1
|
Gomes FL, Conceição F, Teixeira LM, Leijten J, Jonkheijm P. Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration. Pharmaceutics 2025; 17:64. [PMID: 39861712 PMCID: PMC11768317 DOI: 10.3390/pharmaceutics17010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g., drugs, peroxides), providing an optimal solution for numerous biomedical purposes, such as drug delivery or oxygen therapeutics. The intravascular administration of hydrophobic microparticles requires a safe-to-flow particle profile, which typically corresponds to a maximum size of 5 µm-the generally accepted diameter for the thinnest blood vessels in humans. However, the production of hydrophobic microparticles below this size range remains largely unexplored. In this work, we investigate the fabrication of hydrophobic microparticles at safe-to-inject and safe-to-flow sizes (<5 µm) for intravascular administration. Methods: Polycaprolactone microparticles (PCL MPs) are produced using a double-emulsification method with tip ultrasonication, for which various production parameters (PCL molecular weight, PCL concentration, type of stabilizer, and filtration) are optimized to obtain particles at sizes below 5 µm. Results: We achieve a PCL MP size distribution of 99.8% below this size limit, and prove that these particles can flow without obstruction through a microfluidic model emulating a thin human blood capillary (4.1 µm × 3.0 µm width × heigh). Conclusions: Overall, we demonstrate that hydrophobic microparticles can be fabricated at safe-to-flow sizes using a simple and scalable setup, paving the way towards their applicability as new intravascular injectables.
Collapse
Affiliation(s)
- Francisca L. Gomes
- Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands;
- Leijten Laboratory, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands
| | - Francisco Conceição
- Department of BioEngineering Technologies, Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands; (F.C.); (L.M.T.)
| | - Liliana Moreira Teixeira
- Department of BioEngineering Technologies, Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands; (F.C.); (L.M.T.)
- Organ-on-Chip Centre Twente, MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands
| | - Jeroen Leijten
- Leijten Laboratory, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands
| | - Pascal Jonkheijm
- Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands;
- Organ-on-Chip Centre Twente, MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands
| |
Collapse
|
2
|
Eke Z, Orgul D, Varan G, Erdoğar N. In vitro and ex vivo evaluation of chitosan gel containing metformin-loaded polymeric nanoparticles for topical treatment of melanoma. Drug Dev Ind Pharm 2024; 50:593-604. [PMID: 38916971 DOI: 10.1080/03639045.2024.2372290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE The purpose of this study was to prepare and evaluate chitosan (CS) gel containing metformin hydrochloride (MET)-loaded polycaprolactone (PCL) nanoparticles (NPs) for topical treatment of melanoma. SIGNIFICANCE Topical administration of MET-PCL NPs-CS gel improves penetration of drug, decreases side effects, and increases efficacy of treatment. METHODS MET-PCL NPs were prepared by double emulsion method. Particle size, charge, encapsulation efficiency (EE), release, and morphology were evaluated. MET-PCL NPs-CS gel formulation was characterized in terms of organoleptic properties, pH, gelling time, viscosity, spreadability, release, and morphology. Cytotoxicity was performed on B16F10 cells. Ex vivo permeability was done with pig skin. RESULTS The size, charge, and EE were found to be 180 ± 10 nm, -11.4 mV, and 93%. SEM images showed that NPs were spherical and smooth. An initial burst release followed by a slower release was observed. MET-PCL NPs-CS gel was found to be transparent. The pH was 4.9 ± 0.05. The gelation time was 1.6 ± 0.2 min. The viscosity results confirm pseudoplastic behavior of gel. The spreadability by % area was 392 ± 6.4 cm. The images showed that gelling network of CS gel was composed of suspended NPs. The viscosity was between 554 and 3503 cP. MET-PCL NPs-CS gel showed prolonged release up to 72 h. On B16F10 cells, gel showed higher cytotoxicity compared to MET solution. MET-PCL NPs-CS gel had twofold higher permeability in pig skin compared with MET-CS gel. CONCLUSION Topical administration of MET-PCL NPs-CS gel into the skin resulted in improved dermal penetration and this promising approach may be of value in effective treatment of melanoma and other skin cancers.
Collapse
Affiliation(s)
- Ziyneti Eke
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Dilara Orgul
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Selçuk University, Konya, Turkey
| | - Gamze Varan
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| | - Nazlı Erdoğar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Ponzini E, Astolfi G, Grandori R, Tavazzi S, Versura P. Development, Optimization, and Clinical Relevance of Lactoferrin Delivery Systems: A Focus on Ocular Delivery. Pharmaceutics 2024; 16:804. [PMID: 38931931 PMCID: PMC11207246 DOI: 10.3390/pharmaceutics16060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Lactoferrin (Lf), a multifunctional protein found abundantly in secretions, including tears, plays a crucial role in ocular health through its antimicrobial, immunoregulatory, anti-inflammatory, and antioxidant activities. Advanced delivery systems are desirable to fully leverage its therapeutic potential in treating ocular diseases. The process of Lf quantification for diagnostic purposes underscores the importance of developing reliable, cost-effective detection methods, ranging from conventional techniques to advanced nano-based sensors. Despite the ease and non-invasiveness of topical administration for ocular surface diseases, challenges such as rapid drug elimination necessitate innovations, such as Lf-loaded contact lenses and biodegradable polymeric nanocapsules, to enhance drug stability and bioavailability. Furthermore, overcoming ocular barriers for the treatment of posterior segment disease calls for nano-formulations. The scope of this review is to underline the advancements in nanotechnology-based Lf delivery methods, emphasizing the pivotal role of multidisciplinary approaches and cross-field strategies in improving ocular drug delivery and achieving better therapeutic outcomes for a wide spectrum of eye conditions.
Collapse
Affiliation(s)
- Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
- COMiB Research Center, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
| | - Gloria Astolfi
- Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Alma Mater Studiorum Università di Bologna, via Palagi 9, I-40138 Bologna, Italy; (G.A.); (P.V.)
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milan, Italy;
- Institute for Advanced Simulations, Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
- COMiB Research Center, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
| | - Piera Versura
- Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Alma Mater Studiorum Università di Bologna, via Palagi 9, I-40138 Bologna, Italy; (G.A.); (P.V.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Palagi 9, I-40138 Bologna, Italy
| |
Collapse
|
4
|
Alsulays BB, Aodah AH, Ahmed MM, Anwer MK. Preparation and Evaluation of Chitosan Coated PLGA Nanoparticles Encapsulating Ivosidenib with Enhanced Cytotoxicity Against Human Liver Cancer Cells. Int J Nanomedicine 2024; 19:3461-3473. [PMID: 38617799 PMCID: PMC11015841 DOI: 10.2147/ijn.s452989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Purpose Ivosidenib (IVO), an isocitrate dehydrogenase-1 (IDH1) used for treatment of acute myeloid leukemia (AML) and cholangiocarcinoma. However, poor solubility, low bioavailability, high dose and side effects limit clinical application of IVO. Methods Ivosidenib-loaded PLGA nanoparticles (IVO-PLGA-NPs) and Ivosidenib-loaded chitosan coated PLGA nanoparticles (IVO-CS-PLGA-NPs) were prepared using emulsification and solvent evaporation method for the treatment of liver cancer. Results The developed IVO-PLGA-NPs were evaluated for their particle size (171.7±4.9 nm), PDI (0.333), ZP (-23.0±5.8 mV), EE (96.3±4.3%), and DL (9.66±1.1%); similarly, the IVO-CS-PLGA-NPs were evaluated for their particle size (177.3±5.2 nm), PDI (0.311), ZP +25.9±5.7 mV, EE (90.8±5.7%), and DL (9.42±0.7%). The chitosan coating of IVO-PLGA-NPs was evidenced by an increase in mean particle size and positive ZP value. Because of the chitosan coating, the IVO-CS-PLGA-NPs showed a more stable and prolonged release of IVO than IVO-PLGA-NPs. In comparison to pure-IVO, the IVO-PLGA-NPs and IVO-CS-PLGA-NPs were found to be more effective against HepG2 cells, with IC50 values for the MTT assay being approximately half of those of pure-IVO. In HepG2 cells, the expressions of caspase-3, caspase-9, and p53 were significantly (p < 0.05) elevated. Conclusion Overall, these findings suggest that chitosan coating of IVO-PLGA-NPs improves the delivery and efficacy of ivosidenib in liver cancer treatment.
Collapse
Affiliation(s)
- Bader B Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
5
|
Elhabal SF, Ghaffar SA, Hager R, Elzohairy NA, Khalifa MM, Mohie PM, Gad RA, Omar NN, Elkomy MH, Khasawneh MA, Abdelaal N. Development of thermosensitive hydrogel of Amphotericin-B and Lactoferrin combination-loaded PLGA-PEG-PEI nanoparticles for potential eradication of ocular fungal infections: In-vitro, ex-vivo and in-vivo studies. Int J Pharm X 2023; 5:100174. [PMID: 36908304 PMCID: PMC9992749 DOI: 10.1016/j.ijpx.2023.100174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.
