1
|
Sangkatip R, Jongwuttanaruk K, Sriseubsai W. Gelatin/Na 2Ti 3O 7 Nanocomposite Scaffolds: Mechanical Properties and Characterization for Tissue Engineering Applications. Polymers (Basel) 2023; 15:polym15102322. [PMID: 37242897 DOI: 10.3390/polym15102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Materials and manufacturing technologies are necessary for tissue engineering and developing temporary artificial extracellular matrices. In this study, scaffolds were fabricated from freshly synthesized titanate (Na2Ti3O7) and its precursor titanium dioxide and their properties were investigated. The scaffolds with improved properties were then mixed with gelatin to form a scaffold material using the freeze-drying technique. To determine the optimal composition for the compression test of the nanocomposite scaffold, a mixture design with three factors of gelatin, titanate, and deionized water was used. Then, the scaffold microstructures were examined by scanning electron microscopy (SEM) to determine the porosity of the nanocomposite scaffolds. The scaffolds were fabricated as a nanocomposite and determined their compressive modulus values. The results showed that the porosity of the gelatin/Na2Ti3O7 nanocomposite scaffolds ranged from 67% to 85%. When the mixing ratio was 100:0, the degree of swelling was 22.98%. The highest swelling ratio of 85.43% was obtained when the freeze-drying technique was applied to the mixture of gelatin and Na2Ti3O7 with a mixing ratio of 80:20. The specimens formed (gelatin:titanate = 80:20) exhibited a compressive modulus of 30.57 kPa. The sample with a composition of 15.10% gelatin, 2% Na2Ti3O7, and 82.9% DI water, processed by the mixture design technique, showed the highest yield of 30.57 kPa in the compression test.
Collapse
Affiliation(s)
- Rittichai Sangkatip
- Department of Industrial Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Kaona Jongwuttanaruk
- Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand
| | - Wipoo Sriseubsai
- Department of Industrial Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
2
|
Vanneste S, Mohan A, De Ridder D, To WT. The BDNF Val 66Met polymorphism regulates vulnerability to chronic stress and phantom perception. PROGRESS IN BRAIN RESEARCH 2021; 260:301-326. [PMID: 33637225 DOI: 10.1016/bs.pbr.2020.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Auditory phantom percepts, such as tinnitus, are a heterogeneous condition with great interindividual variations regarding both the percept itself and its concomitants. Tinnitus causes a considerable amount of distress, with as many as 25% of affected people reporting that it interferes with their daily lives. Although previous research gives an idea about the neural correlates of tinnitus-related distress, it cannot explain why some tinnitus patients develop distress and while others are not bothered by their tinnitus. BDNF Val66Met polymorphism (rs6265) is a known risk factor for affective disorders due to its common frequency and established functionality. To elucidate, we explore the neural activation pattern of tinnitus associated with the BDNF Val66Met polymorphism using electrophysiological data to assess activity and connectivity changes. A total of 110 participants (55 tinnitus and 55 matched control subjects) were included. In this study, we validate that the BDNF Val66Met polymorphism plays an important role in the susceptibility to the clinical manifestation of tinnitus-related distress. We demonstrate that Val/Met carriers have increased alpha power in the subgenual anterior cingulate cortex that correlates with distress levels. Furthermore, distress mediates the relationship between BDNF Val66Met polymorphism and tinnitus loudness. In other words, for Val/Met carriers, the subgenual anterior cingulate cortex sends distress-related information to the parahippocampus, which likely integrates the loudness and distress of the tinnitus percept.
Collapse
Affiliation(s)
- Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Global Brain Health Institute, Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.
| | - Anusha Mohan
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Wing Ting To
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
3
|
Harasztosi C, Wolter S, Gutsche K, Durán-Alonso MB, López-Hernández I, Pascual A, López-Barneo J, Knipper M, Rüttiger L, Schimmang T. Differential deletion of GDNF in the auditory system leads to altered sound responsiveness. J Neurosci Res 2020; 98:1764-1779. [PMID: 31663646 DOI: 10.1002/jnr.24544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 11/09/2022]
Abstract
Glial-derived neurotrophic factor (GDNF) has been proposed as a potent neurotrophic factor with the potential to cure neurodegenerative diseases. In the cochlea, GDNF has been detected in auditory neurons and sensory receptor cells and its expression is upregulated upon trauma. Moreover, the application of GDNF in different animal models of deafness has shown its capacity to prevent hearing loss and promoted its future use in therapeutic trials in humans. In the present study we have examined the endogenous requirement of GDNF during auditory development in mice. Using a lacZ knockin allele we have confirmed the expression of GDNF in the cochlea including its sensory regions during development. Global inactivation of GDNF throughout the hearing system using a Foxg1-Cre line causes perinatal lethality but reveals no apparent defects during formation of the cochlea. Using TrkC-Cre and Atoh1-Cre lines, we were able to generate viable mutants lacking GDNF in auditory neurons or both auditory neurons and sensory hair cells. These mutants show normal frequency-dependent auditory thresholds. However, mechanoelectrical response properties of outer hair cells (OHCs) in TrkC-Cre GDNF mutants are altered at low thresholds. Furthermore, auditory brainstem wave analysis shows an abnormal increase of wave I. On the other hand, Atoh1-Cre GDNF mutants show normal OHC function but their auditory brainstem wave pattern is reduced at the levels of wave I, III and IV. These results show that GDNF expression during the development is required to maintain functional hearing at different levels of the auditory system.
