1
|
Bergevin C, Whiley RE, Wit H, Manley GA, van Dijk P. Auditory cellular cooperativity probed via spontaneous otoacoustic emissions. Biophys J 2025; 124:1208-1225. [PMID: 40040283 PMCID: PMC12044396 DOI: 10.1016/j.bpj.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/14/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
As a sound pressure detector that uses energy to boost both its sensitivity and selectivity, the inner ear is an active nonequilibrium system. The collective processes of the inner ear that give rise to this exquisite functionality remain poorly understood. One manifestation of the active ear across the animal kingdom is the presence of spontaneous otoacoustic emission (SOAE), idiosyncratic arrays of spectral peaks that can be measured using a sensitive microphone in the ear canal. Current SOAE models attempt to explain how multiple peaks arise, and generally assume a spatially distributed tonotopic system. However, the nature of the generators, their coupling, and the role of noise (e.g., Brownian motion) are hotly debated, especially given the inner ear morphological diversity across vertebrates. One means of probing these facets of emission generation is studying fluctuations in SOAE peak properties, which produce amplitude and frequency modulations (AM and FM, respectively). These properties are likely related to the presence of noise affecting active cellular generation elements, and the coupling between generators. To better biophysically constrain models, this study characterizes the fluctuations in filtered SOAE peak waveforms, focusing on interrelations within and across peaks. A systematic approach is taken, examining three species that exhibit disparate inner ear morphologies: humans, barn owls, and green anole lizards. To varying degrees across all three groups, SOAE peaks have intrapeak (IrP) and interpeak (IPP) correlations indicative of interactions between generative elements. Activity from anole lizards, whose auditory sensory organ is relatively much smaller than that of humans or barn owls, showed a much higher incidence of nearest-neighbor IPP correlations. We propose that these data reveal characteristics of SOAE cellular generators acting cooperatively, allowing the ear to function as an optimized detector.
Collapse
Affiliation(s)
| | | | - Hero Wit
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, Groningen, the Netherlands
| | - Geoffrey A Manley
- Research Center Neurosensory Science and Department of Neuroscience, Carl von Ossietzky University, Oldenburg, Germany
| | - Pim van Dijk
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Manley GA. Conditions Underlying the Appearance of Spontaneous Otoacoustic Emissions in Mammals. J Assoc Res Otolaryngol 2024; 25:303-311. [PMID: 38760548 PMCID: PMC11349964 DOI: 10.1007/s10162-024-00950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/28/2024] [Indexed: 05/19/2024] Open
Abstract
Across the wide range of land vertebrate species, spontaneous otoacoustic emissions (SOAE) are common, but not always found. The reasons for the differences between species of the various groups in their emission patterns are often not well understood, particularly within mammals. This review examines the question as to what determines in mammals whether SOAE are emitted or not, and suggests that the coupling between hair-cell regions diminishes when the space constant of frequency distribution becomes larger. The reduced coupling is assumed to result in a greater likelihood of SOAE being emitted.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
3
|
Manley GA. Otoacoustic Emissions in Non-Mammals. Audiol Res 2022; 12:260-272. [PMID: 35645197 PMCID: PMC9149831 DOI: 10.3390/audiolres12030027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Otoacoustic emissions (OAE) that were sound-induced, current-induced, or spontaneous have been measured in non-mammalian land vertebrates, including in amphibians, reptiles, and birds. There are no forms of emissions known from mammals that have not also been observed in non-mammals. In each group and species, the emission frequencies clearly lie in the range known to be processed by the hair cells of the respective hearing organs. With some notable exceptions, the patterns underlying the measured spectra, input-output functions, suppression threshold curves, etc., show strong similarities to OAE measured in mammals. These profound similarities are presumably traceable to the fact that emissions are produced by active hair-cell mechanisms that are themselves dependent upon comparable nonlinear cellular processes. The differences observed—for example, in the width of spontaneous emission peaks and delay times in interactions between peaks—should provide insights into how hair-cell activity is coupled within the organ and thus partially routed out into the middle ear.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Department of Neuroscience, Faculty of Medicine, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Shera CA. Whistling While it Works: Spontaneous Otoacoustic Emissions and the Cochlear Amplifier. J Assoc Res Otolaryngol 2022; 23:17-25. [PMID: 34981262 PMCID: PMC8782959 DOI: 10.1007/s10162-021-00829-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/01/2021] [Indexed: 02/03/2023] Open
Abstract
Perhaps the most striking evidence for active processes operating within the inner ears of mammals and non-mammals alike is their ability to spontaneously produce sound. Predicted by Thomas Gold in 1948, some 30 years prior to their discovery, the narrow-band sounds now known as spontaneous otoacoustic emissions (SOAEs) remain incompletely understood, their origins controversial. Without a single equation in the main text, we review the essential concepts underlying the "local-" and "global-oscillator" frameworks for understanding SOAE generation. Comparing their key assumptions and predictions, we relate the two frameworks to unresolved questions about the biophysical mechanisms of cochlear amplification.
Collapse
Affiliation(s)
- Christopher A Shera
- Caruso Department of Otolaryngology and Department of Physics & Astronomy, University of Southern California, California, Los Angeles, 90033, USA.
| |
Collapse
|
5
|
Warren B, Fenton GE, Klenschi E, Windmill JFC, French AS. Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear. J Neurosci 2020; 40:3130-3140. [PMID: 32144181 PMCID: PMC7141877 DOI: 10.1523/jneurosci.2279-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/19/2019] [Accepted: 12/08/2019] [Indexed: 11/30/2022] Open
Abstract
Acoustic overexposure, such as listening to loud music too often, results in noise-induced hearing loss. The pathologies of this prevalent sensory disorder begin within the ear at synapses of the primary auditory receptors, their postsynaptic partners and their supporting cells. The extent of noise-induced damage, however, is determined by overstimulation of primary auditory receptors, upstream of where the pathologies manifest. A systematic characterization of the electrophysiological function of the upstream primary auditory receptors is warranted to understand how noise exposure impacts on downstream targets, where the pathologies of hearing loss begin. Here, we used the experimentally-accessible locust ear (male, Schistocerca gregaria) to characterize a decrease in the auditory receptor's ability to respond to sound after noise exposure. Surprisingly, after noise exposure, the electrophysiological properties of the auditory receptors remain unchanged, despite a decrease in the ability to transduce sound. This auditory deficit stems from changes in a specialized receptor lymph that bathes the auditory receptors, revealing striking parallels with the mammalian auditory system.SIGNIFICANCE STATEMENT Noise exposure is the largest preventable cause of hearing loss. It is the auditory receptors that bear the initial brunt of excessive acoustic stimulation, because they must convert excessive sound-induced movements into electrical signals, but remain functional afterward. Here we use the accessible ear of an invertebrate to, for the first time in any animal, characterize changes in auditory receptors after noise overexposure. We find that their decreased ability to transduce sound into electrical signals is, most probably, due to changes in supporting (scolopale) cells that maintain the ionic composition of the ear. An emerging doctrine in hearing research is that vertebrate primary auditory receptors are surprisingly robust, something that we show rings true for invertebrate ears too.