Collapse
Key Words
- A, aqueous phase
- AMP, Amphotericin-B
- ANOVA, Analysis of variance
- Amphotericin-B
- Atomic force microscopy (AFM)
- BCS, Biopharmaceutical Classification System
- BLF, Bovine Lactoferrin
- CD14, Cluster of differentiation 14
- CK, Creatine kinase
- Candida albicans
- Confocal laser scanning microscopy (CLSM)
- DLS, dynamic light scattering
- DMSO, dimethyl sulfoxide
- DSC, Differential scanning calorimetry
- Draize test
- EDC, ethyl-3-(3-dimethyl aminopropyl) carbodiimide
- EE%, Entrapment efficiency
- FT-IR, Fourier transform infrared
- FT-IR, Fourier-transform infrared spectroscopy
- GRAS, Generally recognized as a safe
- HCE-2, human corneal epithelial cells
- J, steady-state flux
- Kp, permeability coefficient
- LPS, Lipopolysaccharide
- Lactoferrin
- MIC, minimum inhibitory concentration
- NCCLS, National Committee for Clinical Laboratory Standards
- NHS, N-hydroxysuccinimide
- NPs, nanoparticles
- Nanoparticles
- O, organic phase
- P188, Kolliphor®P188
- P407, Poloxamer 407
- PBS, Phosphate buffered saline solution
- PDI, Polydispersity index
- PEG, polyethylene glycol
- PEI, poly-ethylene imine
- PLGA, Poly (lactic-co-glycolic acid)
- PS, Particle size
- Q24, amount penetrated after 24 h
- QR, Quantity retained
- REC, rules of the Study Ethics Committee
- SD, Standard deviations
- SE, Standard error
- SEM, Scanning electron microscope
- TEM, Transmission electron microscopy
- Triblock polymers PLGA-PEG-PEI
- ZP, Zeta potential.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Shrouk A. Ghaffar
- Tactical Medical Department, Caduceus Lane Healthcare, Alexandria 21532, Egypt
| | - Raghda Hager
- Department of Medicinal Microbiology and Immunology, Faculty of Medicine King Salman International University, El-Tor, South Siniai, Egypt
| | - Nahla A. Elzohairy
- Air Force Specialized Hospital, Cairo 19448, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine, Cairo University, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, 62511, Saudi Arabia
| | - Passant M. Mohie
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21532, Egypt
| | - Rania A. Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Nasreen N. Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, College of Science U.A.E. University, Al-Ain, P.O. Box 17551, United Arab Emirates
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Chen SX, Xiong Y, Liu GH, Lin SE, McCarthy A, John JV, Wei DX, Hou HH. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res 2023; 10:16. [PMID: 36978167 PMCID: PMC10047482 DOI: 10.1186/s40779-023-00448-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering (TE) and regenerative medicine. In contrast to conventional biomaterials or synthetic materials, biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix (ECM). Additionally, such materials have mechanical adaptability, microstructure interconnectivity, and inherent bioactivity, making them ideal for the design of living implants for specific applications in TE and regenerative medicine. This paper provides an overview for recent progress of biomimetic natural biomaterials (BNBMs), including advances in their preparation, functionality, potential applications and future challenges. We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM. Moreover, we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications. Finally, we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
Collapse
Affiliation(s)
- Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Jiang-Ming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
| | - Yan-Chang Gan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Xiao-Zhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| | - Zhe-Chen Gao
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033 Guangdong China
| | - Shi-Xuan Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011 Zhejiang China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Si-En Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077 China
| | - Alec McCarthy
- Department of Functional Materials, Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Johnson V. John
- Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68130 USA
| | - Dai-Xu Wei
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336 China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002 Sichuan China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, 710127 China
| | - Hong-Hao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900 China
| |
Collapse
|
7
|
Lu Y, Cheng D, Niu B, Wang X, Wu X, Wang A. Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals (Basel) 2023; 16:ph16030454. [PMID: 36986553 PMCID: PMC10058621 DOI: 10.3390/ph16030454] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, biodegradable polymers have gained the attention of many researchers for their promising applications, especially in drug delivery, due to their good biocompatibility and designable degradation time. Poly (lactic-co-glycolic acid) (PLGA) is a biodegradable functional polymer made from the polymerization of lactic acid (LA) and glycolic acid (GA) and is widely used in pharmaceuticals and medical engineering materials because of its biocompatibility, non-toxicity, and good plasticity. The aim of this review is to illustrate the progress of research on PLGA in biomedical applications, as well as its shortcomings, to provide some assistance for its future research development.
Collapse
Affiliation(s)
- Yue Lu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Dongfang Cheng
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Baohua Niu
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Xiuzhi Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaxia Wu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Aiping Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Correspondence:
| |
Collapse
|
8
|
Ezra Manicum AL, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Effect of Formulation Variables for the Production of WGA-Grafted, Levodopa-Loaded PLGA Nanoparticles. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/www.scientific.net/jbbbe.54.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Levodopa is used for the treatment of Parkinson’s disease (PD) for the last few decades. However, adverse reactions such as dyskinesia, somnolence, nausea, itching, rash, as well as the need for frequent dosing and low bioavailability problems affect the success of the treatment. To prevent side effects caused by conventional therapy, a nanoparticular drug delivery system has been developed, in which receptors are constantly stimulated, and the frequency of dosing is reduced. In this study, levodopa was loaded in Poly lactic-co-glycolic acid (PLGA) nanoparticles (NP) which modified with Wheat Germ Agglutinin (WGA) To increase the effectiveness of levodopa, reduce its side effects and apply to the nasal area which is an alternative way for brain targeting with lower doses. To obtain the optimum levodopa loaded PLGA nanoparticles, the effect of some formulation variables such as polyvinyl alcohol (PVA) concentration, homogenization speed, polymer amount and molecular weight, and levodopa content on the entrapment efficiency (EE) and particle size of the nanoparticles were investigated. Besides these variables, the effect of different parameters on the WGA binding constant was also searched. In addition to in vitro release studies, Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectrophotometer (FT-IR), and Transmission electron microscopy (TEM) analysis were used in the characterization of nanoparticles. Among all formulations, A2 and A8a which was produced with different molcular weights of PLGA, different added levodopa amounts and with different homogenization speeds were chosen as optimum formulations due to their sustained release properties and the ability to release 80 % of their drug content.WGA binding constant was found 78.20 % for A8a-1 and 95 % for A2-1. In this study, we aimed to determine the effect of different formulation parameters on the development of levodopa loaded and WGA grafted PLGA nanoparticles and on the quality characteristics of nanoparticle formulations such as particle size, zeta potential, and EE. In this paper, our results are demonstrated for a better understanding of the effect of process parameters on the development of nanoparticle-based drug delivery systems by using the double-emulsion solvent evaporation technique and on WGA binding of drug-loaded PLGA nanoparticles.
Collapse
|
10
|
López-Machado A, Díaz N, Cano A, Espina M, Badía J, Baldomà L, Calpena AC, Biancardi M, Souto EB, García ML, Sánchez-López E. Development of topical eye-drops of lactoferrin-loaded biodegradable nanoparticles for the treatment of anterior segment inflammatory processes. Int J Pharm 2021; 609:121188. [PMID: 34655707 DOI: 10.1016/j.ijpharm.2021.121188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Ocular inflammation is one of the most common comorbidities associated to ophthalmic surgeries and disorders. Since conventional topical ophthalmic treatments present disadvantages such as low bioavailability and relevant side effects, natural alternatives constitute an unmet medical need. In this sense, lactoferrin, a high molecular weight protein, is a promising alternative against inflammation. However, lactoferrin aqueous instability and high nasolacrimal duct drainage compromises its potential effectiveness. Moreover, nanotechnology has led to an improvement in the administration of active compounds with compromised biopharmaceutical profiles. Here, we incorporate lactoferrin into biodegradable polymeric nanoparticles and optimized the formulation using the design of experiments approach. A monodisperse nanoparticles population was obtained with an average size around 130 nm and positive surface charge. Pharmacokinetic and pharmacodynamic behaviour were improved by the nanoparticles showing a prolonged lactoferrin release profile. Lactoferrin nanoparticles were non-cytotoxic and non-irritant neither in vitro nor in vivo. Moreover, nanoparticles exhibited significantly increased anti-inflammatory efficacy in cell culture and preclinical assays. In conclusion, lactoferrin loaded nanoparticles constitute a safe and novel nanotechnological tool suitable for the treatment of ocular inflammation.
