminant are supporting evidences for usage of zebra mussel MT as a specific biomarker of Cd exposure in biomonitoring programs.
Collapse
Affiliation(s)
- Dusica Ivanković
- Department for Marine and Environmental Research, Rudether Bosković Institute, P.O. Box 180, Zagreb HR-10002, Croatia.
| | | | | | | | | |
Collapse
|
42
|
Investigation of the interaction between pentachlorophenol and human serum albumin using spectral methods. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.05.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Dong YL, Zhou PJ, Jiang SY, Pan XW, Zhao XH. Induction of oxidative stress and apoptosis by pentachlorophenol in primary cultures of Carassius carassius hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:179-85. [PMID: 19410655 DOI: 10.1016/j.cbpc.2009.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 01/27/2023]
Abstract
Pentachlorophenol (PCP) is a highly toxic contaminant of chlorophenols. Due to its slow and incomplete biodegradation, it can be found in surface, groundwater and in soils. To investigate the role of intracellular calcium and reactive oxygen species in apoptosis induced by PCP in cultured hepatocytes, the primary hepatocytes of Carassius carassius were incubated with different concentrations of PCP at 25 degrees C for 8 h in vitro. Apoptosis was detected by DNA laddering, caspase activation and flow cytometry. The results demonstrated that apoptosis was involved in the cytotoxic effect of PCP, and that PCP-induced apoptosis occurred in a dose-dependent manner. In addition, the induction of apoptosis by PCP was accompanied with Ca2+, Mg2+-ATPase activity decline, intracellular Ca2+ elevation, generation of intracellular reactive oxygen species (ROS), mitochondrial membrane potential (DeltaPsi(m)) disruption and ATP depletion. Concomitantly, there were dose-dependent increases in lipid peroxidation production (MDA) and decreases in glutathione (GSH). These investigations suggest that PCP-induces apoptosis in the cultured hepatocytes by affecting multiple targets, and suggest that [Ca2+]i increase and ROS generation may be involved in apoptosis induction by PCP.
Collapse
Affiliation(s)
- Yu-Liang Dong
- College of Resources and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | |
Collapse
|
44
|
Evaluation of pathways involved in pentachlorophenol-induced apoptosis in rat neurons. Neurotoxicology 2009; 30:451-8. [DOI: 10.1016/j.neuro.2009.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/23/2009] [Accepted: 02/01/2009] [Indexed: 11/17/2022]
|
45
|
Nnodu U, Whalen MM. Pentachlorophenol decreases ATP levels in human natural killer cells. J Appl Toxicol 2009; 28:1016-20. [PMID: 18623605 DOI: 10.1002/jat.1367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pentachlorophenol (PCP) is used as a wood preservative and is found in human blood and urine. PCP causes significant decreases in the tumor-killing (lytic) function of human natural killer (NK) cells, a critical immune defense. The current study examined the association between decreased lytic function and decreased ATP levels, as well as the ability of antioxidants (vitamin E and reduced glutathione) to prevent PCP-induced decreases in either ATP levels or lytic function. Exposure of NK cells to 10 microm PCP decreased ATP levels by 15% at 24 h, and exposure to 5 microm PCP decreased ATP levels by 32% at 48 h. No effects were seen with 0.5 microm at 48 h or with 5 microm at 24 h. However, 10 microm PCP decreased lytic function by 69% at 24 h and 5 microm decreased it by 90% at 48 h. Even 0.5 microm PCP decreased lytic function by 46% at 48 h. None of these effects were prevented by pretreatment with 1 mm vitamin E or reduced glutathione.
Collapse
Affiliation(s)
- Ugochukwu Nnodu
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | | |
Collapse
|
46
|
Luo Y, Sui YX, Wang XR, Tian Y. 2-Chlorophenol induced hydroxyl radical production in mitochondria in Carassius auratus and oxidative stress--an electron paramagnetic resonance study. CHEMOSPHERE 2008; 71:1260-1268. [PMID: 18262590 DOI: 10.1016/j.chemosphere.2007.11.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/22/2007] [Accepted: 11/30/2007] [Indexed: 05/25/2023]
Abstract
In our previous study, electron paramagnetic resonance (EPR) evidence of reactive oxygen species (ROS) production in Carassius auratus following 2-chlorophenol (2-CP) administration was provided. To further investigate the potential pathway of ROS production, liver mitochondria of C. auratus was isolated and incubated with 2-CP for 30 min. An EPR analysis indicated ROS was produced, and intensities of ROS increased with increasing concentrations of 2-CP. The ROS was then assigned OH by comparing with Fenton reaction. Either catalase or superoxide dismutase, extinguished OH completely in the mitochondria mixture. These facts suggested that O2(.-) and H2O2 contributed to the formation of OH in mitochondria in C. auratus stressed by 2-CP. Combining previous references and our own data, it is reasonable to suggest that 2-CP is first oxidized by H2O2 present in vivo to form phenoxyl radical under the catalytic action of cellular peroxidase (1); phenoxyl radical oxidizes mitochondria NADH to NAD in the presence of NADH (2); NAD reacts with oxygen in vivo to produce O2(.-) (3); O2(.-) is spontaneously dismutated by SOD to form H2O2 and O2, which creates a renewable supply of H2O2 as the initiators of the chain reactions until NADH is consumed (4); simultaneously with reaction (4), O2(.-) reacts with H2O2 to form OH radical via the Haber-Weiss reaction (5). A strong negative correlation (r=-0.9278, p<0.01) between glutathione (GSH) pool and OH production was observed after fish were i.p. injected with 2-CP (250 mg kg(-1)), indicating the depletion of GSH caused by OH.