Collapse
Affiliation(s)
- Csaba Harasztosi
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Tübingen, Germany
| | - Steffen Wolter
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Tübingen, Germany
| | - Katja Gutsche
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - María Beatriz Durán-Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Iris López-Hernández
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/, Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/, Universidad de Sevilla, Seville, Spain
| | - Marlies Knipper
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Hearing Research Centre Tübingen (THRC), Molecular Physiology of Hearing, ENT Clinic, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| |
Collapse
|
4
|
Repeated Moderate Noise Exposure in the Rat--an Early Adulthood Noise Exposure Model. J Assoc Res Otolaryngol 2015; 16:763-72. [PMID: 26162417 PMCID: PMC4636596 DOI: 10.1007/s10162-015-0537-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/26/2015] [Indexed: 01/12/2023] Open
Abstract
In this study, we investigated the effects of varying intensity levels of repeated moderate noise exposures on hearing. The aim was to define an appropriate intensity level that could be repeated several times without giving rise to a permanent hearing loss, and thus establish a model for early adulthood moderate noise exposure in rats. Female Sprague-Dawley rats were exposed to broadband noise for 90 min, with a 50 % duty cycle at levels of 101, 104, 107, or 110 dB sound pressure level (SPL), and compared to a control group of non-exposed animals. Exposure was repeated every 6 weeks for a maximum of six repetitions or until a permanent hearing loss was observed. Hearing was assessed by the auditory brainstem response (ABR). Rats exposed to the higher intensities of 107 and 110 dB SPL showed permanent threshold shifts following the first exposure, while rats exposed to 101 and 104 dB SPL could be exposed at least six times without a sustained change in hearing thresholds. ABR amplitudes decreased over time for all groups, including the non-exposed control group, while the latencies were unaffected. A possible change in noise susceptibility following the repeated moderate noise exposures was tested by subjecting the animals to high-intensity noise exposure of 110 dB for 4 h. Rats previously exposed repeatedly to 104 dB SPL were slightly more resistant to high-intensity noise exposure than non-exposed rats or rats exposed to 101 dB SPL. Repeated moderate exposure to 104 dB SPL broadband noise is a viable model for early adulthood noise exposure in rats and may be useful for the study of noise exposure on age-related hearing loss.
Collapse
|
5
|
Immunohistochemical localization of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in the superior olivary complex of mice after radiofrequency exposure. Neurosci Lett 2014; 564:78-82. [DOI: 10.1016/j.neulet.2014.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 11/22/2022]
|
6
|
Ramekers D, Versnel H, Grolman W, Klis SF. Neurotrophins and their role in the cochlea. Hear Res 2012; 288:19-33. [DOI: 10.1016/j.heares.2012.03.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/10/2012] [Accepted: 03/05/2012] [Indexed: 12/16/2022]
|
7
|
Abstract
Artemin and its receptors are upregulated in the auditory nerve of deafened rats as a possible intrinsic protective mechanism against ototoxicity-related apoptosis. Consequently, we examined the effect of artemin on spiral ganglion neurons in vitro and in vivo. Spiral ganglion neurons were isolated from neonatal rats and cultured in serum-free medium supplemented with artemin and/or brain-derived neurotrophic factor (BDNF). In vitro, the survival rate of spiral ganglion neurons cultivated with artemin or BDNF was significantly improved compared with negative controls. In addition, artemin was delivered to the inner ear of deafened guinea pigs for 28 days. In-vivo artemin was as effective as BDNF in spiral ganglion neuron protection. Therefore, artemin promotes the survival of spiral ganglion neurons in vitro and in vivo.