Collapse
Affiliation(s)
- Ben Warren
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom,
| | - Georgina E Fenton
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Elizabeth Klenschi
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
6
|
Warren B, Fenton GE, Klenschi E, Windmill JFC, French AS. Physiological Basis of Noise-Induced Hearing Loss in a Tympanal Ear. J Neurosci 2020. [PMID: 32144181 DOI: 10.3760/cma.j.cn112137-20200803-02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acoustic overexposure, such as listening to loud music too often, results in noise-induced hearing loss. The pathologies of this prevalent sensory disorder begin within the ear at synapses of the primary auditory receptors, their postsynaptic partners and their supporting cells. The extent of noise-induced damage, however, is determined by overstimulation of primary auditory receptors, upstream of where the pathologies manifest. A systematic characterization of the electrophysiological function of the upstream primary auditory receptors is warranted to understand how noise exposure impacts on downstream targets, where the pathologies of hearing loss begin. Here, we used the experimentally-accessible locust ear (male, Schistocerca gregaria) to characterize a decrease in the auditory receptor's ability to respond to sound after noise exposure. Surprisingly, after noise exposure, the electrophysiological properties of the auditory receptors remain unchanged, despite a decrease in the ability to transduce sound. This auditory deficit stems from changes in a specialized receptor lymph that bathes the auditory receptors, revealing striking parallels with the mammalian auditory system.SIGNIFICANCE STATEMENT Noise exposure is the largest preventable cause of hearing loss. It is the auditory receptors that bear the initial brunt of excessive acoustic stimulation, because they must convert excessive sound-induced movements into electrical signals, but remain functional afterward. Here we use the accessible ear of an invertebrate to, for the first time in any animal, characterize changes in auditory receptors after noise overexposure. We find that their decreased ability to transduce sound into electrical signals is, most probably, due to changes in supporting (scolopale) cells that maintain the ionic composition of the ear. An emerging doctrine in hearing research is that vertebrate primary auditory receptors are surprisingly robust, something that we show rings true for invertebrate ears too.
Collapse
Affiliation(s)
- Ben Warren
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom,
| | - Georgina E Fenton
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Elizabeth Klenschi
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - James F C Windmill
- Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, United Kingdom, and
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
7
|
Bergevin C, Mason A, Mhatre N. Evidence supporting synchrony between two active ears due to interaural coupling. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:EL25. [PMID: 32006966 DOI: 10.1121/10.0000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Motivated by recent developments suggesting that interaural coupling in non-mammals allows for the two active ears to effectively synchronize, this report describes otoacoustic measurements made in the oral cavity of lizards. As expected from that model, spontaneous otoacoustic emissions (SOAEs) were readily measurable in the mouth, which is contiguous with the interaural airspace. Additionally, finite element model calculations were made to simulate the interaural acoustics based upon SOAE-related tympanic membrane vibrational data. Taken together, these data support the notion of two active ears synchronizing by virtue of acoustic coupling and have potential implications for sound localization at low-levels.
Collapse
Affiliation(s)
- Christopher Bergevin
- Department of Physics and Astronomy, York University, Toronto, Ontario M3J1P3, Canada
| | - Andrew Mason
- Department of Biology, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| | - Natasha Mhatre
- Department of Biology, Western University, London, Ontario N6A 5B7, , ,
| |
Collapse
|
8
|
Wit HP, Manley GA, van Dijk P. Modeling the characteristics of spontaneous otoacoustic emissions in lizards. Hear Res 2019; 385:107840. [PMID: 31760263 DOI: 10.1016/j.heares.2019.107840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 11/19/2022]
Abstract
Lizard auditory papillae have proven to be an attractive object for modelling the production of spontaneous otoacoustic emissions (SOAE). Here we use an established model (Vilfan and Duke, 2008) and extend it by exploring the effect of varying the number of oscillating elements, the strength of the parameters that describe the coupling between oscillators, the strength of the oscillators, and additive noise. The most remarkable result is that the actual number of oscillating elements hardly influences the spectral pattern, explaining why spectra from very different papillar dimensions are similar. Furthermore, the spacing between spectral peaks primarily depends on the reactive coupling between the oscillator elements. This is consistent with observed differences between lizard species with respect to tectorial covering of hair cells and SOAE peak spacings. Thus, the model provides a basic understanding of the variation in SOAE properties across lizard species.
Collapse
Affiliation(s)
- Hero P Wit
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, the Netherlands; University of Groningen, Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), Groningen, the Netherlands.
| | - Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Research Center Neuroscience, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - P van Dijk
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, the Netherlands; University of Groningen, Graduate School of Medical Sciences (Research School of Behavioral and Cognitive Neurosciences), Groningen, the Netherlands
| |
Collapse
|
9
|
Engler S, Köppl C, Manley GA, de Kleine E, van Dijk P. Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba). Hear Res 2019; 385:107835. [PMID: 31710933 DOI: 10.1016/j.heares.2019.107835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/30/2019] [Accepted: 10/27/2019] [Indexed: 11/20/2022]
Abstract
Spontaneous otoacoustic emissions (SOAEs) have been observed in a variety of different vertebrates, including humans and barn owls (Tyto alba). The underlying mechanisms producing the SOAEs and the meaning of their characteristics regarding the frequency selectivity of an individual and species are, however, still under debate. In the present study, we measured SOAE spectra in lightly anesthetized barn owls and suppressed their amplitudes by presenting pure tones at different frequencies and sound levels. Suppression effects were quantified by deriving suppression tuning curves (STCs) with a criterion of 2 dB suppression. SOAEs were found in 100% of ears (n = 14), with an average of 12.7 SOAEs per ear. Across the whole SOAE frequency range of 3.4-10.2 kHz, the distances between neighboring SOAEs were relatively uniform, with a median distance of 430 Hz. The majority (87.6%) of SOAEs were recorded at frequencies that fall within the barn owl's auditory fovea (5-10 kHz). The STCs were V-shaped and sharply tuned, similar to STCs from humans and other species. Between 5 and 10 kHz, the median Q10dB value of STC was 4.87 and was thus lower than that of owl single-unit neural data. There was no evidence for secondary STC side lobes, as seen in humans. The best thresholds of the STCs varied from 7.0 to 57.5 dB SPL and correlated with SOAE level, such that smaller SOAEs tended to require a higher sound level to be suppressed. While similar, the frequency-threshold curves of auditory-nerve fibers and STCs of SOAEs differ in some respects in their tuning characteristics indicating that SOAE suppression tuning in the barn owl may not directly reflect neural tuning in primary auditory nerve fibers.
