1
|
Theocharis SE, Margeli AP, Koutselinis A. Metallothionein: A Multifunctional Protein from Toxicity to Cancer. Int J Biol Markers 2018; 18:162-9. [PMID: 14535585 DOI: 10.1177/172460080301800302] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The metallothionein (MT) family is a class of low molecular weight, intracellular and cysteine-rich proteins presenting high affinity for metal ions. Although the members of this family were discovered nearly 40 years ago, their functional significance remains obscure. Four major MT isoforms, MT-1, MT-2, MT-3 and MT-4, have been identified in mammals. MTs are involved in many pathophysiological processes such as metal ion homeostasis and detoxification, protection against oxidative damage, cell proliferation and apoptosis, chemoresistance and radiotherapy resistance. MT isoforms have been shown to be involved in several aspects of the carcinogenic process, cancer development and progression. MT expression has been implicated as a transient response to any form of stress or injury providing cytoprotective action. Although MT participates in the carcinogenic process, its use as a potential marker of tumor differentiation or cell proliferation, or as a predictor of poor prognosis remains unclear. In the present review the involvement of MT in defense mechanisms to toxicity and in carcinogenicity is discussed.
Collapse
Affiliation(s)
- S E Theocharis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, Greece.
| | | | | |
Collapse
|
2
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
3
|
Miyayama T, Ogra Y, Osima Y, Suzuki KT. Narrow-bore HPLC-ICP-MS for speciation of copper in mutant mouse neonates bearing a defect in Cu metabolism. Anal Bioanal Chem 2008; 390:1799-803. [PMID: 18259732 DOI: 10.1007/s00216-008-1894-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 01/08/2008] [Accepted: 01/17/2008] [Indexed: 01/22/2023]
Abstract
Minute amounts of tissue supernatants from mouse neonates bearing a mutation in the copper (Cu)-transporter gene, Atp7a, were injected into narrow-bore HPLC coupled with an inductively coupled plasma-mass spectrometer (ICP-MS) to examine Cu metabolism. In the 14-day-old mutant neonates, Cu accumulated in the intestine in the metallothionein (MT)-bound form, and mRNA expression of the two MT isoforms was increased. Meanwhile, Cu in the MT-bound form (Cu-MT) was depleted in the liver and mRNA expression decreased in comparison with wild-type mice. These results suggest that Cu is not secreted by intestinal microvillus cells into bloodstream due to the defect of Atp7a, and systemic depletion of Cu occurred. On the other hand, in the kidneys of mutant mice, Cu accumulated in the MT-bound form despite the fact that mRNA expression of the two MT isoforms was low. Part of Cu-MT in microvillus cells may be released into bloodstream at turnover and be preferably taken up by the kidneys. Consequently, the mRNA expression of MT isoforms was not always coincident with the amounts of MT proteins binding Cu, and narrow bore HPLC-ICP-MS used for MT protein determination is a complementary technique to real-time RT-PCR used for MT mRNA determination in Cu speciation.
Collapse
Affiliation(s)
- Takamitsu Miyayama
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba, 260-8675, Japan
| | | | | | | |
Collapse
|
4
|
Werner J, Palace V, Baron C, Shiu R, Yarmill A. A real-time PCR method for the quantification of the two isoforms of metallothionein in Lake Trout (Salvelinus namaycush). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 54:84-91. [PMID: 17687585 DOI: 10.1007/s00244-007-9000-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metallothioneins (MTs) are low-molecular-weight proteins whose physiologic roles are the regulation of essential metals Cu and Zn, sequestration of heavy metals, and free radical scavenging. Induced production of MTs in a wide variety of organisms exposed to heavy metals has made them popular exposure indicators. While it has been postulated that the three different isoforms of MT play different physiologic roles, methods to discern induction separately have not been available. The development of real-time polymerase chain reaction (real-time PCR) primers and TaqMan probes to measure the two MT isoforms found in salmonid fish are described. Assuming a high degree of homology between the isoforms and within different groups of salmonids, the sequences for MT-I and MT-II from rainbow trout were used to develop primers and probes for lake trout using the Primer3 program. Two sections of each isoform that varied by only a few nucleotides were targeted. SYBR Green validated the primer specificity, and melt curve analysis further ensured that only one product was amplified. Analysis of archived samples from fish captured in unmanipulated reference lakes or from lakes experimentally treated with cadmium or ethynylestradiol (EE2) afforded an examination of seasonal and contaminant influences on MT-I and MT-II mRNA expression.