Collapse
Affiliation(s)
- Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Natalia Díaz
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badía
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
11
|
Zhou B, Ma Y, Li L, Shi X, Chen Z, Wu F, Liu Y, Zhang Z, Wang S. Pheophorbide co-encapsulated with Cisplatin in folate-decorated PLGA nanoparticles to treat nasopharyngeal carcinoma: Combination of chemotherapy and photodynamic therapy. Colloids Surf B Biointerfaces 2021; 208:112100. [PMID: 34547704 DOI: 10.1016/j.colsurfb.2021.112100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 01/09/2023]
Abstract
The adverse effect and drug resistance of Cisplatin (CDDP) could be potential reduced by delivering in targeted nanoparticles and by combining with adjuvant therapy such as photodynamic therapy. In this study, F/CDPR-NP was formulated and characterized for all the physicochemical, biological and in vivo analysis. The results obtained from various in vitro and biological studies showed that encapsulation of CDDP and PBR in PLGA nanoparticles results in controlled release of encapsulated drugs and exhibited significantly low cell viability in CNE-1 and HNE-1 cancer cells. F/CDPR-NP significantly prolonged the blood circulation of the encapsulated drugs. The AUC of CDDP from F/CDPR-NP (4-fold) was significantly higher compared to that of free CDDP and similarly significantly higher t1/2 for CDDP from F/CDPR-NP was observed. F/CDPR-NP in the presence of laser irradiation showed significant reduction in the tumor burden with low tumor cell proliferations compared to either CDPR-NP or free CDDP indicating the potential of targeted nanoparticles and photodynamic therapy. Overall, combination of treatment modalities and active targeting approach paved way for the higher antitumor activity in nasopharyngeal carcinoma model. The positive results from this study will show new horizon for the treatment of other cancer models.
Collapse
Affiliation(s)
- Benzhong Zhou
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Yunxia Ma
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Longqiao Li
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Xianping Shi
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Zhitai Chen
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Feifeng Wu
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Yang Liu
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Zesheng Zhang
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Shengguo Wang
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China.
| |
Collapse
|
12
|
Hua Y, Su Y, Zhang H, Liu N, Wang Z, Gao X, Gao J, Zheng A. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Deliv 2021; 28:1342-1355. [PMID: 34180769 PMCID: PMC8245074 DOI: 10.1080/10717544.2021.1943056] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) has garnered increasing attention as a candidate drug delivery polymer owing to its favorable properties, including its excellent biocompatibility, biodegradability, non-toxicity, non-immunogenicity, and mechanical strength. PLAG are specifically used as microspheres for the sustained/controlled and targeted delivery of hydrophilic or hydrophobic drugs, as well as biological therapeutic macromolecules, including peptide and protein drugs. PLGAs with different molecular weights, lactic acid (LA)/glycolic acid (GA) ratios, and end groups exhibit unique release characteristics, which is beneficial for obtaining diverse therapeutic effects. This review aims to analyze the composition of PLGA microspheres, and understand the manufacturing process involved in their production, from a quality by design perspective. Additionally, the key factors affecting PLGA microsphere development are explored as well as the principles involved in the synthesis and degradation of PLGA and its interaction with active drugs. Further, the effects elicited by microcosmic conditions on PLGA macroscopic properties, are analyzed. These conditions include variations in the organic phase (organic solvent, PLGA, and drug concentration), continuous phase (emulsifying ability), emulsifying stage (organic phase and continuous phase interaction, homogenization parameters), and solidification process (relationship between solvent volatilization rate and curing conditions). The challenges in achieving consistency between batches during manufacturing are addressed, and continuous production is discussed as a potential solution. Finally, potential critical quality attributes are introduced, which may facilitate the optimization of process parameters.
Collapse
Affiliation(s)
- Yabing Hua
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuhuai Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
13
|
Budama-Kilinc Y, Kecel-Gunduz S, Cakir-Koc R, Aslan B, Bicak B, Kokcu Y, Ozel AE, Akyuz S. Structural Characterization and Drug Delivery System of Natural Growth-Modulating Peptide Against Glioblastoma Cancer. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Quality by design prospects of pharmaceuticals application of double emulsion method for PLGA loaded nanoparticles. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04609-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
QbD approach empowers the pharma researchers to minimize the number of experimental trials and time. It helps identify the significant, influential factors such as critical material attributes, critical formulation variables, and critical process parameters, which may significantly impact the quality of the products. Poly lactic-co-glycolic acid (PLGA), a biocompatible and biodegradable polymer, has gained an immense potential and wide range of applications as a carrier for manufacturing of polymeric nanoparticle drug delivery systems as per US-FDA and European Medicine Agency for drug delivery. The double emulsion method for preparing PLGA nanoparticles to encapsulate hydrophilic drugs has attracted interest in manufacturing processes. The double emulsion is a two-step process consisting of two different emulsification, making the process more complicated. The stability of nanoparticles obtained by a double emulsion method remains questionable due to the many formulations and process attributes. Currently, PLGA based nanoparticles prepared by a double emulsion technique are an alternative pharmaceutical manufacturing operation for getting the quality product by employing the Quality by Design approach. This present review has discussed the QbD elements to elucidate the effect of material attributes, formulation, and process variables on the critical quality attributes of the drug product, such as particle size distribution, encapsulation efficiency, etc. The components of a double emulsion, characteristics of drugs, polymers, and stabilizers used have been discussed in detail in this review.
Graphic abstract
Collapse
|
15
|
Repurposing of Guanabenz acetate by encapsulation into long-circulating nanopolymersomes for treatment of triple-negative breast cancer. Int J Pharm 2021; 600:120532. [PMID: 33781877 DOI: 10.1016/j.ijpharm.2021.120532] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 01/25/2023]
Abstract
Poor patient response and limited treatment modalities are the major challenges against combating triple-negative breast cancer (TNBC). The high related mortality urges for novel cancer therapeutics. Guanabenz acetate (GA) is an orphan antihypertensive drug with a short half-life. Re-purposing (GA) by developing a polymersome (PS)-based cancer nanomedicine is an innovative approach in treating TNBC. Formulation and optimization of GA-loaded PEGylated Polycaprolactone PS through different process variables (solvent selection, the order of addition, pH of the aqueous phase, and drug to polymer ratio) were achieved by the nanoprecipitation method. The in vitro cellular uptake, anti-cancer, and anti-metastatic activity of GA and GA-loaded PS were tested in MDA-MB 231(TNBC cell line) and MCF-7 cell line. Western blot analysis was performed to elucidate the molecular anti-cancer mechanism. The in vivo biodistribution study and antitumor activity were investigated in the TNBC-xenograft model implanted in mice. Under optimized formulation conditions, GA-loaded PS had a nanosize of 90.5 nm with PDI < 0.2, a zeta potential -9.11 mV, drug encapsulation efficiency of 92.11% and sustained drug release for 6-days. GA-loaded PS exhibited enhanced cellular uptake and achieved a significantly lower IC50 in both breast cancer cell lines compared to free GA. Treatment with GA-loaded PS (60 µM) showed a significant reduction of 60.5 and 78.1% in cancer migration and metastasis in the case of MDA-MB 231 and MCF-7, respectively. Besides, drug-loaded PS increased phosphorylation of translational regulator eIF2α and decreased expression of Rac1 which were essential for decreasing cancer cell survival and metastasis. In vivo biodistribution study of GA-loaded PS showed long-circulating PS with high passively targeted tumor accumulation. Treatment with GA-loaded PS resulted in a significant decrease in tumor size and weight compared to free GA. In conclusion, GA-loaded PS is a new promising cancer therapeutics for the treatment of TNBC.
Collapse
|
16
|
Ochi M, Wan B, Bao Q, Burgess DJ. Influence of PLGA molecular weight distribution on leuprolide release from microspheres. Int J Pharm 2021; 599:120450. [PMID: 33675924 DOI: 10.1016/j.ijpharm.2021.120450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
Poly (lactide-co-glycolide) (PLGA) is a biodegradable copolymer used in many long-acting drug products. The objective of the present study was to investigate the influence of polymer molecular weight distribution differences of PLGA on the in vitro release profile of leuprolide acetate microspheres. Eight microsphere formulations were prepared using the same manufacturing process but with different PLGA polymers. The physicochemical properties (drug loading, particle size and morphology) as well as the in vitro release profiles of the prepared microspheres were evaluated using a sample-and-separate method. The amount of burst release increased with increasing amount of low molecular weight fractions of PLGA, indicating that the drug release profiles appeared to be affected not only by the average molecular weight but also the molecular weight distribution of PLGA. In conclusion, quality control of the molecular weight distribution of PLGA as well as the weight average molecular weight is highly desirable in order to control the burst release.