Collapse
Affiliation(s)
- Sina Engler
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, The Netherlands; Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands.
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Geoffrey A Manley
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Emile de Kleine
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, The Netherlands; Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands
| | - Pim van Dijk
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, The Netherlands; Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands
| |
Collapse
|
10
|
Roongthumskul Y, Ó Maoiléidigh D, Hudspeth AJ. Bilateral Spontaneous Otoacoustic Emissions Show Coupling between Active Oscillators in the Two Ears. Biophys J 2019; 116:2023-2034. [PMID: 31010667 PMCID: PMC6531668 DOI: 10.1016/j.bpj.2019.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 11/03/2022] Open
Abstract
Spontaneous otoacoustic emissions (SOAEs) are weak sounds that emanate from the ears of tetrapods in the absence of acoustic stimulation. These emissions are an epiphenomenon of the inner ear's active process, which enhances the auditory system's sensitivity to weak sounds, but their mechanism of production remains a matter of debate. We recorded SOAEs simultaneously from the two ears of the tokay gecko and found that binaural emissions could be strongly correlated: some emissions occurred at the same frequency in both ears and were highly synchronized. Suppression of the emissions in one ear often changed the amplitude or shifted the frequency of emissions in the other. Decreasing the frequency of emissions from one ear by lowering its temperature usually reduced the frequency of the contralateral emissions. To understand the relationship between binaural SOAEs, we developed a mathematical model of the eardrums as noisy nonlinear oscillators coupled by the air within an animal's mouth. By according with the model, the results indicate that some SOAEs are generated bilaterally through acoustic coupling across the oral cavity. The model predicts that sound localization through the acoustic coupling between ears is influenced by the active processes of both ears.
Collapse
Affiliation(s)
- Yuttana Roongthumskul
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York
| | - Dáibhid Ó Maoiléidigh
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York; Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - A J Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York.
| |
Collapse
|
11
|
Manley GA. Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears. J Assoc Res Otolaryngol 2016; 18:1-24. [PMID: 27539715 DOI: 10.1007/s10162-016-0579-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022] Open
Abstract
Comparative auditory studies make it possible both to understand the origins of modern ears and the factors underlying the similarities and differences in their performance. After all lineages of land vertebrates had independently evolved tympanic middle ears in the early Mesozoic era, the subsequent tens of millions of years led to the hearing organ of lizards, birds, and mammals becoming larger and their upper frequency limits higher. In extant species, lizard papillae remained relatively small (<2 mm), but avian papillae attained a maximum length of 11 mm, with the highest frequencies in both groups near 12 kHz. Hearing-organ sizes in modern mammals vary more than tenfold, up to >70 mm (made possible by coiling), as do their upper frequency limits (from 12 to >200 kHz). The auditory organs of the three amniote groups differ characteristically in their cellular structure, but their hearing sensitivity and frequency selectivity within their respective hearing ranges hardly differ. In the immediate primate ancestors of humans, the cochlea became larger and lowered its upper frequency limit. Modern humans show an unusual trend in frequency selectivity as a function of frequency. It is conceivable that the frequency selectivity patterns in humans were influenced in their evolution by the development of speech.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Research Centre Neurosensory Science, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany.
| |
Collapse
|
12
|
Manley GA, van Dijk P. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions. Hear Res 2016; 336:53-62. [PMID: 27139323 DOI: 10.1016/j.heares.2016.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/25/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022]
Abstract
Frequency selectivity is a key functional property of the inner ear and since hearing research began, the frequency resolution of the human ear has been a central question. In contrast to animal studies, which permit invasive recording of neural activity, human studies must rely on indirect methods to determine hearing selectivity. Psychophysical studies, which used masking of a tone by other sounds, indicate a modest frequency selectivity in humans. By contrast, estimates using the phase delays of stimulus-frequency otoacoustic emissions (SFOAE) predict a remarkably high selectivity, unique among mammals. An alternative measure of cochlear frequency selectivity are suppression tuning curves of spontaneous otoacoustic emissions (SOAE). Several animal studies show that these measures are in excellent agreement with neural frequency selectivity. Here we contribute a large data set from normal-hearing young humans on suppression tuning curves (STC) of spontaneous otoacoustic emissions (SOAE). The frequency selectivities of human STC measured near threshold levels agree with the earlier, much lower, psychophysical estimates. They differ, however, from the typical patterns seen in animal auditory nerve data in that the selectivity is remarkably independent of frequency. In addition, SOAE are suppressed by higher-level tones in narrow frequency bands clearly above the main suppression frequencies. These narrow suppression bands suggest interactions between the suppressor tone and a cochlear standing wave corresponding to the SOAE frequency being suppressed. The data show that the relationship between pre-neural mechanical processing in the cochlea and neural coding at the hair-cell/auditory nerve synapse needs to be reconsidered.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Research Centre Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Pim van Dijk
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; University of Groningen, Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neuroscience, The Netherlands.
| |
Collapse
|
13
|
Fruth F, Jülicher F, Lindner B. An active oscillator model describes the statistics of spontaneous otoacoustic emissions. Biophys J 2015; 107:815-24. [PMID: 25140416 DOI: 10.1016/j.bpj.2014.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/10/2014] [Accepted: 06/18/2014] [Indexed: 11/26/2022] Open
Abstract
Even in the absence of external stimulation, the cochleas of most humans emit very faint sounds below the threshold of hearing, sounds that are known as spontaneous otoacoustic emissions. They are a signature of the active amplification mechanism in the cochlea. Emissions occur at frequencies that are unique for an individual and change little over time. The statistics of a population of ears exhibit characteristic features such as a preferred relative frequency distance between emissions (interemission intervals). We propose a simplified cochlea model comprising an array of active nonlinear oscillators coupled both hydrodynamically and viscoelastically. The oscillators are subject to a weak spatial disorder that lends individuality to the simulated cochlea. Our model captures basic statistical features of the emissions: distributions of 1), emission frequencies; 2), number of emissions per ear; and 3), interemission intervals. In addition, the model reproduces systematic changes of the interemission intervals with frequency. We show that the mechanism for the preferred interemission interval in our model is the occurrence of synchronized clusters of oscillators.