Collapse
Affiliation(s)
- Julieta Werner
- Department of Zoology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
5
|
Kameo S, Nakai K, Kurokawa N, Kanehisa T, Naganuma A, Satoh H. Metal components analysis of metallothionein-III in the brain sections of metallothionein-I and metallothionein-II null mice exposed to mercury vapor with HPLC/ICP-MS. Anal Bioanal Chem 2005; 381:1514-9. [PMID: 15782327 DOI: 10.1007/s00216-005-3157-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 01/31/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
Mercury vapor is effectively absorbed via inhalation and easily passes through the blood-brain barrier; therefore, mercury poisoning with primarily central nervous system symptoms occurs. Metallothionein (MT) is a cysteine-rich metal-binding protein and plays a protective role in heavy-metal poisoning and it is associated with the metabolism of trace elements. Two MT isoforms, MT-I and MT-II, are expressed coordinately in all mammalian tissues, whereas MT-III is a brain-specific member of the MT family. MT-III binds zinc and copper physiologically and is seemed to have important neurophysiological and neuromodulatory functions. The MT functions and metal components of MTs in the brain after mercury vapor exposure are of much interest; however, until now they have not been fully examined. In this study, the influences of the lack of MT-I and MT-II on mercury accumulation in the brain and the changes of zinc and copper concentrations and metal components of MTs were examined after mercury vapor exposure by using MT-I, II null mice and 129/Sv (wild-type) mice as experimental animals. MT-I, II null mice and wild-type mice were exposed to mercury vapor or an air stream for 2 h and were killed 24 h later. The brain was dissected into the cerebral cortex, the cerebellum, and the hippocampus. The concentrations of mercury in each brain section were determined by cold vapor atomic absorption spectrometry. The concentrations of mercury, copper, and zinc in each brain section were determined by inductively coupled plasma mass spectrometry (ICP-MS). The mercury accumulated in brains after mercury vapor exposure for MT-I, II null mice and wild-type mice. The mercury levels of MT-I, II null mice in each brain section were significantly higher than those of wild-type mice after mercury vapor exposure. A significant change of zinc concentrations with the following mercury vapor exposure for MT-I, II null mice was observed only in the cerebellum analyzed by two-way analysis of variance. As for zinc, the copper concentrations only changed significantly in the cerebellum. Metal components of metal-binding proteins of soluble fractions in the brain sections were analyzed by size-exclusion high-performance liquid chromatography (HPLC) connected with ICP-MS. From the results of HPLC/ICP-MS analyses, it was concluded that the mercury components of MT-III and high molecular weight metal-binding proteins in the cerebellum of MT-I, II null mice were much higher than those of wild-type mice. It was suggested that MT-III is associated with the storage of mercury in conditions lacking MT-I, and MT-II. It was also suggested that the physiological role of MT-III and some kind of high molecular weight proteins might be impaired by exposure to mercury vapor and lack of MT-I and MT-II.
Collapse
Affiliation(s)
- Satomi Kameo
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Encinar JR, Ouerdane L, Buchmann W, Tortajada J, Lobinski R, Szpunar J. Identification of Water-Soluble Selenium-Containing Proteins in Selenized Yeast by Size-Exclusion-Reversed-Phase HPLC/ICPMS Followed by MALDI-TOF and Electrospray Q-TOF Mass Spectrometry. Anal Chem 2003; 75:3765-74. [PMID: 14572042 DOI: 10.1021/ac034103m] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An approach to speciation of selenium incorporated in yeast proteins was developed. The tryptic digest of a water-soluble protein fraction isolated by size-exclusion chromatography was analyzed by reversed-phase HPLC/ICPMS. The selenopeptides selected owing to the detector's elemental specificity were then analyzed by MALDI-TOFMS in order to select target ions for collision-induced dissociation MS. The latter, carried out with an electrospray Q-TOF spectrometer, enabled the sequencing of the selenopeptides detected by HPLC/ICPMS. The approach allowed for the first time the identification of a family of Se-containing proteins resulting from the replacement by selenomethionine of 2-9 methionine residues in a salt-stress-induced protein SIP18 (Mr 8874). The presence of these proteins was confirmed by MALDI-TOFMS of the original (nondigested) protein fraction. Another selenium protein identified was a heat-shock protein HSP12 (Mr 11693) in which the only methionine residue was replaced by selenomethionine. These two Se-containing proteins accounted for more than 95% of selenium in the water-soluble protein fraction.