Collapse
Affiliation(s)
- Masanori Ochi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Bo Wan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Quanying Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
17
|
Abu Abed OS, Chaw CS, Williams L, Elkordy AA. PEGylated polymeric nanocapsules for oral delivery of trypsin targeted to the small intestines. Int J Pharm 2021; 592:120094. [PMID: 33197565 DOI: 10.1016/j.ijpharm.2020.120094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022]
Abstract
The lack of trypsin in the intestines may end up with malnutrition; thus, trypsin replacement therapy is required in such cases. The main objective of this study is to formulate and evaluate polymeric nanocapsule (PNC) systems able to deliver trypsin to the small intestines with the minimal release in the stomach with the maximum biological activity. Four nanocapsule formulations were prepared by double emulsion/evaporation method as w/o/w and s/o/w. Particle size, encapsulation efficiencies, drug release in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF), morphology, the biological activity of encapsulated trypsin and shelf-life stability were investigated for all formulations. All formulations had a spherical shape with submicron size, and encapsulation efficiency more than 80%. The biological activity of encapsulated trypsin was significantly affected by the amount of trehalose and whether the formulations were prepared as s/o/w or w/o/w (P < 0.05). Most of the encapsulated protein was released sustainedly at the target site (SIF) over 24 h with minimum amount release in the gastric fluids. Also, more than 90% of physical integrity trypsin encapsulated in all formulations was retained after storage under chilled conditions for six months. However, the enzymatic assay results show that with low trehalose content, the biological activity was low, while increasing the trehalose amount increased the shelf stability to reach around 100% after six months of the study. The results obtained in this research work clearly indicated a promising potential of controlled release polymeric nanocapsules containing trypsin to target the small intestine and protect trypsin from the harsh condition facing the proteins during the process of preparation or the period of storage.
Collapse
Affiliation(s)
- Omar S Abu Abed
- Department of Pharmacy Health & Well-being, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; Health Science Department, Faculty of Graduate Studies, Arab American University in Palestine, Ramallah, Palestine.
| | - Cheng Shu Chaw
- Department of Pharmacy Health & Well-being, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| | - Lee Williams
- Department of Pharmacy Health & Well-being, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| | - Amal A Elkordy
- Department of Pharmacy Health & Well-being, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| |
Collapse
|
18
|
Zhang M, Sun R, Xia Q. An ascorbic acid delivery system based on (W1/O/W2) double emulsions encapsulated by Ca-alginate hydrogel beads. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Novel Silibinin Loaded Chitosan-Coated PLGA/PCL Nanoparticles Based Inhalation Formulations with Improved Cytotoxicity and Bioavailability for Lung Cancer. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00797-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Duong VA, Nguyen TTL, Maeng HJ. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules 2020; 25:E4781. [PMID: 33081021 PMCID: PMC7587569 DOI: 10.3390/molecules25204781] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 02/01/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as potential drug delivery systems for various applications that are produced from physiological, biodegradable, and biocompatible lipids. The methods used to produce SLNs and NLCs have been well investigated and reviewed, but solvent injection method provides an alternative means of preparing these drug carriers. The advantages of solvent injection method include a fast production process, easiness of handling, and applicability in many laboratories without requirement of complicated instruments. The effects of formulations and process parameters of this method on the characteristics of the produced SLNs and NLCs have been investigated in several studies. This review describes the methods currently used to prepare SLNs and NLCs with focus on solvent injection method. We summarize recent development in SLNs and NLCs production using this technique. In addition, the effects of solvent injection process parameters on SLNs and NLCs characteristics are discussed.
Collapse
Affiliation(s)
- Van-An Duong
- Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
21
|
Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA, Peñuñuri-Miranda O, Zavala-Rivera P, Guerrero-Germán P, Lucero-Acuña A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters. RSC Adv 2020; 10:4218-4231. [PMID: 35495261 PMCID: PMC9049000 DOI: 10.1039/c9ra10857b] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
This study presents the influence of the primary formulation parameters on the formation of poly-dl-lactic-co-glycolic nanoparticles by the emulsification-solvent evaporation, and the nanoprecipitation techniques. In the emulsification-solvent evaporation technique, the polymer and tensoactive concentrations, the organic solvent fraction, and the sonication amplitude effects were analyzed. Similarly, in the nanoprecipitation technique the polymer and tensoactive concentrations, the organic solvent fraction and the injection speed were varied. Additionally, the agitation speed during solvent evaporation, the centrifugation speeds and the use of cryoprotectants in the freeze-drying process were analyzed. Nanoparticles were characterized by dynamic light scattering, laser Doppler electrophoresis, and scanning electron microscopy, and the results were evaluated by statistical analysis. Nanoparticle physicochemical characteristics can be adjusted by varying the formulation parameters to obtain specific sizes and stable nanoparticles. Also, by adjusting these parameters, the nanoparticle preparation processes have the potential to be tuned to yield nanoparticles with specific characteristics while maintaining reproducible results.
Collapse
Affiliation(s)
| | | | | | - Omar Peñuñuri-Miranda
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Paul Zavala-Rivera
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Patricia Guerrero-Germán
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Armando Lucero-Acuña
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| |
Collapse
|
22
|
Lenhart V, Quodbach J, Kleinebudde P. Fibrillated Cellulose via High Pressure Homogenization: Analysis and Application for Orodispersible Films. AAPS PharmSciTech 2019; 21:33. [PMID: 31863201 DOI: 10.1208/s12249-019-1593-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022] Open
Abstract
Powdered cellulose (PC) and microcrystalline cellulose (MCC) are common excipients in pharmaceuticals. Recent investigations imply that particle size is the most critical parameter for the different performance in many processes. High-pressure homogenization (HPH) was used to reduce fiber size of both grades. The effect of the homogenization parameters on suspension viscosity, particle size, and mechanical properties of casted films was investigated. PC suspensions showed higher apparent viscosities and yield stresses under the same process conditions than MCC. SLS reduced shear viscosity and thixotropic behavior of both cellulose grades probably due to increased electrostatic repulsion. Homogenization reduced cellulose particle sizes, but re-agglomeration was too strong to analyze the particle size correctly. MCC films showed a tensile strength of up to 16.0 MPa and PC films up to 4.1 MPa. PC films disintegrated within 30 s whereas MCC films did not. Mixtures of MCC and PC led to more stable films than PC alone, but these films did not disintegrate anymore. Diclofenac sodium was incorporated in therapeutic dose with drug load of 47% into orodispersible PC films. The content uniformity of these films fulfilled requirements of Ph.Eur and the films disintegrated in 12 s. In summary, PC and MCC showed comparable results after HPH and most differences could be explained by the smaller particle size of MCC suspensions. These results confirm the hypothesis that mainly the fiber size during processing is responsible for the existing differences of MCC and PC in pharmaceutical process, e.g., wet-extrusion/spheronization.
Collapse
|
23
|
Ahmadi T, Bahar S, Mohammadi Ziarani G, Badiei A. Formation of functionalized silica-based nanoparticles and their application for extraction and determination of Hg (II) ion in fish samples. Food Chem 2019; 300:125180. [PMID: 31325753 DOI: 10.1016/j.foodchem.2019.125180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/30/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
An isonicotinic acid hydrazide (INAH) chemically modified fumed silica, as a novel adsorbent, was designed for the preconcentration and determination of Hg (II) ions in fish samples via the solid phase extraction followed by the hydride generation atomic absorption spectrometry (HG-AAS). In this work, the efficiency of the synthesized adsorbent was investigated to determine its ability for the extraction of the Hg (II) ions from the aqueous solutions. The extraction efficiency was investigated by optimizing of different experimental conditions, such as pH, sample volume, flow rate, adsorbent dosage, and eluent type. Under the optimal conditions, a linear calibration curve for the solid phase extraction method was obtained in the range of between 0.12 and 16.5 μg L-1. The obtained detection limit and preconcentration factor were 0.018 μg L-1 and 25, respectively (RSD > 3%). The proposed optimized method was successfully applied to fish samples.
Collapse
Affiliation(s)
- Tahereh Ahmadi
- Department of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran
| | - Shahriyar Bahar
- Department of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran.
