1
|
Bu Y, Li S, Ye T, Wang Y, Song M, Chen J. Volatile oil of Acori tatarinowii rhizoma: potential candidate drugs for mitigating dementia. Front Pharmacol 2025; 16:1552801. [PMID: 40337511 PMCID: PMC12055781 DOI: 10.3389/fphar.2025.1552801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Objective This study aims to elucidate the mitigating effects of the volatile oil of Acori tatarinowii rhizoma (ATR) on dementia, in order to provide a reference for future research and applications of the volatile oil of ATR in the field of dementia. Materials and methods A search strategy was developed using terms such as "Acori tatarinowii rhizoma," "Acorus tatarinowii Schott," "Asarone," and "Dementia." The literature search was conducted in PubMed, Web of Science, and Google Scholar, and studies not meeting the inclusion criteria were excluded. This study summarizes the main metabolites, active ingredients, toxicological properties, and pharmacokinetic characteristics of the volatile oil from ATR in mitigating dementia, with a particular focus on its potential mechanisms of action. Furthermore, the study highlights the limitations of existing research and offers insights into future research directions. Results The volatile oil of ATR mitigates dementia through multiple pathways, including reducing abnormal protein aggregation, promoting neurogenesis, inhibiting neuronal apoptosis, regulating neurotransmitters, improving synaptic function, modulating autophagy, countering cellular stress, reducing neuroinflammation, and alleviating vascular risk factors. Conclusion The multi-pathway pharmacological effects of the volatile oil of ATR are well-aligned with the complex mechanisms of dementia progression, highlighting its significant therapeutic potential for anti-dementia applications. This provides new perspectives for the development of more effective anti-dementia drugs. Nonetheless, further rigorous and high-quality preclinical and clinical investigations are required to address key issues, including the chemical characterization of the volatile oil of ATR, potential synergistic effects among active ingredients, toxicity profiles, and definitive clinical efficacy.
Collapse
Affiliation(s)
- Yifan Bu
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songzhe Li
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqing Wang
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingrong Song
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Bai D, Li X, Wang S, Zhang T, Wei Y, Wang Q, Dong W, Song J, Gao P, Li Y, Wang S, Dai L. Advances in extraction methods, chemical constituents, pharmacological activities, molecular targets and toxicology of volatile oil from Acorus calamus var. angustatus Besser. Front Pharmacol 2022; 13:1004529. [PMID: 36545308 PMCID: PMC9761896 DOI: 10.3389/fphar.2022.1004529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acorus calamus var. angustatus Besser (ATT) is a traditional herb with a long medicinal history. The volatile oil of ATT (VOA) does possess many pharmacological activities. It can restore the vitality of the brain, nervous system and myocardial cells. It is used to treat various central system, cardiovascular and cerebrovascular diseases. It also showed antibacterial and antioxidant activity. Many studies have explored the benefits of VOA scientifically. This paper reviews the extraction methods, chemical components, pharmacological activities and toxicology of VOA. The molecular mechanism of VOA was elucidated. This paper will serve as a comprehensive resource for further carrying the VOA on improving its medicinal value and clinical use.
Collapse
Affiliation(s)
- Daoming Bai
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumin Wei
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingquan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Song
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| |
Collapse
|
3
|
Zhang QZ, Zhong ZH, Hao D, Feng MN, Wang SC, Han QL, Bai Y, Xu D, Liao S, Xiao C, Zhang XL, Zheng X. Synthesis, crystal structure and bioactivities of α-asaronol. ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:265-270. [DOI: 10.1107/s2053229622003631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
α-Asaronol [or (E)-3′-hydroxyasarone; systematic name: (E)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-ol; C12H16O4] was synthesized towards the development of a potential antiepileptic drug. Following purification by recrystallization, single crystals of α-asaronol were obtained by a liquid interface diffusion method at room temperature. The product was characterized by 1H and 13C NMR, and FT–IR spectroscopic analysis. X-ray crystallography revealed the title crystal to belong to the orthorhombic space group P212121. Preliminary bioassays with mouse neuroblastoma N2a cells demonstrated the neuroprotective activities of the synthesized α-asaronol.