Collapse
|
8
|
Drug carrier systems based on collagen–alginate composite structures for improving the performance of GDNF-secreting HEK293 cells. Biomaterials 2009; 30:1214-21. [DOI: 10.1016/j.biomaterials.2008.11.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/17/2008] [Indexed: 11/20/2022]
|
9
|
Lang H, Schulte BA, Goddard JC, Hedrick M, Schulte JB, Wei L, Schmiedt RA. Transplantation of mouse embryonic stem cells into the cochlea of an auditory-neuropathy animal model: effects of timing after injury. J Assoc Res Otolaryngol 2008; 9:225-40. [PMID: 18449604 DOI: 10.1007/s10162-008-0119-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 03/06/2008] [Indexed: 12/18/2022] Open
Abstract
Application of ouabain to the round window membrane of the gerbil selectively induces the death of most spiral ganglion neurons and thus provides an excellent model for investigating the survival and differentiation of embryonic stem cells (ESCs) introduced into the inner ear. In this study, mouse ESCs were pretreated with a neural-induction protocol and transplanted into Rosenthal's canal (RC), perilymph, or endolymph of Mongolian gerbils either 1-3 days (early post-injury transplant group) or 7 days or longer (late post-injury transplant group) after ouabain injury. Overall, ESC survival in RC and perilymphatic spaces was significantly greater in the early post-injury microenvironment as compared to the later post-injury condition. Viable clusters of ESCs within RC and perilymphatic spaces appeared to be associated with neovascularization in the early post-injury group. A small number of ESCs transplanted within RC stained for mature neuronal or glial cell markers. ESCs introduced into perilymph survived in several locations, but most differentiated into glia-like cells. ESCs transplanted into endolymph survived poorly if at all. These experiments demonstrate that there is an optimal time window for engraftment and survival of ESCs that occurs in the early post-injury period.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, P.O. Box 250908, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Liu Y, Okada T, Shimazaki K, Sheykholeslami K, Nomoto T, Muramatsu SI, Mizukami H, Kume A, Xiao S, Ichimura K, Ozawa K. Protection against aminoglycoside-induced ototoxicity by regulated AAV vector-mediated GDNF gene transfer into the cochlea. Mol Ther 2008; 16:474-480. [PMID: 18180779 DOI: 10.1038/sj.mt.6300379] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Accepted: 11/15/2007] [Indexed: 01/15/2023] Open
Abstract
Since standard aminoglycoside treatment progressively causes hearing disturbance with hair cell degeneration, systemic use of the drugs is limited. Adeno-associated virus (AAV)-based vectors have been of great interest because they mediate stable transgene expression in a variety of postmitotic cells with minimal toxicity. In this study, we investigated the effects of regulated AAV1-mediated glial cell line-derived neurotrophic factor (GDNF) expression in the cochlea on aminoglycoside-induced damage. AAV1-based vectors encoding GDNF or vectors encoding GDNF with an rtTA2s-S2 Tet-on regulation system were directly microinjected into the rat cochleae through the round window at 5 x 10(10) genome copies/body. Seven days after the virus injection, a dose of 333 mg/kg of kanamycin was subcutaneously given twice daily for 12 consecutive days. GDNF expression in the cochlea was confirmed and successfully modulated by the Tet-on system. Monitoring of the auditory brain stem response revealed an improvement of cochlear function after GDNF transduction over the frequencies tested. Damaged spiral ganglion cells and hair cells were significantly reduced by GDNF expression. Our results suggest that AAV1-mediated expression of GDNF using a regulated expression system in the cochlea is a promising strategy to protect the cochlea from aminoglycoside-induced damage.
Collapse
Affiliation(s)
- Yuhe Liu
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yoshida T, Hakuba N, Morizane I, Fujita K, Cao F, Zhu P, Uchida N, Kameda K, Sakanaka M, Gyo K, Hata R. Hematopoietic stem cells prevent hair cell death after transient cochlear ischemia through paracrine effects. Neuroscience 2007; 145:923-30. [PMID: 17320298 DOI: 10.1016/j.neuroscience.2006.12.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Revised: 12/21/2006] [Accepted: 12/23/2006] [Indexed: 01/01/2023]
Abstract
Transplantation of hematopoietic stem cells (HSCs) is regarded to be a potential approach for promoting repair of damaged organs. Here, we investigated the influence of hematopoietic stem cells on progressive hair cell degeneration after transient cochlear ischemia in gerbils. Transient cochlear ischemia was produced by extracranial occlusion of the bilateral vertebral arteries just before their entry into the transverse foramen of the cervical vertebra. Intrascalar injection of HSCs prevented ischemia-induced hair cell degeneration and ameliorated hearing impairment. We also showed that the protein level of glial cell line-derived neurotrophic factor (GDNF) in the organ of Corti was upregulated after cochlear ischemia and that treatment with HSCs augmented this ischemia-induced upregulation of GDNF. A tracking study revealed that HSCs injected into the cochlea were retained in the perilymphatic space of the cochlea, although they neither transdifferentiated into cochlear cell types nor fused with the injured hair cells after ischemia, suggesting that HSCs had therapeutic potential possibly through paracrine effects. Thus, we propose HSCs as a potential new therapeutic strategy for hearing loss.