Collapse
Affiliation(s)
- Florian Fruth
- Bernstein Center for Computational Neuroscience, Berlin, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience, Berlin, Germany; Department of Physics, Humboldt University Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Bergevin C, Manley GA, Köppl C. Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms. Proc Natl Acad Sci U S A 2015; 112:3362-7. [PMID: 25737537 PMCID: PMC4371923 DOI: 10.1073/pnas.1418569112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Otoacoustic emissions (OAEs) are faint sounds generated by healthy inner ears that provide a window into the study of auditory mechanics. All vertebrate classes exhibit OAEs to varying degrees, yet the biophysical origins are still not well understood. Here, we analyzed both spontaneous (SOAE) and stimulus-frequency (SFOAE) otoacoustic emissions from a bird (barn owl, Tyto alba) and a lizard (green anole, Anolis carolinensis). These species possess highly disparate macromorphologies of the inner ear relative to each other and to mammals, thereby allowing for novel insights into the biomechanical mechanisms underlying OAE generation. All ears exhibited robust OAE activity, and our chief observation was that SFOAE phase accumulation between adjacent SOAE peak frequencies clustered about an integral number of cycles. Being highly similar to published results from human ears, we argue that these data indicate a common underlying generator mechanism of OAEs across all vertebrates, despite the absence of morphological features thought essential to mammalian cochlear mechanics. We suggest that otoacoustic emissions originate from phase coherence in a system of coupled oscillators, which is consistent with the notion of "coherent reflection" but does not explicitly require a mammalian-type traveling wave. Furthermore, comparison between SFOAE delays and auditory nerve fiber responses for the barn owl strengthens the notion that most OAE delay can be attributed to tuning.
Collapse
Affiliation(s)
- Christopher Bergevin
- Department of Physics & Astronomy and Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada; and
| | - Geoffrey A Manley
- Cluster of Excellence "Hearing4all," Research Center Neurosensory Science, and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all," Research Center Neurosensory Science, and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
15
|
Baiduc RR, Lee J, Dhar S. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:300-314. [PMID: 24437770 PMCID: PMC3985964 DOI: 10.1121/1.4840775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 06/03/2023]
Abstract
Hearing thresholds have been shown to exhibit periodic minima and maxima, a pattern known as threshold microstructure. Microstructure has previously been linked to spontaneous otoacoustic emissions (SOAEs) and normal cochlear function. However, SOAEs at high frequencies (>4 kHz) have been associated with hearing loss or cochlear pathology in some reports. Microstructure would not be expected near these high-frequency SOAEs. Psychophysical tuning curves (PTCs), the expression of frequency selectivity, may also be altered by SOAEs. Prior comparisons of tuning between ears with and without SOAEs demonstrated sharper tuning in ears with emissions. Here, threshold microstructure and PTCs were compared at SOAE frequencies ranging between 1.2 and 13.9 kHz using subjects without SOAEs as controls. Results indicate: (1) Threshold microstructure is observable in the vicinity of SOAEs of all frequencies; (2) PTCs are influenced by SOAEs, resulting in shifted tuning curve tips, multiple tips, or inversion. High frequency SOAEs show a greater effect on PTC morphology. The influence of most SOAEs at high frequencies on threshold microstructure and PTCs is consistent with those at lower frequencies, suggesting that high-frequency SOAEs reflect the same cochlear processes that lead to SOAEs at lower frequencies.
Collapse
Affiliation(s)
- Rachael R Baiduc
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, 1-254, Evanston, Illinois 60208
| | - Jungmee Lee
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, 2-256, Evanston, Illinois 60208
| | - Sumitrajit Dhar
- Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, 1-248, Evanston, Illinois 60208
| |
Collapse
|
16
|
Manley GA. Fundamentals of Hearing in Amniote Vertebrates. PERSPECTIVES ON AUDITORY RESEARCH 2014. [DOI: 10.1007/978-1-4614-9102-6_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Charaziak KK, Souza P, Siegel JH. Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning. J Assoc Res Otolaryngol 2013; 14:843-62. [PMID: 24013802 DOI: 10.1007/s10162-013-0412-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/11/2013] [Indexed: 11/30/2022] Open
Abstract
As shown by the work of Kemp and Chum in 1980, stimulus-frequency otoacoustic emission suppression tuning curves (SFOAE STCs) have potential to objectively estimate behaviorally measured tuning curves. To date, this potential has not been tested. This study aims to do so by comparing SFOAE STCs and behavioral measures of tuning (simultaneous masking psychophysical tuning curves, PTCs) in 10 normal-hearing listeners for frequency ranges centered around 1,000 and 4,000 Hz at low probe levels. Additionally, SFOAE STCs were collected for varying conditions (probe level and suppression criterion) to identify the optimal parameters for comparison with behavioral data and to evaluate how these conditions affect the features of SFOAE STCs. SFOAE STCs qualitatively resembled PTCs: they demonstrated band-pass characteristics and asymmetric shapes with steeper high-frequency sides than low, but unlike PTCs they were consistently tuned to frequencies just above the probe frequency. When averaged across subjects the shapes of SFOAE STCs and PTCs showed agreement for most recording conditions, suggesting that PTCs are predominantly shaped by the frequency-selective filtering and suppressive effects of the cochlea. Individual SFOAE STCs often demonstrated irregular shapes (e.g., "double-tips"), particularly for the 1,000-Hz probe, which were not observed for the same subject's PTC. These results show the limited utility of SFOAE STCs to assess tuning in an individual. The irregularly shaped SFOAE STCs may be attributed to contributions from SFOAE sources distributed over a region of the basilar membrane extending beyond the probe characteristic place, as suggested by a repeatable pattern of SFOAE residual phase shifts observed in individual data.