Collapse
|
4
|
Uebel T, Hermes L, Haupenthal S, Müller L, Esselen M. α-Asarone, β-asarone, and γ-asarone: Current status of toxicological evaluation. J Appl Toxicol 2020; 41:1166-1179. [PMID: 33236787 DOI: 10.1002/jat.4112] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022]
Abstract
Asarone isomers are naturally occurring in Acorus calamus Linné, Guatteria gaumeri Greenman, and Aniba hostmanniana Nees. These secondary plant metabolites belong to the class of phenylpropenes (phenylpropanoids or alkenylbenzenes). They are further chemically classified into the propenylic trans- and cis-isomers α-asarone and β-asarone and the allylic γ-asarone. Flavoring, as well as potentially pharmacologically useful properties, enables the application of asarone isomers in fragrances, food, and traditional phytomedicine not only since their isolation in the 1950s. However, efficacy and safety in humans are still not known. Preclinical evidence has not been systematically studied, and several pharmacological effects have been reported for extracts of Acorus calamus and propenylic asarone isomers. Toxicological data are rare and not critically evaluated altogether in the 21st century yet. Therefore, within this review, available toxicological data of asarone isomers were assessed in detail. This assessment revealed that cardiotoxicity, hepatotoxicity, reproductive toxicity, and mutagenicity as well as carcinogenicity were described for propenylic asarone isomers with varying levels of reliability. The toxicodynamic profile of γ-asarone is unknown except for mutagenicity. Based on the estimated daily exposure and reported adverse effects, officials restricted or published recommendations for the use of β-asarone and preparations of Acorus calamus. In contrast, α-asarone and γ-asarone were not directly addressed due to a limited data situation.
Collapse
Affiliation(s)
- Thomas Uebel
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Lena Hermes
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | | | - Lena Müller
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Shang X, Ji X, Dang J, Wang L, Sun C, Liu K, Sik A, Jin M. α-asarone induces cardiac defects and QT prolongation through mitochondrial apoptosis pathway in zebrafish. Toxicol Lett 2020; 324:1-11. [PMID: 32035120 DOI: 10.1016/j.toxlet.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
α-asarone is a natural phenylpropene found in several plants, which are widely used for flavoring foods and treating diseases. Previous studies have demonstrated that α-asarone has many pharmacological functions, while some reports indicated its toxicity. However, little is known about its cardiovascular effects. This study investigated developmental toxicity of α-asarone in zebrafish, especially the cardiotoxicity. Zebrafish embryos were exposed to different concentrations of α-asarone (1, 3, 5, 10, and 30 μM). Developmental toxicity assessments revealed that α-asarone did not markedly affect mortality and hatching rate. In contrast, there was a concentration-dependent increase in malformation rate of zebrafish treated with α-asarone. The most representative cardiac defects were increased heart malformation rate, pericardial edema areas, sinus venosus-bulbus arteriosus distance, and decreased heart rate. Notably, we found that α-asarone impaired the cardiac function of zebrafish by prolonging the mean QTc duration and causing T-wave abnormalities. The expressions of cardiac development-related key transcriptional regulators tbx5, nkx2.5, hand2, and gata5 were all changed under α-asarone exposure. Further investigation addressing the mechanism indicated that α-asarone triggered apoptosis mainly in the heart region of zebrafish. Moreover, the elevated expression of puma, cyto C, afap1, caspase 3, and caspase 9 in treated zebrafish suggested that mitochondrial apoptosis is likely to be the main reason for α-asarone induced cardiotoxicity. These findings revealed the cardiac developmental toxicity of α-asarone, expanding our knowledge about the toxic effect of α-asarone on living organisms.
Collapse
Affiliation(s)
- Xueliang Shang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China.