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|
24
|
Uhl P, Grundmann C, Sauter M, Storck P, Tursch A, Özbek S, Leotta K, Roth R, Witzigmann D, Kulkarni JA, Fidelj V, Kleist C, Cullis PR, Fricker G, Mier W. Coating of PLA-nanoparticles with cyclic, arginine-rich cell penetrating peptides enables oral delivery of liraglutide. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102132. [PMID: 31783138 DOI: 10.1016/j.nano.2019.102132] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/20/2019] [Accepted: 11/17/2019] [Indexed: 12/31/2022]
Abstract
Until today, the oral delivery of peptide drugs is hampered due to their instability in the gastrointestinal tract and low mucosal penetration. To overcome these hurdles, PLA (polylactide acid)-nanoparticles were coated with a cyclic, polyarginine-rich, cell penetrating peptide (cyclic R9-CPP). These surface-modified nanoparticles showed a size and polydispersity index comparable to standard PLA-nanoparticles. The zeta potential showed a significant increase indicating successful CPP-coupling to the surface of the nanoparticles. Cryo-EM micrographs confirmed the appropriate size and morphology of the modified nanoparticles. A high encapsulation efficiency of liraglutide could be achieved. In vitro tests using Caco-2 cells showed high viability indicating the tolerability of this novel formulation. A strongly enhanced mucosal binding and penetration was demonstrated by a Caco-2 binding and uptake assay. In Wistar rats, the novel nanoparticles showed a substantial, 4.5-fold increase in the oral bioavailability of liraglutide revealing great potential for the oral delivery of peptide drugs.
Collapse
Affiliation(s)
- P Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - C Grundmann
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - M Sauter
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany; Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - P Storck
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - A Tursch
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg, Germany
| | - S Özbek
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg, Germany
| | - K Leotta
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - R Roth
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - D Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada
| | - J A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada
| | - V Fidelj
- Institute of Pharmacy and Molecular Biotechnology, Department of Pharmaceutical Technology and Biopharmacy, Ruprecht-Karls University, Heidelberg, Germany
| | - C Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - P R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada
| | - G Fricker
- Institute of Pharmacy and Molecular Biotechnology, Department of Pharmaceutical Technology and Biopharmacy, Ruprecht-Karls University, Heidelberg, Germany
| | - W Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
25
|
Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, Mattu C, Chiono V. MicroRNA delivery through nanoparticles. J Control Release 2019; 313:80-95. [PMID: 31622695 PMCID: PMC6900258 DOI: 10.1016/j.jconrel.2019.10.007] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are attracting a growing interest in the scientific community due to their central role in the etiology of major diseases. On the other hand, nanoparticle carriers offer unprecedented opportunities for cell specific controlled delivery of miRNAs for therapeutic purposes. This review critically discusses the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of cancer and neurodegenerative disorders and for tissue regeneration. A fresh perspective is presented on the design and characterization of nanocarriers to accelerate translation from basic research to clinical application of miRNA-nanoparticles. Main challenges in the engineering of miRNA-loaded nanoparticles are discussed, and key application examples are highlighted to underline their therapeutic potential for effective and personalized medicine.
Collapse
Affiliation(s)
- Sharon Wei Ling Lee
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy; Singapore-MIT Alliance for Research & Technology (SMART), BioSystems and Micromechanics (BioSyM), Singapore, Singapore(3); Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore(3); Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore, Singapore(3)
| | - Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Marco Campisi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA; Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan(3)
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore, Singapore(3); Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Roger D Kamm
- Singapore-MIT Alliance for Research & Technology (SMART), BioSystems and Micromechanics (BioSyM), Singapore, Singapore(3); Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
26
|
Vozza G, Khalid M, Byrne HJ, Ryan SM, Frias JM. Nutraceutical formulation, characterisation, and in-vitro evaluation of methylselenocysteine and selenocystine using food derived chitosan:zein nanoparticles. Food Res Int 2019; 120:295-304. [PMID: 31000242 DOI: 10.1016/j.foodres.2019.02.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/18/2022]
Abstract
Selenoamino acids (SeAAs) have been shown to possess antioxidant and anticancer properties. However, their bioaccessibility is low and they may be toxic above the recommended nutritional intake level, thus improved targeted oral delivery methods are desirable. In this work, the SeAAs, Methylselenocysteine (MSC) and selenocystine (SeCys2) were encapsulated into nanoparticles (NPs) using the mucoadhesive polymer chitosan (Cs), via ionotropic gelation with tripolyphosphate (TPP) and the NPs produced were then coated with zein (a maize derived prolamine rich protein). NPs with optimized physicochemical properties for oral delivery were obtained at a 6: 1 ratio of Cs:TPP, with a 1:0.75 mass ratio of Cs:zein coating (diameter ~260 nm, polydispersivity index ~0.2, zeta potential >30 mV). Scanning Electron Microscopy (SEM) analysis showed that spheroidal, well distributed particles were obtained. Encapsulation Efficiencies of 80.7% and 78.9% were achieved, respectively, for MSC and SeCys2 loaded NPs. Cytotoxicity studies of MSC loaded NPs showed no decrease in cellular viability in either Caco-2 (intestine) or HepG2 (liver) cells after 4 and 72 h exposures. For SeCys2 loaded NPs, although no cytotoxicity was observed in Caco-2 cells after 4 h, a significant reduction in cytotoxicity was observed, compared to pure SeCys2, across all test concentrations in HepG2 after 72 h exposure. Accelerated thermal stability testing of both loaded NPs indicated good stability under normal storage conditions. Lastly, after 6 h exposure to simulated gastrointestinal tract environments, the sustained release profile of the formulation showed that 62 ± 8% and 69 ± 4% of MSC and SeCys2, had been released from the NPs respectively.
Collapse
Affiliation(s)
- Giuliana Vozza
- School of Food Science and Environmental Health, Technological University Dublin, Marlborough Street, Dublin 1, Ireland; FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Minna Khalid
- School of Food Science and Environmental Health, Technological University Dublin, Marlborough Street, Dublin 1, Ireland; FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Sinéad M Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 7, Ireland
| | - Jesus M Frias
- Environmental Science and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, Ireland.
| |
Collapse
|
27
|
Chuang CC, Cheng CC, Chen PY, Lo C, Chen YN, Shih MH, Chang CW. Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. Int J Nanomedicine 2018; 14:181-193. [PMID: 30613145 PMCID: PMC6306055 DOI: 10.2147/ijn.s177851] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE A biocompatible nanocomplex system co-encapsulated with gold nanorods (AuNRs) and doxorubicin (DOX) was investigated for its potentials on the combined photothermal- and chemotherapy. MATERIALS AND METHODS Hydrophobic AuNRs were synthesized by the hexadecyltrimethyl-ammonium bromide (CTAB)-mediated seed growth method, and then, they received two-step surface modifications of polyethylene glycol (PEG) and dodecane. The AuNR/DOX/poly(lactic-co-glycolic acid) (PLGA) nanocomplexes were prepared by emulsifying DOX, AuNR, and PLGA into aqueous polyvinyl alcohol solution by sonication. Human serum albumin (HSA) was used to coat the nanocomplexes to afford HSA/AuNR/DOX-PLGA (HADP). Size and surface potential of the HADP nanocomplexes were determined by using a Zetasizer. Cytotoxicity and cellular uptake of the HADP were analyzed by using MTT assay and flow cytometry, respectively. In vitro anticancer effects of the HADP were studied on various cancer cell lines. To assess the therapeutic efficacy, CT26 tumor-bearing mice were intravenously administered with HADP nanocomplexes and laser treatments, followed by monitoring of the tumor growth and body weight. RESULTS Size and surface potential of the HADP nanocomplexes were 245.8 nm and -8.6 mV, respectively. Strong photothermal effects were verified on the AuNR-loaded PLGA nanoparticles (NPs) in vitro. Rapid and repeated drug release from the HADP nanocomplexes was successfully achieved by near-infrared (NIR) irradiations. HSA significantly promoted cellular uptake of the HADP nanocomplexes to murine colon cancer cells as demonstrated by cell imaging and flow cytometric studies. By combining photothermal and chemotherapy, the HADP nanocomplexes exhibited strong synergistic anticancer effects in vitro and in vivo. CONCLUSION An NIR-triggered drug release system by encapsulating hydrophobic AuNR and DOX inside the PLGA NPs has been successfully prepared in this study. The HADP NPs show promising combined photothermal- and chemotherapeutic effects without inducing undesired side effects on a murine colon cancer animal model.