Collapse
Affiliation(s)
- Karolina K Charaziak
- Department of Communication Sciences and Disorders, Northwestern University, School of Communication, 2240 Campus Drive, Evanston, IL, 602080-2952, USA,
| | | | | |
Collapse
|
18
|
Braun M. High-multiple spontaneous otoacoustic emissions confirm theory of local tuned oscillators. SPRINGERPLUS 2013; 2:135. [PMID: 23638405 PMCID: PMC3636430 DOI: 10.1186/2193-1801-2-135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/21/2013] [Indexed: 12/03/2022]
Abstract
Understanding the origin of spontaneous otoacoustic emissions (SOAEs) in mammals has been a challenge for more than three decades. Right from the beginning two mutually exclusive concepts were explored. After 30 years this has now resulted in two well established but incompatible theories, the global standing-wave theory and the local oscillator theory. The outcome of this controversy will be important for our understanding of inner ear functions, because local tuned oscillators in the cochlea would indicate the possibility of frequency analysis via local resonance also in mammals. A previously unexploited opportunity to gain further information on this matter lies in the occasional cases of high-multiple SOAEs in human ears, which present a large number of adjacent small frequency intervals. Here, eight healthy ears of four subjects (12 to 32 SOAEs per ear) are compared with individually simulated ears where frequency spacing was random-generated by two different techniques. Further, a group of 1000 ears was simulated presenting a mean of 21.3 SOAEs per ear. The simulations indicate that the typical frequency spacing of human SOAEs may be due to random distribution of emitters along the cochlea plus a graded probability of mutual close-range suppression between adjacent emitters. It was found that the distribution of frequency intervals of SOAEs shows no above-chance probability of multiples of the preferred minimum distance (PMD) between SOAEs and that the size of PMD is related to SOAE density. The variation in size between adjacent small intervals is not significantly different in random-generated than in measured data. These three results are not in agreement with the global standing-wave theory but are in line with the local oscillator theory. In conclusion, the results are consistent with intrinsic tuning of cochlear outer hair cells.
Collapse
Affiliation(s)
- Martin Braun
- Neuroscience of Music, Gansbyn 14, Värmskog, S-66492 Sweden
| |
Collapse
|
19
|
Manley GA, Narins PM, Fay RR. Experiments in comparative hearing: Georg von Békésy and beyond. Hear Res 2012; 293:44-50. [PMID: 22560960 DOI: 10.1016/j.heares.2012.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 11/17/2022]
Abstract
Georg von Békésy was one of the first comparative auditory researchers. He not only studied basilar membrane (BM) movements in a range of mammals of widely different sizes, he also worked on the chicken basilar papilla and the frog middle ear. We show that, in mammals, at least, his data do not differ from those that could be collected using modern techniques but with the same, very loud sounds. There is in all cases a major difference to frequency maps collected using low-level sounds. In contrast, the same cannot be said of his chicken data, perhaps due to the different roles played by the BM in mammals and birds. In lizards, the BM is not tuned and it is perhaps good that Békésy did not begin with those species and get discouraged in his seminal comparative work.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, IBU, Faculty V, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany.
| | | | | |
Collapse
|
20
|
Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification? Hear Res 2010; 273:109-22. [PMID: 20430075 DOI: 10.1016/j.heares.2010.03.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 11/22/2022]
Abstract
Hearing organs have evolved to detect sounds across several orders of magnitude of both intensity and frequency. Detection limits are at the atomic level despite the energy associated with sound being limited thermodynamically. Several mechanisms have evolved to account for the remarkable frequency selectivity, dynamic range, and sensitivity of these various hearing organs, together termed the active process or cochlear amplifier. Similarities between hearing organs of disparate species provides insight into the factors driving the development of the cochlear amplifier. These properties include: a tonotopic map, the emergence of a two hair cell system, the separation of efferent and afferent innervations, the role of the tectorial membrane, and the shift from intrinsic tuning and amplification to a more end organ driven process. Two major contributors to the active process are hair bundle mechanics and outer hair cell electromotility, the former present in all hair cell organs tested, the latter only present in mammalian cochlear outer hair cells. Both of these processes have advantages and disadvantages, and how these processes interact to generate the active process in the mammalian system is highly disputed. A hypothesis is put forth suggesting that hair bundle mechanics provides amplification and filtering in most hair cells, while in mammalian cochlea, outer hair cell motility provides the amplification on a cycle by cycle basis driven by the hair bundle that provides frequency selectivity (in concert with the tectorial membrane) and compressive nonlinearity. Separating components of the active process may provide additional sites for regulation of this process.
Collapse
|
21
|
Spontaneous otoacoustic emissions in lizards: a comparison of the skink-like lizard families Cordylidae and Gerrhosauridae. Hear Res 2009; 255:58-66. [PMID: 19539017 DOI: 10.1016/j.heares.2009.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/10/2009] [Accepted: 05/15/2009] [Indexed: 11/21/2022]
Abstract
Lizard families can be grouped into larger units comprising those families that are closely related and whose auditory papillae are morphologically very similar. Based on the few species studied at that time [Manley, G.A., 1997. Diversity in hearing-organ structure and the characteristics of spontaneous otoacoustic emissions in lizards. In: Lewis, E.R., Long, G.R., Lyon, R.F., Narins, P.M., Steele, C.R. (Eds.), Diversity in Auditory Mechanics. World Scientific Publishing Co., Singapore, pp. 32-38], it was suggested that SOAE spectral patterns are strongly influenced by papillar anatomy. However, in two family groups, only one single species has been studied and we have no data on the regularity of pattern within related lizard families. Within the group of skink-like lizards, whose papillae all have salletal tectorial structures, the only detailed SOAE studies so far were on the skink genus Tiliqua. To ascertain the similarity of SOAE in species from families related to the skinks, we have studied one species each from two families that are closely related to skinks, the Cordylidae (Girdle-tailed lizards) and the Gerrhosauridae (plated lizards). Gerrhosaurus and Cordylus have a similar number and amplitudes of SOAE to Tiliqua (Skinkidae). The maximal frequency shifts of SOAE under the influence of external tones is also similar to that of Tiliqua. However, the maximal suppression and maximal facilitation are smaller. In general, the patterns displayed by the SOAE of lizards of these two new families are recognizably similar to the skink Tiliqua, suggesting that the anatomy of the papilla and the tectorial structures do play an important role in determining how SOAE are manifested in papillae that possess tectorial sallets.