| |
Collapse
|
6
|
Metabolism of carcinogenic alpha-asarone by human cytochrome P450 enzymes. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:213-223. [DOI: 10.1007/s00210-019-01724-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/28/2019] [Indexed: 01/23/2023]
|
7
|
Sun Y, Bai Y, Zeng M, Chen X, Xie J, Li B, He X, Bai Y, Jia P, Meng X, Liang J, Wang S, Fan TP, Wu B, Zheng X. Pharmacokinetics and tissue distribution evaluation of α-asaronol and its main metabolite in rats by HPLC method. J Pharm Biomed Anal 2019; 172:349-356. [DOI: 10.1016/j.jpba.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
8
|
He X, Bai Y, Zeng M, Zhao Z, Zhang Q, Xu N, Qin F, Wei X, Zhao M, Wu N, Li Z, Zhang Y, Fan TP, Zheng X. Anticonvulsant activities of α-asaronol (( E )-3′-hydroxyasarone), an active constituent derived from α-asarone. Pharmacol Rep 2018; 70:69-74. [DOI: 10.1016/j.pharep.2017.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022]
|
9
|
Chellian R, Pandy V, Mohamed Z. Pharmacology and toxicology of α- and β-Asarone: A review of preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:41-58. [PMID: 28732807 DOI: 10.1016/j.phymed.2017.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/20/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Asarone is one of the most researched phytochemicals and is mainly present in the Acorus species and Guatteria gaumeri Greenman. In preclinical studies, both α- and β-asarone have been reported to have numerous pharmacological activities and at the same time, many studies have also revealed the toxicity of α- and β-asarone. PURPOSE The purpose of this comprehensive review is to compile and analyze the information related to the pharmacokinetic, pharmacological, and toxicological studies reported on α- and β-asarone using preclinical in vitro and in vivo models. Besides, the molecular targets and mechanism(s) involved in the biological activities of α- and β-asarone were discussed. METHODS Databases including PubMed, ScienceDirect and Google scholar were searched and the literature from the year 1960 to January 2017 was retrieved using keywords such as α-asarone, β-asarone, pharmacokinetics, toxicology, pharmacological activities (e.g. depression, anxiety). RESULTS Based on the data obtained from the literature search, the pharmacokinetic studies of α- and β-asarone revealed that their oral bioavailability in rodents is poor with a short plasma half-life. Moreover, the metabolism of α- and β-asarone occurs mainly through cytochrome-P450 pathways. Besides, both α- and/or β-asarone possess a wide range of pharmacological activities such as antidepressant, antianxiety, anti-Alzheimer's, anti-Parkinson's, antiepileptic, anticancer, antihyperlipidemic, antithrombotic, anticholestatic and radioprotective activities through its interaction with multiple molecular targets. Importantly, the toxicological studies revealed that both α- and β-asarone can cause hepatomas and might possess mutagenicity, genotoxicity, and teratogenicity. CONCLUSIONS Taken together, further preclinical studies are required to confirm the pharmacological properties of α-asarone against depression, anxiety, Parkinson's disease, psychosis, drug dependence, pain, inflammation, cholestasis and thrombosis. Besides, the anticancer effect of β-asarone should be further studied in different types of cancers using in vivo models. Moreover, further dose-dependent in vivo studies are required to confirm the toxicity of α- and β-asarone. Overall, this extensive review provides a detailed information on the preclinical pharmacological and toxicological activities of α-and β-asarone and this could be very useful for researchers who wish to conduct further preclinical studies using α- and β-asarone.
Collapse
Affiliation(s)
- Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Qiu G, Chen S, Guo J, Wu J, Yi YH. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice. Behav Brain Res 2016; 312:212-8. [DOI: 10.1016/j.bbr.2016.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/16/2016] [Accepted: 06/13/2016] [Indexed: 01/27/2023]
|
11
|
Berg K, Bischoff R, Stegmüller S, Cartus A, Schrenk D. Comparative investigation of the mutagenicity of propenylic and allylic asarone isomers in the Ames fluctuation assay. Mutagenesis 2016; 31:443-51. [DOI: 10.1093/mutage/gew007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
12
|
Cartus AT, Schrenk D. Metabolism of the carcinogen alpha-asarone in liver microsomes. Food Chem Toxicol 2016; 87:103-12. [DOI: 10.1016/j.fct.2015.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
13
|