Collapse
Affiliation(s)
- T Yoshida
- Department of Otolaryngology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shibata SB, Osumi Y, Yagi M, Kanda S, Kawamoto K, Kuriyama H, Nishiyama T, Yamashita T. Administration of amitriptyline attenuates noise-induced hearing loss via glial cell line-derived neurotrophic factor (GDNF) induction. Brain Res 2007; 1144:74-81. [PMID: 17331482 DOI: 10.1016/j.brainres.2007.01.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 12/20/2022]
Abstract
Antidepressant treatments have been described to induce neurotrophic factors (NTFs) and reverse the cell loss observed in rodent stress models. Amitriptyline (AT), a tricyclic antidepressant agent, has been reported in recent studies to induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. GDNF has shown protection against acoustic trauma in previous studies. Therefore, we investigated whether AT could induce GDNF synthesis in the cochlea and attenuate cochlea damage against acoustic trauma. We used Hartley guinea pigs and injected AT (30 mg/kg) or saline into the peritoneum. Subjects were exposed to 117 dB SPL octave band noise centered at 4 kHz for 24 h. Noise-induced hearing loss (NIHL) was assessed with auditory brain stem response (ABR) at 4, 8 and 16 kHz measured prior to the injection, 3 days and 7 days after noise exposure. For histological assessment, we observed the sensory epithelium using a surface preparation technique and assessed the quantitative hair cell (HC) damage. We evaluated GDNF synthesis with or without intense noise exposure at 3, 12 and 24 h after the administration of AT in the cochlea using Western blot analysis. GDNF expression was shown 3 h and 12 h after the injection without noise, whereas with noise the GDNF expression lasted for 24 h. The AT-administrated group showed significantly reduced ABR threshold shift and less HC damage than the saline-administrated group. These findings suggest that the administration of AT-induced GDNF levels in the cochlea and attenuated cochlea damage from NIHL.
Collapse
MESH Headings
- Amitriptyline/administration & dosage
- Analgesics, Non-Narcotic/administration & dosage
- Animals
- Auditory Threshold/drug effects
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Gene Expression Regulation/radiation effects
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Guinea Pigs
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/physiology
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
Collapse
Affiliation(s)
- Seiji Bruce Shibata
- Department of Otolaryngology, Kansai Medical University Takii Hospital, 10-15 Fumizonocho Moriguchi-shi, Osaka 570-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wissel K, Wefstaedt P, Rieger H, Miller JM, Lenarz T, Stöver T. Upregulation of glial cell line-derived neurotrophic factor and artemin mRNA in the auditory nerve of deafened rats. Neuroreport 2006; 17:875-8. [PMID: 16738479 DOI: 10.1097/01.wnr.0000221836.26093.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nerve growth factors play key roles in spiral ganglion cells survival and excitability. Our aim was to determine gene expression patterns of glial cell line-derived neurotrophic factor family (GDNF) members and their receptors in the auditory nerve and inferior colliculus of deafened rats. The gene expression of GDNF, persephin, artemin and neurturin, and their receptors GFRalpha1, GFRalpha2, GFRalpha3 and Ret, was determined by semiquantitative reverse transcriptase-polymerase chain reaction using GAPDH expression as an internal standard. Following deafness, no significant changes in expression of GDNF family genes were found in inferior colliculus. In contrast, artemin, GDNF, GFRalpha1-3 and Ret RNA expression were strongly upregulated in the auditory nerve following deafness, indicating their importance in protecting the auditory nerve against cell damage.
Collapse
Affiliation(s)
- Kirsten Wissel
- Department of Otolaryngology, Medical University of Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Stankovic K, Rio C, Xia A, Sugawara M, Adams JC, Liberman MC, Corfas G. Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci 2005; 24:8651-61. [PMID: 15470130 PMCID: PMC6729966 DOI: 10.1523/jneurosci.0733-04.2004] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Degeneration of cochlear sensory neurons is an important cause of hearing loss, but the mechanisms that maintain the survival of adult cochlear sensory neurons are not clearly defined. We now provide evidence implicating the neuregulin (NRG)-erbB receptor signaling pathway in this process. We found that NRG1 is expressed by spiral ganglion neurons (SGNs), whereas erbB2 and erbB3 are expressed by supporting cells of the organ of Corti, suggesting that these molecules mediate interactions between these cells. Transgenic mice in which erbB signaling in adult supporting cells is disrupted by expression of a dominant-negative erbB receptor show severe hearing loss and 80% postnatal loss of type-I SGNs without concomitant loss of the sensory cells that they contact. Quantitative RT-PCR analysis of neurotrophic factor expression shows a specific downregulation in expression of neurotrophin-3 (NT3) in the transgenic cochleas before the onset of neuronal death. Because NT3 is critical for survival of type I SGNs during development, these results suggest that it plays similar roles in the adult. Together, the data indicate that adult cochlear supporting cells provide critical trophic support to the neurons, that survival of postnatal cochlear sensory neurons depends on reciprocal interactions between neurons and supporting cells, and that these interactions are mediated by NRG and neurotrophins.