Collapse
|
22
|
Borin A, Cruz OLM. Study of distortion-product otoacoustic emissions during hypothermia in humans. Braz J Otorhinolaryngol 2008; 74:401-9. [PMID: 18661015 PMCID: PMC9442074 DOI: 10.1016/s1808-8694(15)30575-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 04/05/2007] [Indexed: 12/03/2022] Open
Abstract
Aim To evaluate the function of cochlear outer hair-cells under the influence of extra-corporeal circulation and moderate hypothermia during cardiac surgery. Study Design Prospective clinical study. Methods Distortion-product otoacoustic emissions (DPOAE) were registered before surgery, immediately after general anesthesia induction, during extra-corporeal circulation with moderate hypothermia and after the surgical procedure. Results: Comparison of response-amplitudes before and after surgery and before and after general anesthesia initiation did not demonstrate statistical difference. Comparison of amplitudes before and after extra-corporeal circulation with moderate hypothermia demonstrated a statistically significant decrease in responses amplitudes during hypothermia. Conclusions The amplitudes of DPOAE decreased during moderate hypothermia induced during extra-corporeal circulation.
Collapse
|
23
|
Abstract
Spontaneous otoacoustic emissions (SOAEs) are indicators of an active process in the inner ear that enhances the sensitivity and frequency selectivity of hearing. They are particularly regular and robust in certain lizards, so these animals are good model organisms for studying how SOAEs are generated. We show that the published properties of SOAEs in the bobtail lizard are wholly consistent with a mathematical model in which active oscillators, with exponentially varying characteristic frequencies, are coupled together in a chain by visco-elastic elements. Physically, each oscillator corresponds to a small group of hair cells, covered by a tectorial sallet, so our theoretical analysis directly links SOAEs to the micromechanics of active hair bundles.
Collapse
|
24
|
Bergevin C, Freeman DM, Saunders JC, Shera CA. Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:665-83. [PMID: 18500528 PMCID: PMC2562659 DOI: 10.1007/s00359-008-0338-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/18/2008] [Accepted: 04/19/2008] [Indexed: 10/22/2022]
Abstract
Many non-mammalian ears lack physiological features considered integral to the generation of otoacoustic emissions in mammals, including basilar-membrane traveling waves and hair-cell somatic motility. To help elucidate the mechanisms of emission generation, this study systematically measured and compared evoked emissions in all four classes of tetrapod vertebrates using identical stimulus paradigms. Overall emission levels are largest in the lizard and frog species studied and smallest in the chicken. Emission levels in humans, the only examined species with somatic hair cell motility, were intermediate. Both geckos and frogs exhibit substantially higher levels of high-order intermodulation distortion. Stimulus frequency emission phase-gradient delays are longest in humans but are at least 1 ms in all species. Comparisons between stimulus-frequency emission and distortion-product emission phase gradients for low stimulus levels indicate that representatives from all classes except frog show evidence for two distinct generation mechanisms analogous to the reflection- and distortion-source (i.e., place- and wave-fixed) mechanisms evident in mammals. Despite morphological differences, the results suggest the role of a scaling-symmetric traveling wave in chicken emission generation, similar to that in mammals, and perhaps some analog in the gecko.
Collapse
Affiliation(s)
- Christopher Bergevin
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
25
|
Kössl M, Möckel D, Weber M, Seyfarth EA. Otoacoustic emissions from insect ears: evidence of active hearing? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:597-609. [PMID: 18516607 DOI: 10.1007/s00359-008-0344-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 04/23/2008] [Accepted: 05/03/2008] [Indexed: 11/28/2022]
Abstract
Sensitive hearing organs often employ nonlinear mechanical sound processing which generates distortion-product otoacoustic emissions (DPOAE). Such emissions are also recordable from tympanal organs of insects. In vertebrates (including humans), otoacoustic emissions are considered by-products of active sound amplification through specialized sensory receptor cells in the inner ear. Force generated by these cells primarily augments the displacement amplitude of the basilar membrane and thus increases auditory sensitivity. As in vertebrates, the emissions from insect ears are based on nonlinear mechanical properties of the sense organ. Apparently, to achieve maximum sensitivity, convergent evolutionary principles have been realized in the micromechanics of these hearing organs-although vertebrates and insects possess quite different types of receptor cells in their ears. Just as in vertebrates, otoacoustic emissions from insects ears are vulnerable and depend on an intact metabolism, but so far in tympanal organs, it is not clear if auditory nonlinearity is achieved by active motility of the sensory neurons or if passive cellular characteristics cause the nonlinear behavior. In the antennal ears of flies and mosquitoes, however, active vibrations of the flagellum have been demonstrated. Our review concentrates on experiments studying the tympanal organs of grasshoppers and moths; we show that their otoacoustic emissions are produced in a frequency-specific way and can be modified by electrical stimulation of the sensory cells. Even the simple ears of notodontid moths produce distinct emissions, although they have just one auditory neuron. At present it is still uncertain, both in vertebrates and in insects, if the nonlinear amplification so essential for sensitive sound processing is primarily due to motility of the somata of specialized sensory cells or to active movement of their (stereo-)cilia. We anticipate that further experiments with the relatively simple ears of insects will help answer these questions.
Collapse
Affiliation(s)
- Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, J.W. Goethe-Universität, Siesmayerstrasse 70, 60323, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
26
|
Manley GA, Köppl C. What have lizard ears taught us about auditory physiology? Hear Res 2007; 238:3-11. [PMID: 17983712 DOI: 10.1016/j.heares.2007.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/16/2007] [Accepted: 09/20/2007] [Indexed: 11/26/2022]
Abstract
The structure of the basilar papilla of the inner ear of lizards is the most diverse among all vertebrates. Research on a variety of lizard ears, animals that are remarkably robust under laboratory conditions, has provided the field of auditory research with valuable information, particularly on the minimum structural requirements for sensitive, selective hearing and on the importance of the tectorial membrane and active processes in this regard. Despite the absence of a tuned basilar membrane, lizard ears produce highly frequency selective hearing through micromechanical tuning of small, resonant hair-cell-tectorial units or of free-standing hair bundles. These units are driven by an active process that also underlies spontaneous and other otoacoustic emissions. Lizard ears provided the first in vivo evidence that the active process is calcium-sensitive and lies within the stereovillar bundles of the hair cells.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Lehrstuhl für Zoologie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | |
Collapse
|
27
|
Meenderink SWF, Narins PM. Stimulus frequency otoacoustic emissions in the Northern leopard frog, Rana pipiens pipiens: implications for inner ear mechanics. Hear Res 2006; 220:67-75. [PMID: 16942850 DOI: 10.1016/j.heares.2006.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/03/2006] [Accepted: 07/09/2006] [Indexed: 11/29/2022]
Abstract
Otoacoustic emissions (OAEs) are weak sounds that originate from the inner ear which are traditionally classified/named based on their evoking stimulus. Recently, it has been argued that such a classification, at least for mammals, misrepresents the underlying mechanisms of emission-generation. As an alternative classification, it has been suggested to recognize that OAEs arise either via nonlinear distortion or linear coherent reflection. For non-mammalian vertebrates, data on evoked OAEs that arise via the latter mechanism are largely missing. Here, we present the first measurements of stimulus frequency OAEs (SFOAEs), which are emissions thought to arise via linear coherent reflection, from an amphibian (the Northern leopard frog, Rana pipiens pipiens). Their properties as a function of the evoking stimulus frequencies and levels are described and subsequently compared with the previously reported properties of distortion product OAEs (DPOAEs) from the same frog species.