Sharma J, Gairola S, Sharma YP, Gaur RD. Ethnomedicinal plants used to treat skin diseases by Tharu community of district Udham Singh Nagar, Uttarakhand, India. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:140-206. [PMID: 25448505 DOI: 10.1016/j.jep.2014.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tharu community is the largest primitive indigenous community of the Uttarakhand, India. In this article we have scientifically enumerated medicinal plants and herbal preparations used by the Tharu community to treat various skin diseases, and discussed dermatological properties of these plants in the light of previous ethnomedicinal, microbiological, pharmacological, toxicological, phytochemical and clinical studies. MATERIALS AND METHODS Ethnomedicinal survey was conducted in different villages of Tharu community located in district Udham Singh Nagar, Uttarakhand, India. Ethnomedicinal information on plants used to treat various skin diseases was collected from 122 individuals (93 males and 29 females), including 35 experienced herbal practitioners and 87 local villagers. For each of the recorded plant species the use value (UV) and fidelity level (FL) was calculated. The informant consensus factor (Fic) was also calculated to find out the homogeneity in the information given by the informants. RESULTS A total of 90 plant species belonging to 86 genera and 48 families were used by the Tharu community to treat various skin diseases viz., wounds (38 spp.), boils (32 spp.), cuts (18 spp.), leprosy (11 spp.), eczema (10 spp.), itching (7 spp.), ringworm (5 spp.), burns (4 spp.), leucoderma (4 spp.), cracked heels (2 spp.), dandruff (3 spp.), body infection (2 spp.), chilblains (2 spp.), hair fall (2 spp.) and toes infection (2 spp.). Information on botanical name, family, vernacular name, ailments treated, mode and dose of herbal preparations, UV and FL values are provided for each of the recorded species. According to UV value most preferred plant species used to treat skin diseases by Tharu community was Ricinus communis L. followed by Tridax procumbens (L.) L., Azadirachta indica A. Juss., Ageratum conyzoides and Allium cepa L. CONCLUSIONS The present study has revealed significant information on various medicinal plants used to treat skin diseases by Tharu community. Literature review has confirmed most of the claims made by the Tharu community regarding treatment of various skin diseases by the reported plants. The literature review has also revealed that products from very few of the reported plants are available in market, while most of the reported plants are still under preclinical or clinical trials. There are various known phytochemicals, and antibiotic, antibacterial, antiviral and antifungal agents present in these plants which may be synthesized or transformed to make pharmaceuticals. Some of the reported plants have shown promising results in preclinical trails and there is a need of clinical trials to see their safety and efficacy in treating various skin diseases. These plants may be targeted for development of new medicines, ointments or drugs for the treatment of skin diseases. However further toxicological, preclinical and clinical studies are needed to validate claims about little worked out plant species reported in the present study viz., Sida cordata (Burm. F.) Borss. Waalk., Millettia extensa (Benth.) Baker, Caesulia axillaris Roxb., Ehretia laevis Roxb., Vanda tessellate (Roxb.) Hook. Ex G.Don. and Eualaliopsis binata (Retz.) C.E. Hubb. Further studies on these plants are recommended to assess their potential in development of new skin care products.
Collapse
Affiliation(s)
- Jyotsana Sharma
- Department of Botany, University of Jammu, Jammu-Tawi 180006, Jammu and Kashmir, India.
| | - Sumeet Gairola
- Herbarium and Plant Systematics Section, Biodiversity and Applied Botany Division, CSIR-Indian Institute of Integrative Medicine, Jammu-Tawi 180001, Jammu and Kashmir, India.
| | - Yash Pal Sharma
- Department of Botany, University of Jammu, Jammu-Tawi 180006, Jammu and Kashmir, India
| | - R D Gaur
- Department of Botany, HNB Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| |
Collapse
|
14
|
Alpha-Asarone Protects Endothelial Cells from Injury by Angiotensin II. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:682041. [PMID: 24757494 PMCID: PMC3976910 DOI: 10.1155/2014/682041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/25/2014] [Accepted: 02/04/2014] [Indexed: 11/18/2022]
Abstract
α -Asarone is the major therapeutical constituent of Acorus tatarinowii Schott. In this study, the potential protective effects of α -asarone against endothelial cell injury induced by angiotensin II were investigated in vitro. The EA.hy926 cell line derived from human umbilical vein endothelial cells was pretreated with α -asarone (10, 50, 100 µmol/L) for 1 h, followed by coincubation with Ang II (0.1 µmol/L) for 24 h. Intracellular nitric oxide (NO) and reactive oxygen species (ROS) were detected by fluorescent dyes, and phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser(1177) was determined by Western blotting. α -Asarone dose-dependently mitigated the Ang II-induced intracellular NO reduction (P < 0.01 versus model) and ROS production (P < 0.01 versus model). Furthermore, eNOS phosphorylation (Ser(1177)) by acetylcholine was significantly inhibited by Ang II, while pretreatment for 1 h with α -asarone partially prevented this effect (P < 0.05 versus model). Additionally, cell viability determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (105~114.5% versus control, P > 0.05) was not affected after 24 h of incubation with α -asarone at 1-100 µmol/L. Therefore, α -asarone protects against Ang II-mediated damage of endothelial cells and may be developed to prevent injury to cardiovascular tissues.