Collapse
Affiliation(s)
- Chun-Chiao Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China,
| | - Chih-Chi Cheng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China,
| | - Pei-Ying Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China,
| | - Chieh Lo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China,
| | - Yi-Ning Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China,
| | - Min-Hsiung Shih
- Research Center of Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan, Republic of China
- Department of Photonics, National Chiao Tung University (NCTU), Hsinchu, 30010, Taiwan, Republic of China
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China,
| |
Collapse
|
28
|
Chittasupho C, Posritong P, Ariyawong P. Stability, Cytotoxicity, and Retinal Pigment Epithelial Cell Binding of Hyaluronic Acid-Coated PLGA Nanoparticles Encapsulating Lutein. AAPS PharmSciTech 2018; 20:4. [PMID: 30560323 DOI: 10.1208/s12249-018-1256-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
The application of lutein was limited due to water insolubility and susceptible to heat and light degradation. In this study, hyaluronic acid (HA)-coated PLGA nanoparticles encapsulating lutein were fabricated by a solvent displacement method to improve the physicochemical properties and the stability of lutein. A biphasic release profile of lutein was observed, following zero-order release kinetics. The physical stability of lutein stored at 4°C, 30°C, and 40°C for 30 days was enhanced when lutein was encapsulated in the nanoparticles. The degradation of lutein in PLGA NPs coated with HA was fitted to a second-order kinetic model. The rate constant increased with increasing storage temperature. The activation energy of lutein-NPs was 63.26 kJ/mol. The half-lives of lutein in PLGA-NPs were about 49, 4, and 2 days at a storage temperature of 4°C, 30°C, and 40°C, respectively. The results suggested that lutein-NPs should be stored at 4°C to prevent physical and chemical degradation. The photodegradation of lutein in NPs followed a second-order kinetic model. The rate constant was 0.0155 mg-1 ml day-1. Cell viability study revealed that HA-coated PLGA nanoparticles encapsulating lutein did not show toxicity against retinal pigment epithelial cells (ARPE-19). The NPs bound ARPE-19 cells in a time- and a dose-dependent manner. The binding efficiency of lutein-NPs decreased at higher concentrations, suggesting that the NPs might reach binding saturation capacity. In conclusion, HA-coated PLGA nanoparticles could be used to deliver lutein and improved physicochemical property of lutein. Graphical abstract ᅟ.
Collapse
|
29
|
Ganesan P, Karthivashan G, Park SY, Kim J, Choi DK. Microfluidization trends in the development of nanodelivery systems and applications in chronic disease treatments. Int J Nanomedicine 2018; 13:6109-6121. [PMID: 30349240 PMCID: PMC6188155 DOI: 10.2147/ijn.s178077] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plant bioactive compounds are known for their extensive health benefits and therefore have been used for generations in traditional and modern medicine to improve the health of humans. Processing and storage instabilities of the plant bioactive compounds, however, limit their bioavailability and bioaccessibility and thus lead researchers in search of novel encapsulation systems with enhanced stability, bioavailability, and bioaccessibility of encapsulated plant bioactive compounds. Recently many varieties of encapsulation methods have been used; among them, microfluidization has emerged as a novel method used for the development of delivery systems including solid lipid nanocarriers, nanoemulsions, liposomes, and so on with enhanced stability and bioavailability of encapsulated plant bioactive compounds. Therefore, the nanodelivery systems developed using microfluidization techniques have received much attention from the medical industry for their ability to facilitate controlled delivery with enhanced health benefits in the treatment of various chronic diseases. Many researchers have focused on plant bioactive compound-based delivery systems using microfluidization to enhance the bioavailability and bioaccessibility of encapsulated bioactive compounds in the treatment of various chronic diseases. This review focuses on various nanodelivery systems developed using microfluidization techniques and applications in various chronic disease treatments.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea,
| | - Govindarajan Karthivashan
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Shin Young Park
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Joonsoo Kim
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| | - Dong-Kug Choi
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea,
- Department of Applied Life Sciences, Graduate School of Konkuk University, Research Institute of Inflammatory Diseases, Chungju 27478, Republic of Korea,
| |
Collapse
|
30
|
Lysozyme and DNase I loaded poly (D, L lactide-co-caprolactone) nanocapsules as an oral delivery system. Sci Rep 2018; 8:13158. [PMID: 30177767 PMCID: PMC6120872 DOI: 10.1038/s41598-018-31303-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
Clinical applications of oral protein therapy for the treatment of various chronic diseases are limited due to the harsh conditions encounter the proteins during their journey in the Gastrointestinal Tract. Although nanotechnology forms a platform for the development of oral protein formulations, obtaining physiochemically stable formulations able to deliver active proteins is still challenging because of harsh preparation conditions. This study proposes the use of poly (D, L-lactic-co-caprolactone)-based polymeric nanocapsules at different monomers' ratios for protein loading and oral delivery. All formulations had a spherical shape and nano-scale size, and lysozyme encapsulation efficiency reached 80% and significantly affected by monomers' ratio. Trehalose and physical state of lysozyme had a significant effect on its biological activity (P < 0.05). Less than 10% of the protein was released in simulated gastric fluid, and 73% was the highest recorded accumulative release percentage in simulated intestinal fluid (SIF) over 24 h. The higher caprolactone content, the higher encapsulation efficiency (EE) and the lower SIF release recorded. Therefore, the formulation factors were optimised and the obtained system was PEGylated wisely to attain EE 80%, 81% SIF release within 24 h, and 98% lysozyme biological activity. The optimum formulation was prepared to deliver DNase, and similar attributes were obtained.
Collapse
|
31
|
Amini Y, Amel Jamehdar S, Sadri K, Zare S, Musavi D, Tafaghodi M. Different methods to determine the encapsulation efficiency of protein in PLGA nanoparticles. Biomed Mater Eng 2018; 28:613-620. [PMID: 29171972 DOI: 10.3233/bme-171705] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Effective encapsulation of drugs into the delivery systems could increase the efficiency of nanoparticles in prevention and treatment of diseases. OBJECTIVE The purpose of this study was to compare the different methods for determination of encapsulation efficiency of a model protein in the PLGA nanoparticles. METHODS The various direct methods include dichloromethane, acetonitrile, modified acetonitrile and NaOH based extraction and radioactive methods were used to directly calculate the encapsulation efficiency of the loaded protein in the PLGA nanoparticles. Furthermore, indirect methods include BCA, Fluorescent and radioactive methods were compared. RESULTS The encapsulation efficiencies determined by indirect methods include dichloromethane, acetonitrile, modified acetonitrile, NaOH based extraction and radioactive methods were 12.62% ± 1.97, 17.43% ± 2.51, 64.69% ± 4.31, 86.36% ± 2.25 and 90.15% ± 1.78, respectively. Moreover, the encapsulation efficiencies determined by indirect methods include BCA, fluorescent and radioactive methods were 81.46% ± 1.92, 88.23% ± 1.15 and 89.6% ± 1.9, respectively. CONCLUSIONS Among the results obtained by indirect methods, radioactive and fluorescent methods showed more reliable. Moreover, NaOH and radioactive methods were the most reliable methods among the direct methods.
Collapse
Affiliation(s)
- Yousef Amini
- Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Science, Zahedan, Iran.,Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Keyvan Sadri
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirwan Zare
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Musavi
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Bahari Javan N, Jafary Omid N, Moosavi Hasab N, Rezaie Shirmard L, Rafiee-Tehrani M, Dorkoosh F. Preparation, statistical optimization and in vitro evaluation of pramipexole prolonged delivery system based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Sánchez-López E, Ettcheto M, Egea MA, Espina M, Cano A, Calpena AC, Camins A, Carmona N, Silva AM, Souto EB, García ML. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer's disease: in vitro and in vivo characterization. J Nanobiotechnology 2018; 16:32. [PMID: 29587747 PMCID: PMC5870370 DOI: 10.1186/s12951-018-0356-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
Background Memantine, drug approved for moderate to severe Alzheimer’s disease, has not shown to be fully effective. In order to solve this issue, polylactic-co-glycolic (PLGA) nanoparticles could be a suitable solution to increase drug’s action on the target site as well as decrease adverse effects. For these reason, Memantine was loaded in biodegradable PLGA nanoparticles, produced by double emulsion method and surface-coated with polyethylene glycol. MEM–PEG–PLGA nanoparticles (NPs) were aimed to target the blood–brain barrier (BBB) upon oral administration for the treatment of Alzheimer’s disease. Results The production parameters were optimized by design of experiments. MEM–PEG–PLGA NPs showed a mean particle size below 200 nm (152.6 ± 0.5 nm), monomodal size distribution (polydispersity index, PI < 0.1) and negative surface charge (− 22.4 mV). Physicochemical characterization of NPs confirmed that the crystalline drug was dispersed inside the PLGA matrix. MEM–PEG–PLGA NPs were found to be non-cytotoxic on brain cell lines (bEnd.3 and astrocytes). Memantine followed a slower release profile from the NPs against the free drug solution, allowing to reduce drug administration frequency in vivo. Nanoparticles were able to cross BBB both in vitro and in vivo. Behavioral tests carried out on transgenic APPswe/PS1dE9 mice demonstrated to enhance the benefit of decreasing memory impairment when using MEM–PEG–PLGA NPs in comparison to the free drug solution. Histological studies confirmed that MEM–PEG–PLGA NPs reduced β-amyloid plaques and the associated inflammation characteristic of Alzheimer’s disease. Conclusions Memantine NPs were suitable for Alzheimer’s disease and more effective than the free drug. Electronic supplementary material The online version of this article (10.1186/s12951-018-0356-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain. .,Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, Madrid, Spain.
| | - Miren Ettcheto
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, Madrid, Spain.,Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Maria Antonia Egea
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain.,Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, Madrid, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Antoni Camins
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, Madrid, Spain.,Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Nuria Carmona
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| | - Amélia M Silva
- Department of Biology and Environment, School of Life and Environmental Sciences (ECVA, UTAD), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal.,Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, CITAB-UTAD, 5001-801, Vila Real, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saúde Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
34
|
Ding Y, Kan J. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:4501-4509. [PMID: 29184257 PMCID: PMC5686031 DOI: 10.1007/s13197-017-2934-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/07/2017] [Accepted: 10/15/2017] [Indexed: 12/24/2022]
Abstract
Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X1), oil/water ratio (X2), and surfactant (X3) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.