Collapse
Affiliation(s)
- Yi Luo
- Tianjin Key Laboratory of Remediation and Pollution Control for Urban Ecological Environment, College of Environmental Sciences and Engineering, Nankai University, Tianjin 300071, China
| | | | | | | |
Collapse
|
47
|
Muller JF, Stevens AM, Craig J, Love NG. Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress. Appl Environ Microbiol 2007; 73:4550-8. [PMID: 17526777 PMCID: PMC1932803 DOI: 10.1128/aem.00169-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Through chemical contamination of natural environments, microbial communities are exposed to many different types of chemical stressors; however, research on whole-genome responses to this contaminant stress is limited. This study examined the transcriptome response of a common soil bacterium, Pseudomonas aeruginosa, to the common environmental contaminant pentachlorophenol (PCP). Cells were grown in chemostats at a low growth rate to obtain substrate-limited, steady-state, balanced-growth conditions. The PCP stress was administered as a continuous increase in concentration, and samples taken over time were examined for physiological function changes with whole-cell acetate uptake rates (WAURs) and cell viability and for gene expression changes by Affymetrix GeneChip technology and real-time reverse transcriptase PCR. Cell viability, measured by heterotrophic plate counts, showed a moderately steady decrease after exposure to the stressor, but WAURs did not change in response to PCP. In contrast to the physiological data, the microarray data showed significant changes in the expression of several genes. In particular, genes coding for multidrug efflux pumps, including MexAB-OprM, were strongly upregulated. The upregulation of these efflux pumps protected the cells from the potentially toxic effects of PCP, allowing the physiological whole-cell function to remain constant.
Collapse
Affiliation(s)
- Jocelyn Fraga Muller
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
48
|
Song SB, Xu Y, Zhou BS. Effects of hexachlorobenzene on antioxidant status of liver and brain of common carp (Cyprinus carpio). CHEMOSPHERE 2006; 65:699-706. [PMID: 16497358 DOI: 10.1016/j.chemosphere.2006.01.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/03/2005] [Accepted: 01/16/2006] [Indexed: 05/06/2023]
Abstract
Hexachlorobenzene (HCB)-induced oxidative damages have been published in rats while the effects have not yet been reported in fishes. Juvenile common carps (Cyprinus carpio) were exposed to waterborne HCB from 2 to 200 microg l-1 for 5, 10 or 20 days. Liver and brain were analyzed for various parameters of oxidative stress. There were no significant changes of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver after 5 or 10 days exposure, whereas obvious drops were observed at higher concentrations after 20 days exposure. Significant decreases of GSH content and SOD activity in brain were found during all the exposure days. In brain, HCB also significantly elevated the contents of reactive oxygen species (ROS), thiobarbituric acid- reactive substances (TBARS, as an indicator of lipid peroxidation products), glutathione disulfide (GSSG), and activities of nitric oxide synthase (NOS), glutathione peroxidase (GPx), and glutathione reductase (GR), and inhibited activities of acetylcholinesterase (AchE) and glutathione S-transferase (GST). The results clearly demonstrated that environmentally possible level of HCB could result in oxidative stress in fish and brain was a sensitive target organ of HCB toxicity.
Collapse
Affiliation(s)
- S B Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | | | | |
Collapse
|
49
|
Prediction of Environmental Properties for Chlorophenols with Posetic Quantitative Super-Structure/Property Relationships (QSSPR). Int J Mol Sci 2006. [DOI: 10.3390/i7090358] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Palekar NA, Naus R, Larson SP, Ward J, Harrison SA. Clinical model for distinguishing nonalcoholic steatohepatitis from simple steatosis in patients with nonalcoholic fatty liver disease. Liver Int 2006; 26:151-6. [PMID: 16448452 DOI: 10.1111/j.1478-3231.2005.01209.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses both simple steatosis and nonalcoholic steatohepatitis (NASH). Differentiation of these two entities requires histopathologic evaluation. The aim of this study was to establish a reliable diagnostic model for differentiating steatosis from steatohepatitis utilizing both clinical characteristics and a panel of biochemical markers of lipid peroxidation and fibrosis. Eighty subjects with biopsy proven NAFLD were enrolled, 39 with simple steatosis and 41 with histopathologic evidence of NASH. Demographic and laboratory data to include serologic testing for 8-epi-PGF(2alpha), transforming growth factor-beta (TGF-beta), adiponectin, and hyaluronic acid (HA) were obtained and compared between the two groups. There were significant differences between the two groups with respect to age (P=0.004), female gender (P=0.024), aspartate aminotransferase (AST) (P=0.028), body mass index (BMI) (P=0.003), fasting insulin (0.018), AST/alanine aminotransferase (ALT) ratio (AAR) (P=0.017), quantitative insulin sensitivity check index (QUICKI) (P=0.002), and HA (P=0.029). A composite index for distinguishing steatosis from NASH was calculated by summing the risk factors of age >or=50 years, female gender, AST>or=45 IU/l, BMI >or=30 mg/kg2, AAR>or=0.80, and HA>or=55 microg/l, and its accuracy was determined by receiver operating characteristic (ROC) analysis to be 0.763 (95% CI: 0.650-0.876). The presence of three or more risk factors had a sensitivity, specificity, PPV, and NPV of 73.7%, 65.7%, 68.2%, and 71.4%, respectively. In addition, HA at a cutoff of 45.3 microg/l was a good predictor of advanced fibrosis. In conclusion, we propose a noninvasive screening model for distinguishing simple steatosis from NASH. Identifying patients at risk for NASH will allow clinicians to more accurately determine who may benefit from liver biopsy.
Collapse
|