Collapse
|
15
|
Rajput SB, Tonge MB, Karuppayil SM. An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other Acorus species. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:268-76. [PMID: 24200497 DOI: 10.1016/j.phymed.2013.09.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/19/2013] [Accepted: 09/29/2013] [Indexed: 05/20/2023]
Abstract
Acorus calamus (Sweet flag) has a long history of use and has numerous traditional and ethnomedicinal applications. Since ancient times, it has been used in various systems of medicines such as Ayurveda, Unani, Siddha, Chinese medicine, etc. for the treatment of various aliments like nervous disorders, appetite loss, bronchitis, chest pain, colic, cramps, diarrhea, digestive disorders, flatulence, gas, indigestion, rheumatism, sedative, cough, fever, bronchitis, inflammation, depression, tumors, hemorrhoids, skin diseases, numbness, general debility and vascular disorders. Various therapeutic potentials of this plant have been attributed to its rhizome. A number of active constituents from leaves, rhizomes and essential oils of A. calamus have been isolated and characterized. Of the constituents, alpha and beta-asarone are the predominant bioactive components. Various pharmacological activities of A. calamus rhizome such as sedative, CNS depressant, anticonvulsant, antispasmodic, cardiovascular, hypolipidemic, immunosuppressive, anti-inflammatory, cryoprotective, antioxidant, antidiarrheal, antimicrobial, anticancer and antidiabetic has been reported. Genotoxicity and mutagenecity of beta and alpha-asarone is reported, which limits their use at high dosage. Though A. calamus has been used since ancient times, many of its uses are yet to be scientifically validated. In the present review an attempt has been made to explore traditional uses and pharmacological properties of A. calamus.
Collapse
Affiliation(s)
- Sandeep B Rajput
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, SRTM University, Nanded 431-606, MS, India
| | | | - S Mohan Karuppayil
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, SRTM University, Nanded 431-606, MS, India.
| |
Collapse
|
16
|
|
17
|
Pérez-Pastén R, García RV, Garduño L, Reyes E, Labarrios F, Tamariz J, Chamorro G. Hypolipidaemic and antiplatelet activity of phenoxyacetic acid derivatives related to α-asarone. J Pharm Pharmacol 2010; 58:1343-9. [PMID: 17034657 DOI: 10.1211/jpp.58.10.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The phenoxyacetic acid derivatives 1–6 [2-methoxy-4-(2-propenyl)phenoxyacetic acid (1); 2-methoxy-5-nitro-4-(2-propenyl)phenoxyacetic acid (2); methyl 2-methoxy-4-(2-propenyl)phenoxyacetate (3); ethyl 2-methoxy-4-(2-propenyl)phenoxyacetate (4); methyl 2-methoxy-5-nitro-4-(2-propenyl)phenoxyacetate (5); ethyl 2-methoxy-5-nitro-4-(2-propenyl)phenoxyacetate (6)] related to α-asarone have been reported previously as hypolipidaemic agents in diet-induced hyperlipidaemic mice. We have aimed to expand the pharmacological profile of these derivatives by investigating their hypolipidaemic activity in rats and mice under different experimental conditions. The antiplatelet activity was tested also in-vitro from blood derived from consenting healthy volunteers. In normolipidaemic rats, compounds 2, 3 and 5 at oral doses of 40 and 80 mg kg−1 significantly decreased total cholesterol and LDL-cholesterol levels. Moreover, analogues 3 and 5 administered to hypercholesterolaemic rats at the same doses for seven days also produced a reduction in the content of these same lipoproteins. In neither case were the high-density lipoprotein cholesterol and triglyceride concentrations affected. However, practically all tested compounds were found to be hypocholesterolaemic agents, and were shown to effectively lower low-density lipoprotein cholesterol and triglyceride levels in Triton-induced hyperlipidaemic mice at oral doses of 50 and 100 mg kg−1. In all tests, all animals appeared to be healthy throughout the experimental period in their therapeutic ranges. Triton-induced hypercholesterolaemic mice appeared to be a desirable model for this class of hypolipidaemic drugs. On the other hand, compounds 1, 2, 4 and 5 significantly inhibited ADP-induced aggregation in-vitro. These findings indicated that all of these compounds appeared to be promising for the treatment of human hyperlipidaemia and thrombotic diseases.