Collapse
|
15
|
Okamoto Y, Hoya N, Kamiya K, Fujii M, Ogawa K, Matsunaga T. Permanent threshold shift caused by acute cochlear mitochondrial dysfunction is primarily mediated by degeneration of the lateral wall of the cochlea. Audiol Neurootol 2005; 10:220-33. [PMID: 15809501 DOI: 10.1159/000084843] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 12/03/2004] [Indexed: 01/23/2023] Open
Abstract
Mitochondrial dysfunction in the cochlea is thought to be an important cause of sensorineural hearing loss. Recently, we have established a novel rat model with acute hearing impairment caused by exposure to the mitochondrial toxin 3-nitropropionic acid (3-NP) to analyze the mechanism of cochlear mitochondrial dysfunction. Both permanent and temporary threshold shifts were observed in this model depending on the amount of 3-NP used to induce hearing impairment. In this study, we demonstrate cochlear morphological changes in the permanent threshold shift model. Marked degeneration was detected in type 2 fibrocytes in the spiral prominence, type 4 fibrocytes in the spiral ligament, marginal cells and intermediate cells in the stria vascularis 3 h after 3-NP administration; these changes were progressive for at least 14 days. Less prominent degeneration was detected in type 1 and type 3 fibrocytes in the spiral ligament. These results indicate that permanent threshold shift caused by acute cochlear mitochondrial dysfunction is primarily mediated by cellular degeneration in the lateral wall of the cochlea, and suggest that therapy of cochlear hearing loss due to acute energy failure may be achieved through protection and regeneration of the cochlear lateral wall.
Collapse
Affiliation(s)
- Yasuhide Okamoto
- Laboratory of Auditory Disorders, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo 152-8902, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Seidman MD, Vivek P. Intratympanic treatment of hearing loss with novel and traditional agents. Otolaryngol Clin North Am 2005; 37:973-90. [PMID: 15474105 DOI: 10.1016/j.otc.2004.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
As knowledge of the cellular and molecular pathophysiology behind otopathologies expands, the possibility exists of preventing sensorineural hearing loss and perhaps reversing the loss. Cellular and molecular mechanisms seem to be similar in hearing loss secondary to aging, drug ototoxicity, noise, or other mechanisms. A final common pathway may hinge upon apoptosis. It is likely that anti-apoptotic factors will increasingly be realized as an important intervention strategy for sensorineural hearing loss. Furthermore, it is also possible that mounting a staged attack at the various regions in the pathway leading to cellular damage using a combination of several protective substances such as steroids, antioxidants, neurotrophic factors, anti-apoptotic compounds, and mitochondrial enhancers may prevent hearing loss and even reverse it in some situations. This article has presented some of the molecular and cellular mechanisms for hearing loss and potential ways of treating them. In theory, the delivery of these medications to the inner ear transtympanically would decrease systemic side effects and be more target specific. Because most of the studies conducted to date have been animal studies, randomized, double-blind, placebo-controlled clinical trials would be necessary before the use of these therapies becomes common practice.
Collapse
Affiliation(s)
- Michael D Seidman
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Medical Center, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | |
Collapse
|
17
|
Stankovic KM, Corfas G. Real-time quantitative RT-PCR for low-abundance transcripts in the inner ear: analysis of neurotrophic factor expression. Hear Res 2004; 185:97-108. [PMID: 14599697 DOI: 10.1016/s0378-5955(03)00298-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Real-time quantitative reverse transcription-PCR is a highly sensitive technology that allows high throughput quantification of gene expression. Application of this technique to the inner ear is potentially very important, but is not straightforward because tissue harvesting can be challenging, RNA yield from individual inner ears is low, and cDNA synthesis from scant RNA can be inefficient. To overcome these challenges, we tested many parameters and reagents, and developed an approach to reliably quantitate small changes in low-abundance transcripts. Using this technique we demonstrate the presence and quantify amounts of the neurotrophic factors neurotrophin 3 (NT-3), brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF), in the cochlea and vestibular end organs of postnatal murine inner ear (P26). We show that out of the factors tested, BDNF is the only one differentially expressed between the cochlea and vestibular end organs, being 23.4+/-0.3 times more abundant in the vestibular end organs. Within the cochlea, GDNF gene expression is 4.9+/-0.2 times greater than NT-3 expression. Within the combined vestibular end organs, BDNF expression is 43.0+/-1.5 times greater than NT-3 expression. Our results suggest that neurotrophic factors continue to play a role in the postnatal inner ear, in addition to their previously shown essential role during development.