Collapse
Affiliation(s)
- Yongbo Ding
- College of Food Science, Southwest University, Tiansheng Road 1, Chongqing, 400715 People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, 400715 People’s Republic of China
| | - Jianquan Kan
- College of Food Science, Southwest University, Tiansheng Road 1, Chongqing, 400715 People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
35
|
Vasanthan KS, Subramanian A, Krishnan UM, Sethuraman S. Development of Porous Hydrogel Scaffolds with Multiple Cues for Liver Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0034-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Mokhtar M, Gosselin P, Lacasse F, Hildgen P. Design of PEG-grafted-PLA nanoparticles as oral permeability enhancer for P-gp substrate drug model Famotidine. J Microencapsul 2017; 34:91-103. [PMID: 28151040 DOI: 10.1080/02652048.2017.1290155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bioavailability of oral drugs can be limited by an intestinal excretion process mediated by P-glycoprotein (P-gp). Polyethylene glycol (PEG) is a known P-gp inhibitor. Dispersion of Famotidine (a P-gp substrate) within PEGylated nanoparticles (NPs) was used to improve its oral bioavailability. In this work, we evaluated the potential impact of NPs prepared from a grafted copolymer of polylactic acid and PEG on P-gp function by studying in vitro permeability of Famotidine across Caco-2 cells. Copolymers of PEG grafted on polylactic acid (PLA) backbone (PLA-g-PEG) were synthesised with 1 mol% and 5 mol% PEG vs. lactic acid monomer using PEG 750 and 2000 Da. The polymers were used to prepare Famotidine-loaded NPs and tested in vitro on Caco-2 cells. Significant decrease in basolateral-to-apical transport of Famotidine was observed when Famotidine was encapsulated in NPs prepared from PLA-g-PEG5%. NPs prepared from PLA-g-PEG5% are promising to improve oral bioavailability of P-gp substrates.
Collapse
Affiliation(s)
- Mohamed Mokhtar
- a Faculty of Pharmacy , University of Montreal , Montreal , Quebec , Canada
| | - Patrick Gosselin
- b Corealis Pharma , Pharmaceutical R&D , Laval , Quebec , Canada
| | - François Lacasse
- a Faculty of Pharmacy , University of Montreal , Montreal , Quebec , Canada
| | - Patrice Hildgen
- c Faculty of Pharmacy , University of Montreal, Lab of Nanotech Pharmacy , Montreal , Quebec , Canada
| |
Collapse
|
37
|
Impact of the release rate of magnesium ions in multiple emulsions (water-in-oil-in-water) containing BSA on the resulting physical properties and microstructure of soy protein gel. Food Chem 2017; 220:452-459. [DOI: 10.1016/j.foodchem.2016.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022]
|
38
|
Haggag YA, Faheem AM, Tambuwala MM, Osman MA, El-Gizawy SA, O’Hagan B, Irwin N, McCarron PA. Effect of poly(ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Pharm Dev Technol 2017; 23:370-381. [DOI: 10.1080/10837450.2017.1295066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yusuf A. Haggag
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, UK
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Ahmed M. Faheem
- Department of Pharmacy, Health and Well-being, University of Sunderland, Sunderland, UK
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, UK
| | - Mohamed A. Osman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Sanaa A. El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Barry O’Hagan
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, UK
| | - Nigel Irwin
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, UK
| | - Paul A. McCarron
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, UK
| |
Collapse
|
39
|
Haggag YA, Matchett KB, Dakir EH, Buchanan P, Osman MA, Elgizawy SA, El-Tanani M, Faheem AM, McCarron PA. Nano-encapsulation of a novel anti-Ran-GTPase peptide for blockade of regulator of chromosome condensation 1 (RCC1) function in MDA-MB-231 breast cancer cells. Int J Pharm 2017; 521:40-53. [PMID: 28163220 DOI: 10.1016/j.ijpharm.2017.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/07/2023]
Abstract
Ran is a small ras-related GTPase and is highly expressed in aggressive breast carcinoma. Overexpression induces malignant transformation and drives metastatic growth. We have designed a novel series of anti-Ran-GTPase peptides, which prevents Ran hydrolysis and activation, and although they display effectiveness in silico, peptide activity is suboptimal in vitro due to reduced bioavailability and poor delivery. To overcome this drawback, we delivered an anti-Ran-GTPase peptide using encapsulation in PLGA-based nanoparticles (NP). Formulation variables within a double emulsion solvent evaporation technique were controlled to optimise physicochemical properties. NP were spherical and negatively charged with a mean diameter of 182-277nm. Peptide integrity and stability were maintained after encapsulation and release kinetics followed a sustained profile. We were interested in the relationship between cellular uptake and poly(ethylene glycol) (PEG) in the NP matrix, with results showing enhanced in vitro uptake with increasing PEG content. Peptide-loaded, pegylated (10% PEG)-PLGA NP induced significant cytotoxic and apoptotic effects in MDA-MB-231 breast cancer cells, with no evidence of similar effects in cells pulsed with free peptide. Western blot analysis showed that encapsulated peptide interfered with the proposed signal transduction pathway of the Ran gene. Our novel blockade peptide prevented Ran activation by blockage of regulator of chromosome condensation 1 (RCC1) following peptide release directly in the cytoplasm once endocytosis of the peptide-loaded nanoparticle has occurred. RCC1 blockage was effective only when a nanoparticulate delivery approach was adopted.
Collapse
Affiliation(s)
- Yusuf A Haggag
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK; Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Kyle B Matchett
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - El-Habib Dakir
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK; Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Paul Buchanan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Mohammed A Osman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Sanaa A Elgizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mohamed El-Tanani
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK; Institute of Cancer Therapeutics, University of Bradford, Bradford, UK; IDT (Imhotep Diagnostics and Therapeutics), Europa Tool House, Springbank, Industrial Estate, Dunmurry, Northern Ireland, UK
| | - Ahmed M Faheem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt; Sunderland Pharmacy School, Department of Pharmacy, Health and Well Being, University of Sunderland, Sunderland SR1 3SD, UK
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK.
| |
Collapse
|
40
|
Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1397-1407. [PMID: 27855494 DOI: 10.1080/21691401.2016.1243545] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In several ocular diseases, the vascular endothelial growth factor (VEGF) level has been found to be upregulated. Bevacizumab, an anti-VEGF drug, is the most commonly used off level drug for these conditions. Delivery of drug to the posterior site is desired for the effective management of these diseases. The present study was to develop and optimize the chitosan (CS)-coated poly(lactide-co-glycolic acid) (PLGA) nanoparticles (NPs) of bevacizumab for sustained and effective delivery to posterior ocular tissues. NPs were prepared by double emulsion solvent evaporation method and optimized for various variables (i.e., CS concentration, PLGA content, polyvinyl alcohol (PVA) concentration, and sonication time) by employing a 4-factor 3-level Box-Behnken statistical design. NPs were characterized for particle size, polydispersity index (PDI), entrapment efficiency (EE), and in vitro release. Transscleral flux was determined through goat sclera, and ocular tolerance assay was done by Hen's Egg Test chorioallantoic membrane method. The particle size and PDI of the optimized NPs were 222.28 ± 7.45 nm and 0.19 ± 0.08, respectively. The developed NPs showed an EE of 69.26 ± 1.31% with an extended release profile. The flux was significantly higher that is, 0.3204 ± 0.026 μg/cm2/h for the NPs compared to drug solution. Thus, CS-coated PLGA NPs can be potentially useful as ocular drug carriers to target retina.