Collapse
Affiliation(s)
- Sebastiaan W F Meenderink
- University of California, Department of Physiological Science, 621 Charles E. Youngdrive S., Los Angeles, CA 90095-1606, United States.
| | | |
Collapse
|
28
|
Manley GA. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae. Hear Res 2006; 212:33-47. [PMID: 16307854 DOI: 10.1016/j.heares.2005.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/06/2005] [Indexed: 11/24/2022]
Abstract
Spontaneous otoacoustic emissions (SOAE) were measured in 10 lizard species from the families Iguanidae, Agamidae and Anguidae. The typical feature of these papillae is that the hair cells in the higher-frequency papillar regions that produce SOAE are not covered by a tectorial structure. The number of hair cells in the species used here was between 58 and 292 per ear. SOAE could be measured from all species, but some of their characteristics varied with papillar anatomy. Thus very small papillae produced fewer and smaller SOAE than larger papillae.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Lehrstuhl für Zoologie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
29
|
Caputi AA. Contributions of electric fish to the understanding of sensory processing by reafferent systems. ACTA ACUST UNITED AC 2005; 98:81-97. [PMID: 15477024 DOI: 10.1016/j.jphysparis.2004.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sensory systems must solve the inverse problem of determining environmental events based on patterns of neural activity in the central nervous system that are affected by those environmental events. Different environmental events can give rise to indistinguishable patterns of neural activity, so that there will often, perhaps even always, be multiple solutions to a sensory inverse problem. Imaging strategies and brain organization confine these multiple solutions within a bounded set. Three different active strategies may be employed by animals to constrain the number of solutions to the sensory inverse problem: active generation of the energy (carrier) that stimulates receptors; reorientation of the point of view; and control of signal conditioning before transduction (pre-receptor mechanisms). This paper describes how these strategies are used in sensory-motor systems, using electric fish as a paradigmatic example. Carrier generation and receptor tuning to the carrier improve signal to noise ratio. Receptor tuning to different frequency bands of the carrier spectrum allows a sensory system to evaluate different kinds of carrier modulations and to extract the different features of objects in the environment. Pre-receptor mechanisms condition the signals, optimizing their detection at a foveal region where the sensory resolution is maximum. Active orientation of the sensory surface redirects the fovea to explore in detail the source of interesting signals. Sensory input generated by these active exploration mechanisms ('reafference') has two components: one, necessary, derived from the self-generated actions and another, contingent, consisting of the information obtained from the external world. Extracting environmental information ('exafference') requires that the self generated afference be subtracted from the sensory inflow. Such subtraction is often associated with the generation and storage of expectations about sensory inputs. It can be concluded that an animal's perceptual world and its ability to transform the world are inextricably linked. Understanding sensory systems must, therefore, always require understanding the organization of motor behavior.
Collapse
Affiliation(s)
- Angel A Caputi
- Depart. Neurofisiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo 1160, Uruguay.
| |
Collapse
|
30
|
Köppl C, Forge A, Manley GA. Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility. J Comp Neurol 2004; 479:149-55. [PMID: 15452826 DOI: 10.1002/cne.20311] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hair cells are the mechanoreceptive cells of the vertebrate lateral line and inner ear. In addition to their sensory function, hair cells display motility and thus themselves generate mechanical energy, which is thought to enhance sensitivity. Two principal cellular mechanism are known that can mediate hair-cell motility in vitro. One of these is based on voltage-dependent changes of an intramembrane protein and has so far been demonstrated only in outer hair cells of the mammalian cochlea. Correlated with this, the cell membranes of outer hair cells carry an extreme density of embedded particles, as revealed by freeze fracturing. The present study explored the possibility of membrane-based motility in hair cells of nonmammals, by determining their density of intramembrane particles. Replicas of freeze-fractured membrane were prepared from auditory hair cells of a lizard, the Tokay gecko, and a bird, the barn owl. These species were chosen because of independent evidence for active cochlear mechanics, in the form of spontaneous otoacoustic emissions. For quantitative comparison, mammalian inner and outer hair cells, as well as vestibular hair, cells were reevaluated. Lizard and bird hair cells displayed median densities of 2,360 and 1,880 intramembrane particles/microm2, respectively. This was not significantly different from the densities in vestibular and mammalian inner hair cells; however, it was about half the density in of mammalian outer hair cells. This suggests that nonmammalian hair cells do not possess high densities of motor protein in their membranes and are thus unlikely to be capable of somatic motility.
Collapse
Affiliation(s)
- Christine Köppl
- Lehrstuhl für Zoologie, Technische Universität München, 85747 Garching, Germany.
| | | | | |
Collapse
|
31
|
Abstract
In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the "base" of the cochlea (near the stapes) and low-frequency waves approaching the "apex" of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the "cochlear amplifier." This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers.
Collapse
Affiliation(s)
- L Robles
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Programa Disciplinario de Fisiología y Biofísica, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
32
|
Seifert E, Brand K, van de Flierdt K, Hahn M, Riebandt M, Lamprecht-Dinnesen A. The influence of hypothermia on outer hair cells of the cochlea and its efferents. BRITISH JOURNAL OF AUDIOLOGY 2001; 35:87-98. [PMID: 11314915 DOI: 10.1080/03005364.2001.11742735] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Transient evoked otoacoustic emissions (TEOAE) were recorded in 21 guinea-pigs undergoing hypothermia. The minimal average body temperature during cooling was 26 degrees C/24.9 degrees C measured orally or rectally, respectively. The animals were subsequently warmed to normal body temperature. A clear influence of body temperature on TEOAE could be documented. During cooling the amplitude and reproducibilities decreased, disappearing completely at a mean temperature below 28.5 degrees C (oral) and 27.3 degrees C (rectal). The emissions reappeared during rewarming at a mean temperature of 30.1 degrees C (oral) and 30.8 degrees C (rectal). Contralateral auditory stimulation (CAS) led to a decrease of the amplitudes of TEOAE during cooling down to a mean of 33 degrees C/32 degrees C (oral/rectal temperature). During rewarming, influences of the CAS could be recognized, again at an oral temperature above 35 degrees C. The changes to the TEOAE observed in these experiments suggest that hypothermia affects not only the outer hair cells (OHC) of the cochlea but also the efferent supply to the cochlea.