Collapse
Affiliation(s)
- Ricardo Pérez-Pastén
- Area Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, México
| | | | | | | | | | | | | |
Collapse
|
18
|
Karwicka E, Marczewska J, Anuszewska E, Łozowicka B, Chilmonczyk Z. Genotoxicity of alpha-asarone analogues. Bioorg Med Chem 2008; 16:6069-74. [PMID: 18487049 DOI: 10.1016/j.bmc.2008.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/10/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
The role of cholesterol in the formation of atherosclerotic lesions during hypercholesterolemia has been confirmed. alpha-Asarone is a substance of a potent hypolipidemic activity which is isolated from plants. We previously described the synthesis of several alpha-asarone analogues exhibiting hypolipidemic and antiplatelet activity. Genotoxic activity of four selected alpha-asarone analogues was theoretically evaluated based on quantum-mechanical method for calculation of enthalpy of carbocations formation (DeltaH(R)) according to the Testa's method. In the present paper, we evaluated the mutagenic and genotoxic activity of alpha-asarone isomers 2-5 based on the reference Ames test and micronucleus test. Results obtained in the study show that tested isomers were non-mutagenic, however, they exhibited growing cytotoxic activity. Relationship between the heat of formation of their putative metabolic intermediates and mutagenic/genotoxic activity was not confirmed.
Collapse
Affiliation(s)
- Ewa Karwicka
- National Medicines Institute, Biochemistry and Biopharmaceuticals Department, Chełmska 30/34, 00-725 Warszawa, Poland.
| | | | | | | | | |
Collapse
|
19
|
Cho J, Kim YH, Kong JY, Yang CH, Park CG. Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sci 2002; 71:591-9. [PMID: 12052443 DOI: 10.1016/s0024-3205(02)01729-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous reports have shown that the methanol extract and the essential oil from Acori graminei Rhizoma (AGR) inhibited excitotoxic neuronal cell death in primary cultured rat cortical cells. In the present study, an active principle was isolated from the methanol extract by biological activity-guided fractionations and identified as asarone. We evaluated neuroprotective actions and action mechanisms of the isolated asarone as well as the alpha- and the beta-asarone obtained commercially. The isolated asarone inhibited the excitotoxicity induced by the exposure of cortical cultures for 15 min to 300 microM NMDA in a concentration-dependent manner, with the IC50 of 56.1 microg/ml. The commercially obtained alpha- and beta-asarone exhibited more potent inhibitions of the NMDA-induced excitotoxicity than the isolated asarone. Their respective IC50 values were 18.2 and 26.5 microg/ml. The excitotoxicity induced by glutamate (Glu) was also inhibited, but with much less potency than the toxicity induced by NMDA. The IC50 values for the alpha-, beta-, and the isolated asarone were 89.7, 121.7, and 279.5 microg/ml, respectively. Based on the receptor-ligand binding studies using a use-dependent NMDA receptor-channel blocker [3H]MK-801, asarone inhibited the specific bindings in a concentration-dependent fashion. These results indicate that asarone, the major essential oil component in AGR, exhibits neuroprotective action against the NMDA- or Glu-induced excitotoxicity through the blockade of NMDA receptor function. The alpha-asarone was found to exhibit more potent inhibition of [3H]MK-801 bindings, which is consistent with its more potent neuroprotective action than the beta- or the isolated asarone.
Collapse
Affiliation(s)
- Jungsook Cho
- College of Medicine, Department of Pharmacology, Dongguk University, Kyongju, Kyongbuk 780-714, South Korea.
| | | | | | | | | |
Collapse
|