Collapse
|
7
|
Minami T, Ichida S, Kubo K. Study of metallothionein using capillary zone electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:303-11. [PMID: 12450665 DOI: 10.1016/s1570-0232(02)00496-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metallothioneins (MTs) have many different functions in tissues, but the roles of individual isoforms are still not entirely clear. Capillary zone electrophoresis (CZE) is a powerful method for the separation of substances because of its small sample requirement, rapid analysis, high sensitivity and high resolution. The separation and identification of mammalian MT-1, MT-2, and MT-3 and class III MTs by CZE has been reported. Uncoated and polyacrylamide-coated capillary tubes were recently used for the separation of MTs, and a UV detector is usually employed for observations of peaks of MTs. Small changes to the structure and metal components of MTs are reflected in the migration times of the peaks. N-acetylated and non-acetylated MTs can be separated and identified by CZE-mass spectrometry (MS). In addition, metal complexes with MTs can be characterized by CZE-proton-induced X-ray emission (PIXE) detector and CZE-inductively coupled plasma (ICP)-MS. For the quantification of an MT isoform, the peak area of UV absorption is used, but the technique has problems. One is lack of a purified isoform standard. The other is the need for a suitable internal standard substance. CZE-ICP-isotope dilution (ID)-MS is also reported to be able to quantify MT isoforms. CZE combined with other techniques is very effective for separation and quantitative and qualitative analyses of MT isoforms in biological materials.
Collapse
Affiliation(s)
- Takeshi Minami
- Laboratory of Environmental Biology, Department of Life Science, School of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| | | | | |
Collapse
|
8
|
Mason AZ, Borja MR. A study of Cu turnover in proteins of the visceral complex of Littorina littorea by stable isotopic analysis using coupled HPLC-ICP-MS. MARINE ENVIRONMENTAL RESEARCH 2002; 54:351-355. [PMID: 12408587 DOI: 10.1016/s0141-1136(02)00171-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A two-dimensional HPLC system, tandemly coupled to an ICP-MS, has been used to study copper accumulation and turnover in the visceral complex cytosol of the gastropod, Littorina littorea. Animals were exposed for 8 weeks to NTA-buffered seawater containing stable isotopic 65Cu and then transferred to media containing stable isotopic 63Cu. The free ion activity of each isotope was maintained at 10(-11) M. Size exclusion (SE) HPLC showed Cu associated with haemocyanin (HC) and metallothionein-like (MT) proteins in two ligand pools with apparent molecular weights of >300 kDa and approximately 17 kDa, respectively. The MT pool was inducible by Cu, could assimilate the metal from both intrinsic and extrinsic sources and showed a higher rate of Cu accumulation and turnover than the HC pool. The induction of this pool also caused the sequestration and cytosolic redistribution of Zn, Cd, Pb, Mn and Co. Further fractionation of the MT pool by ion-exchange (IE) HPLC revealed that the Cu was associated with a single, major isoform of the protein that was Cu inducible and also bound trace quantities of Zn and Pb. A number of additional metal containing proteins were also resolved by IE. the most prominent of which also bound Pb, Mn and minor quantities of Zn. The significance of these findings in metal homeostasis and detoxification is discussed.
Collapse
Affiliation(s)
- A Z Mason
- Department of Biological Sciences, California State University Long Beach 90840, USA.
| | | |
Collapse
|
9
|
Ghoshal K, Jacob ST. Regulation of metallothionein gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:357-84. [PMID: 11051769 DOI: 10.1016/s0079-6603(00)66034-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The rapid and robust induction of metallothioneins (MT)-I and II by a variety of inducers that include heavy toxic metals, reactive oxygen species, and different types of stress provide a useful system to study the molecular mechanisms of this unique induction process. The specific expression of MT-III in the brain and of MT-IV in the squamous epithelium of skin and tongue offers a unique opportunity to identify and characterize the tissue-specific factors involved in their expression. Studies using transgenic mice that overexpress MTs or MT null mice have revealed the role of MT in the protection of cells against numerous tissue-damaging agents such as reactive oxygen species. The primary physiological function of these proteins, however, remains an enigma. Considerable advances have been made in the identification of the cis-acting elements that are involved in the constitutive and induced expression of MT-I and MT-II. By contrast, only one key trans-activating factor, namely MTF-1, has been extensively characterized. Studies on the epigenetic silencing of MT-I and MT-II by promoter hypermethylation in some cancer cells have posed interesting questions concerning the functional relevance of MT gene silencing, the molecular mechanisms of MT suppression in these cells, particularly chromatin modifications, and the characteristics of the repressors.
Collapse
Affiliation(s)
- K Ghoshal
- Department of Molecular and Cellular Biochemistry, Ohio State University College of Medicine, Columbus 43210, USA
| | | |
Collapse
|
10
|
Miles AT, Hawksworth GM, Beattie JH, Rodilla V. Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 2000; 35:35-70. [PMID: 10755665 DOI: 10.1080/10409230091169168] [Citation(s) in RCA: 305] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypeptides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.
Collapse
Affiliation(s)
- A T Miles
- Department of Medicine and Therapeutics, University of Aberdeen, Scotland, UK
| | | | | | | |
Collapse
|