Collapse
Affiliation(s)
- Jayamanti Pandit
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Yasmin Sultana
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Mohd Aqil
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard (Hamdard University) , New Delhi , India
| |
Collapse
|
41
|
Bahari Javan N, Rezaie Shirmard L, Jafary Omid N, Akbari Javar H, Rafiee Tehrani M, Abedin Dorkoosh F. Preparation, statistical optimisation andin vitrocharacterisation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (lactic-co-glycolic acid) blend nanoparticles for prolonged delivery of teriparatide. J Microencapsul 2016; 33:460-474. [DOI: 10.1080/02652048.2016.1208296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Int J Pharm 2015; 499:236-246. [PMID: 26746800 DOI: 10.1016/j.ijpharm.2015.12.063] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/23/2015] [Accepted: 12/26/2015] [Indexed: 01/02/2023]
Abstract
The aim of this study was to design a controlled release vehicle for insulin to preserve its stability and biological activity during fabrication and release. A modified, double emulsion, solvent evaporation, technique using homogenisation force optimised entrapment efficiency of insulin into biodegradable nanoparticles (NP) prepared from poly (DL-lactic-co-glycolic acid) (PLGA) and its PEGylated diblock copolymers. Formulation parameters (type of polymer and its concentration, stabiliser concentration and volume of internal aqueous phase) and physicochemical characteristics (size, zeta potential, encapsulation efficiency, in vitro release profiles and in vitro stability) were investigated. In vivo insulin sensitivity was tested by diet-induced type II diabetic mice. Bioactivity of insulin was studied using Swiss TO mice with streptozotocin-induced type I diabetic profile. Insulin-loaded NP were spherical and negatively charged with an average diameter of 200-400 nm. Insulin encapsulation efficiency increased significantly with increasing ratio of co-polymeric PEG. The internal aqueous phase volume had a significant impact on encapsulation efficiency, initial burst release and NP size. Optimised insulin NP formulated from 10% PEG-PLGA retained insulin integrity in vitro, insulin sensitivity in vivo and induced a sustained hypoglycaemic effect from 3h to 6 days in type I diabetic mice.
Collapse
|
43
|
Tabibiazar M, Hamishehkar H. Formulation of a Food Grade Water-In-Oil Nanoemulsion: Factors Affecting on Stability. PHARMACEUTICAL SCIENCES 2015. [DOI: 10.15171/ps.2015.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
44
|
Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015; 496:173-90. [DOI: 10.1016/j.ijpharm.2015.10.057] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
|
45
|
Loureiro A, Nogueira E, Azoia NG, Sárria MP, Abreu AS, Shimanovich U, Rollett A, Härmark J, Hebert H, Guebitz G, Bernardes GJ, Preto A, Gomes AC, Cavaco-Paulo A. Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. Colloids Surf B Biointerfaces 2015; 135:90-98. [DOI: 10.1016/j.colsurfb.2015.06.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/02/2015] [Accepted: 06/25/2015] [Indexed: 11/27/2022]
|
46
|
A Double Emulsion-Based, Plastic-Glass Hybrid Microfluidic Platform for Protein Crystallization. MICROMACHINES 2015. [DOI: 10.3390/mi6111446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Korang-Yeboah M, Gorantla Y, Paulos SA, Sharma P, Chaudhary J, Palaniappan R. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization. Int J Nanomedicine 2015; 10:4763-81. [PMID: 26251597 PMCID: PMC4524459 DOI: 10.2147/ijn.s75101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in the lysosomes with time.
Collapse
Affiliation(s)
- Maxwell Korang-Yeboah
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA, USA
| | - Yamini Gorantla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA, USA
| | - Simon A Paulos
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA, USA
| | - Pankaj Sharma
- Center for Cancer Research and Therapeutic Development (CCRTD), Clark Atlanta University, Atlanta, GA, USA
| | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutic Development (CCRTD), Clark Atlanta University, Atlanta, GA, USA
| | - Ravi Palaniappan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA, USA
| |
Collapse
|
48
|
Sirivisoot S, Harrison BS. Magnetically stimulated ciprofloxacin release from polymeric microspheres entrapping iron oxide nanoparticles. Int J Nanomedicine 2015; 10:4447-58. [PMID: 26185446 PMCID: PMC4501354 DOI: 10.2147/ijn.s82830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To extend the external control capability of drug release, iron oxide nanoparticles (NPs) encapsulated into polymeric microspheres were used as magnetic media to stimulate drug release using an alternating magnetic field. Chemically synthesized iron oxide NPs, maghemite or hematite, and the antibiotic ciprofloxacin were encapsulated together within polycaprolactone microspheres. The polycaprolactone microspheres entrapping ciprofloxacin and magnetic NPs could be triggered for immediate drug release by magnetic stimulation at a maximum value of 40%. Moreover, the microspheres were cytocompatible with fibroblasts in vitro with a cell viability percentage of more than 100% relative to a nontreated control after 24 hours of culture. Macrophage cell cultures showed no signs of increased inflammatory responses after in vitro incubation for 56 hours. Treatment of Staphylococcus aureus with the magnetic microspheres under an alternating (isolating) magnetic field increased bacterial inhibition further after 2 days and 5 days in a broth inhibition assay. The findings of the present study indicate that iron oxide NPs, maghemite and hematite, can be used as media for stimulation by an external magnetic energy to activate immediate drug release.
Collapse
Affiliation(s)
- Sirinrath Sirivisoot
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Benjamin S Harrison
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
49
|
Izadifar M, Kelly ME, Haddadi A, Chen X. Optimization of nanoparticles for cardiovascular tissue engineering. NANOTECHNOLOGY 2015; 26:235301. [PMID: 25987360 DOI: 10.1088/0957-4484/26/23/235301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nano-particulate delivery systems have increasingly been playing important roles in cardiovascular tissue engineering. Properties of nanoparticles (e.g. size, polydispersity, loading capacity, zeta potential, morphology) are essential to system functions. Notably, these characteristics are regulated by fabrication variables, but in a complicated manner. This raises a great need to optimize fabrication process variables to ensure the desired nanoparticle characteristics. This paper presents a comprehensive experimental study on this matter, along with a novel method, the so-called Geno-Neural approach, to analyze, predict and optimize fabrication variables for desired nanoparticle characteristics. Specifically, ovalbumin was used as a protein model of growth factors used in cardiovascular tissue regeneration, and six fabrication variables were examined with regard to their influence on the characteristics of nanoparticles made from high molecular weight poly(lactide-co-glycolide). The six-factor five-level central composite rotatable design was applied to the conduction of experiments, and based on the experimental results, a geno-neural model was developed to determine the optimum fabrication conditions. For desired particle sizes of 150, 200, 250 and 300 nm, respectively, the optimum conditions to achieve the low polydispersity index, higher negative zeta potential and higher loading capacity were identified based on the developed geno-neural model and then evaluated experimentally. The experimental results revealed that the polymer and the external aqueous phase concentrations and their interactions with other fabrication variables were the most significant variables to affect the size, polydispersity index, zeta potential, loading capacity and initial burst release of the nanoparticles, while the electron microscopy images of the nanoparticles showed their spherical geometries with no sign of large pores or cracks on their surfaces. The release study revealed that the onset of the third phase of release can be affected by the polymer concentration. Circular dichroism spectroscopy indicated that ovalbumin structural integrity is preserved during the encapsulation process. Findings from this study would greatly contribute to the design of high molecular weight poly(lactide-co-glycolide) nanoparticles for prolonged release patterns in cardiovascular engineering.
Collapse
Affiliation(s)
- Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada. Saskatchewan Cerebrovascular Centre, Royal University Hospital, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
50
|
Win KY, Teng CP, Ye E, Low M, Han MY. Evaluation of polymeric nanoparticle formulations by effective imaging and quantitation of cellular uptake for controlled delivery of doxorubicin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1197-204. [PMID: 25400129 DOI: 10.1002/smll.201402073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/30/2014] [Indexed: 05/25/2023]
Abstract
Various polymeric nanoparticles have been extensively engineered for applications in controlled drug release delivery in the last decades. Currently, there is a great demand to develop a strategy to qualitatively and quantitatively evaluate these polymeric nanoparticle formulations for producing innovative delivery systems. In this work, a screening platform is developed using luminescent quantum dots as drug model and imaging label to evaluate nanoparticle formulations incorporating either hydrophilic or hydrophobic drugs and imaging agents. It is validated that there is no influence of the incorporated entities on the cellular uptake profile. The use of quantum dots enables efficient detection and precise quantitation of cellular uptake of particles which occupy 25% of the cell volume. The correlation of quantum dot- and doxorubicin-incorporated nanoparticles is useful to develop an evaluation platform for nanoparticle formulations through imaging and quantitation. This platform is also used to observe the surface properties effect of other polymers such as chitosan and poly(ethylene) glycol on the cellular interaction and uptake. Moreover, quantum dots can be used to study microparticle theranostic delivery formulations by deliberately incorporating as visible ring surrounding the microparticles for their easy identifying and tracing in diagnostic and chemotherapeutic applications.
Collapse
Affiliation(s)
- Khin Yin Win
- Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology, and Research), 3 Research Link, Singapore, 117602
| | | | | | | | | |
Collapse
|