Collapse
|
18
|
Abstract
Time- and content-based memory systems are briefly described so that their importance for a refined analysis of memory disturbances becomes evident. These memory systems are then related to their brain instantiation, emphasizing that there are limbic circuits for encoding different forms of memories, largely cortical networks for memory storage, and a combined temporofrontal network acting to trigger information retrieval. The terms functional amnesias and psychogenic amnesias are discussed and their symptomatology is compared to that of organic amnesias. The term "mnestic block syndrome" is introduced and defined as a syndrome of its own. Experimental data, obtained especially with functional imaging methods, are presented to elucidate changes in neural activation during functional amnesic states. It is concluded that functional amnesic states, confined to a patient's biography, can be triggered by environmentally induced stress and trauma, leading to lasting inability to retrieve autobiographical events. Such an impairment may be identified at the brain level using functional imaging techniques.
Collapse
Affiliation(s)
- Hans J Markowitsch
- Physiological Psychology, University of Bielefeld, D-33501, Bielefeld, Germany.
| |
Collapse
|
19
|
Abstract
Stress of some kind is encountered everyday and release of stress hormones is essential for adaptation to change. Stress can be physical (pain, noise exposure, etc.), psychological (apprehension to impending events, acoustic conditioning, etc.) or due to homeostatic disturbance (hunger, blood pressure, inner ear pressure, etc.). Persistent elevated levels of stress hormones can lead to disease states. The aim of the present review is to bring together data describing morphological or functional evidence for hormones of stress within the inner ear. The present review describes possible multiple interactions between the sympathetic and the complex feed-back neuroendocrine systems which interact with the immune system and so could contribute to various inner ear dysfunctions such as tinnitus, vertigo, hearing losses. Since there is a rapidly expanding list of genes specifically expressed within the inner ear this clearly allows for possible genomic and non-genomic local action of steroid hormones. Since stress can be encountered at any time throughout the life-time, the effects might be manifested starting from in-utero. These are avenues of research which remain relatively unexplored which merit further consideration. Progress in this domain could lead towards integration of stress concept into the overall clinical management of various inner ear pathologies.
Collapse
Affiliation(s)
- K C Horner
- Equipe Inserm EMI 9902, Laboratoire d'Otologie NeuroOtologie, Faculté de Médecine Nord, Université la Méditerranée Aix-Marseille II, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France.
| |
Collapse
|
20
|
Guntinas-Lichius O, Wittekindt C. The Role of Growth Factors for Disease and Therapy in Diseases of the Head and Neck. DNA Cell Biol 2003; 22:593-606. [PMID: 14577911 DOI: 10.1089/104454903322405473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Growth factors are a large family of polypeptide molecules that regulate cell division in many tissues by autocrine or paracrine mechanisms. Depending on what receptors are activated, growth factors can initiate mitogenic, antiproliferative, or trophic effects, that is, growth factors act as positive or negative modulators of cell proliferation. Therefore, growth factors do not only play an important role in embryonic development and adult tissue homeostasis, but also in pathological situations like infection, wound healing, and tumorigenesis. Consequently, the application of growth factors, or vice versa the application of substances which are directed against growth factors like antigrowth factor antibodies, may have therapeutic applications. This review provides a brief account of what we know regarding growth factors in otorhinolaryngology, particularly in the field of otology, wound healing, oncology, peripheral nerve regeneration, and rhinology.
Collapse
Affiliation(s)
- O Guntinas-Lichius
- Clinic of Otolaryngology, Head and Neck Surgery, University of Cologne, Germany.
| | | |
Collapse
|
21
|
Seidman MD, Van De Water TR. Pharmacologic Manipulation of the Labyrinth with Novel and Traditional Agents Delivered to the Inner Ear. EAR, NOSE & THROAT JOURNAL 2003. [DOI: 10.1177/014556130308200412] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We describe the methodology and rationale behind the delivery of therapeutic medicines to the inner ear. The inner ear has long been impervious to pharmacologic manipulation. This is most likely the result of a protective mechanism called the blood-labyrinth barrier, whose function closely resembles that of the blood-brain barrier. This protective barrier impedes the clinician's ability to treat inner ear diseases with systemically administered medications. Since 1935, otolaryngologists have attempted to manipulate the inner ear with transtympanically injected medicines. Success has varied widely, but medicinal ablation of vestibular function can be achieved in this manner. Unfortunately, the auditory system is also at great risk from any medicine that is delivered to the inner ear via the middle ear. Over the past 10 years, significant improvements in drug delivery have allowed for more “titratable” treatment, which has reduced (but not eliminated) the risk of permanent hearing loss. In this article, we discuss both novel and time-tested methods of delivering medicines to the inner ear. We also review the classes of medications that alter inner ear function and the attendant risks of such treatments.
Collapse
Affiliation(s)
- Michael D. Seidman
- Department of Otolaryngology, Henry Ford Medical Center, West Bloomfield, Mich
| | | |
Collapse
|
22
|
Kanzaki S, Stöver T, Kawamoto K, Prieskorn DM, Altschuler RA, Miller JM, Raphael Y. Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. J Comp Neurol 2002; 454:350-60. [PMID: 12442325 DOI: 10.1002/cne.10480] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As with other cranial nerves and many CNS neurons, primary auditory neurons degenerate as a consequence of loss of input from their target cells, the inner hair cells (IHCs). Electrical stimulation (ES) of spiral ganglion cells (SGCs) has been shown to enhance their survival. Glial cell line-derived neurotrophic factor (GDNF) has also been shown to increase survival of SGCs following IHC loss. In this study, the combined effects of the GDNF transgene delivered by adenoviral vectors (Ad-GDNF) and ES were tested on SGCs after first eliminating the IHCs. Animal groups received Ad-GDNF or ES or both. Ad-GDNF was inoculated into the cochlea of guinea pigs after deafening, to overexpress human GDNF. ES-treated animals were implanted with a cochlear implant electrode and chronically stimulated. A third group of animals received both Ad-GDNF and ES (GDNF/ES). Electrically evoked auditory brainstem responses were recorded from ES-treated animals at the start and end of the stimulation period. Animals were sacrificed 43 days after deafening and their ears prepared for evaluation of IHC survival and SGC counts. Treated ears exhibited significantly greater SGC survival than nontreated ears. The GDNF/ES combination provided significantly better preservation of SGC density than either treatment alone. Insofar as ES parameters were optimized for maximal protection (saturated effect), the further augmentation of the protection by GDNF suggests that the mechanisms of GDNF- and ES-mediated SGC protection are, at least in part, independent. We suggest that GDNF/ES combined treatment in cochlear implant recipients will improve auditory perception. These findings may have implications for the prevention and treatment of other neurodegenerative processes. .
Collapse
Affiliation(s)
- Sho Kanzaki
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0648, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Altschuler RA, Fairfield D, Cho Y, Leonova E, Benjamin IJ, Miller JM, Lomax MI. Stress pathways in the rat cochlea and potential for protection from acquired deafness. Audiol Neurootol 2002; 7:152-6. [PMID: 12053136 DOI: 10.1159/000058301] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Noise overstimulation will induce or influence intracellular molecular pathways in the cochlea. One of these is the 'classical' stress response pathway involving heat shock proteins. Hsp70 is induced in the cochlea by a wide variety of stresses including noise, hyperthermia and ototoxic drugs. When a stress that induces Hsp70 is applied to the cochlea, there is protection from a subsequent noise that would normally cause a permanent hearing loss. An upstream regulator of heat shock protein transcription, heat shock factor 1, is expressed in the cochlea and activated by stress. Mice lacking this heat shock factor have reduced recovery from noise-induced hearing loss. The same noise exposure that induces Hsp70 also increases the level of glial cell line-derived neurotrophic factor in the cochlea. Moreover, when this neurotrophic factor is applied into the perilymph of scala tympani prior to a noise exposure there is a significant reduction in hair cell loss and hearing loss. With the potential for activation of multiple pathways in the response to noise, gene microarrays can be useful to examine global gene expression. Initial studies examined differential gene expression immediately following a mild noise exposure (from which there is complete recovery) versus an intense noise (giving profound permanent deafness). Differential expression of several immediate early genes was found following the intense but not the mild noise exposure.
Collapse
Affiliation(s)
- Richard A Altschuler
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-0506, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Horner KC, Giraudet F, Lucciano M, Cazals Y. Sympathectomy improves the ear's resistance to acoustic trauma--could stress render the ear more sensitive? Eur J Neurosci 2001; 13:405-8. [PMID: 11168546 DOI: 10.1046/j.0953-816x.2000.01386.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Emotional stress is a phenomenon experienced by many people at some time in their lives. Some of its early manifestations, such as unbearable loudness of ambient sounds and sensations of dizziness, might be linked to inner ear dysfunction. Although the inner ear is supplied with a substantial sympathetic innervation, previous studies have failed to demonstrate any significant functional impact. We show here that in the awake guinea pig and following unilateral ablation of the superior cervical ganglion, the temporary threshold shift induced by a 1-min exposure to 8 kHz pure tone at 96 dB sound pressure level was reduced by as much as 40 dB. Of interest, the protective effect was bilateral suggesting an intimate relationship between the sympathetic and the olivocochlear efferent systems. The data presented here provide new evidence for a key role for the sympathetic system in modulating temporary threshold shifts following exposure to moderate sound stimulation. This opens new perspectives for investigation of sympathetic control in noise-induced permanent hearing losses.
Collapse
Affiliation(s)
- K C Horner
- Inserm EPI 9902, Laboratoire d'Otologie Neuro-Otologie, Université Aix-Marseille II, Faculté de Médecine Nord, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France. horner.
| | | | | | | |
Collapse
|
25
|
Nam YJ, Stöver T, Hartman SS, Altschuler RA. Upregulation of glial cell line-derived neurotrophic factor (GDNF) in the rat cochlea following noise. Hear Res 2000; 146:1-6. [PMID: 10913878 DOI: 10.1016/s0378-5955(00)00072-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There are endogenous intracellular mechanisms that provide cells with protection from stress, as well as repair from damage. These pathways often involve stress proteins and neurotrophic factors. The present study used Western blot analysis to examine changes in glial cell line-derived neurotrophic factor (GDNF) following noise overstimulation. A noise exposure was utilized which causes a temporary threshold shift and has been previously shown to upregulate heat shock protein 72 in the rat cochlea. This noise exposure also provides protection from a second noise exposure that would otherwise cause a permanent threshold shift. Experimental animals were assessed 2, 4, 8 and 12 h after cessation of noise exposure. Control animals received the same treatment except for the noise exposure and were assessed at the 8 h time point. A moderate expression of GDNF was observed in the normal cochlea. No significant change in GDNF levels was observed at 2 or 4 h following noise overstimulation. However, a significant increase was found at 8 h. At 12 h following noise overstimulation, GDNF levels were no longer significantly elevated from normal. These results suggest that GDNF is involved in the endogenous stress response in the cochlea and are consistent with the protection that exogenously applied GDNF has been shown to provide.
Collapse
Affiliation(s)
- Y J Nam
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, MI 48109-0506, USA
| | | | | | | |
Collapse
|
26
|
Shoji F, Miller AL, Mitchell A, Yamasoba T, Altschuler RA, Miller JM. Differential protective effects of neurotrophins in the attenuation of noise-induced hair cell loss. Hear Res 2000; 146:134-42. [PMID: 10913890 DOI: 10.1016/s0378-5955(00)00106-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The protective efficacy of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) at 1 or 10 microg/ml was assessed in guinea pigs exposed to 4 kHz octave band noise at 115 dB SPL for 5 h. BDNF, NT-3 or artificial perilymph was delivered to the scala tympani via a mini-osmotic pump, beginning 4 days prior to noise exposure and continuing for 1 week post-exposure. Protection was assessed physiologically by the change in auditory brainstem response (ABR) threshold, and histologically by outer hair cell (OHC) survival. There was a statistically significant increase in OHC survival and a decrease in ABR threshold shift in animals receiving NT-3 at a concentration of 10 microg/ml. In animals receiving 1 microg/ml NT-3, there was a significant increase in OHC survival in the first row of OHC, but no significant change in ABR threshold, relative to control animals. In animals treated with BDNF, no significant functional or histological protection was observed. The protection afforded by NT-3 (10 microg/ml) treatment was similar in magnitude to that reported previously with glial cell line-derived neurotrophic factor and suggests that several factors may be involved in the protective response.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/pharmacology
- Brain-Derived Neurotrophic Factor/physiology
- Cell Survival/drug effects
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Glial Cell Line-Derived Neurotrophic Factor
- Guinea Pigs
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/injuries
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/prevention & control
- Nerve Growth Factors
- Nerve Tissue Proteins/pharmacology
- Nerve Tissue Proteins/physiology
- Neurotrophin 3/pharmacology
- Neurotrophin 3/physiology
- Noise/adverse effects
- Receptors, Nerve Growth Factor/physiology
Collapse
Affiliation(s)
- F Shoji
- Kresge Hearing Research Institute, University of Michigan, 1301 East Ann St., Ann Arbor, MI 48109-0506, USA
| | | | | | | | | | | |
Collapse
|