Collapse
Affiliation(s)
- E Seifert
- Department of Phoniatrics and Pedaudiology, Westphalian Wilhelms-University, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Over the past year, much progress has been achieved in the study of both the peripheral and the central auditory systems of birds. Significant advances have been made in the study of hair cells, including elucidation of the mechanisms of selectivity for sound frequency, functional differentiation, efferent innervation, and regeneration. Most of the studies of central auditory neurones have concerned the developmental and physiological correlates of vocal learning in songbirds and sound localisation in owls.
Collapse
Affiliation(s)
- C Köppl
- Institut für Zoologie, Technische Universität München, Garching, Germany.
| | | | | |
Collapse
|
34
|
Yates GK, Manley GA, Köppl C. Rate-intensity functions in the emu auditory nerve. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2000; 107:2143-2154. [PMID: 10790040 DOI: 10.1121/1.428496] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rate-versus-intensity functions recorded from mammalian auditory-nerve fibers have been shown to form a continuum of shapes, ranging from saturating to straight and correlating well with spontaneous rate and sensitivity. These variations are believed to be a consequence of the interaction between the sensitivity of the hair-cell afferent synapse and the nonlinear, compressive growth of the cochlear amplifier that enhances mechanical vibrations on the basilar membrane. Little is known, however, about the cochlear amplifier in other vertebrate species. Rate-intensity functions were recorded from auditory-nerve fibers in chicks of the emu, a member of the Ratites, a primitive group of flightless birds that have poorly differentiated short and tall hair cells. Recorded data were found to be well fitted by analytical functions which have previously been shown to represent well the shapes of rate-intensity functions in guinea pigs. At the fibers' most sensitive frequencies, rate-intensity functions were almost exclusively of the sloping (80.9%) or straight (18.6%) type. Flat-saturating functions, the most common type in the mammal, represented only about 0.5% of the total in the emu. Below the best frequency of each fiber, the rate-intensity functions tended more towards the flat-saturating type, as is the case in mammals; a similar but weaker trend was seen above best frequency in most fibers, with only a small proportion (18%) showing the reverse trend. The emu rate-intensity functions were accepted as supporting previous evidence for the existence of a cochlear amplifier in birds, the conclusion was drawn further that the nonlinearity observed is probably due to saturation of the hair-cell transduction mechanism.
Collapse
Affiliation(s)
- G K Yates
- Department of Physiology, The University of Western Australia, Nedlands. Australia.
| | | | | |
Collapse
|
35
|
|
36
|
Manley GA, Taschenberger G, Oeckinghaus H. Influence of contralateral acoustic stimulation on distortion-product and spontaneous otoacoustic emissions in the barn owl. Hear Res 1999; 138:1-12. [PMID: 10575110 DOI: 10.1016/s0378-5955(99)00126-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The avian auditory papilla provides an interesting object on which to study efferent influences, because whereas a significant population of hair cells in birds is not afferently innervated, all hair cells are efferently innervated (Fischer, 1992, 1994a, b). Previous studies in mammals using contralateral sound to stimulate the efferent system demonstrated a general suppressive effect on spontaneous and click-evoked, as well as on distortion-product otoacoustic emissions (DPOAE). As little is known about the effects of contralateral stimulation on hearing in birds, we studied the effect of such stimuli (broadband noise, pure tones) on the amplitude of the DPOAE 2f(1)-f(2) and on spontaneous otoacoustic emissions (SOAE) in the barn owl, Tyto alba. For the DPOAE measurements, fixed primary-tone pairs [f(1)=8.875 kHz (ratio=1.2), f(1)=8.353 kHz (ratio=1.15) and f(1)=7.889 kHz (ratio=1.1)] were presented and the DPOAE measured in the presence and absence of continuous contralateral stimulation. The DPOAE often declined in amplitude but in some cases we observed DPOAE enhancement. The changes in amplitude were as large as 9 dB. The influence of the contralateral noise changed over time, however, and the effects of contralateral tones were frequency-dependent. SOAE were suppressed in amplitude and shifted in frequency by contralateral broadband noise. Control measurements in animals after middle-ear muscle resection showed that these phenomena were not attributable to the acoustic middle-ear reflex. The finding of DPOAE enhancement is interesting, because a type of efferent fiber that suppressed its discharge rate during stimulation has been described in birds (Kaiser and Manley, 1994).
Collapse
Affiliation(s)
- G A Manley
- Institut für Zoologie der Technischen Universität München, Lichtenbergstr. 4, 85747, Garching, Germany.
| | | | | |
Collapse
|
37
|
Abstract
Rate-intensity functions, i.e., the relation between discharge rate and sound pressure level, were recorded from single auditory nerve fibers in the barn owl. Differences in sound pressure level between the owl's two ears are known to be an important cue in sound localization. One objective was therefore to quantify the discharge rates of auditory nerve fibers, as a basis for higher-order processing of sound pressure level. The second aim was to investigate the rate-intensity functions for cues to the underlying cochlear mechanisms, using a model developed in mammals. Rate-intensity functions at the most sensitive frequency mostly showed a well-defined breakpoint between an initial steep segment and a progressively flattening segment. This shape has, in mammals, been convincingly traced to a compressive nonlinearity in the cochlear mechanics, which in turn is a reflection of the cochlear amplifier enhancing low-level stimuli. The similarity of the rate-intensity functions of the barn owl is thus further evidence for a similar mechanism in birds. An interesting difference from mammalian data was that this compressive nonlinearity was not shared among fibers of similar characteristic frequency, suggesting a different mechanism with a more locally differentiated operation than in mammals. In all fibers, the steepest change in discharge rate with rising sound pressure level occurred within 10-20 dB of their respective thresholds. Because the range of neural thresholds at any one characteristic frequency is small in the owl, auditory nerve fibers were collectively most sensitive for changes in sound pressure level within approximately 30 dB of the best thresholds. Fibers most sensitive to high frequencies (>6-7 kHz) showed a smaller increase of rate above spontaneous discharge rate than did lower-frequency fibers.
Collapse
|
38
|
Taschenberger G, Manley GA. General characteristics and suppression tuning properties of the distortion-product otoacoustic emission 2f1-f2 in the barn owl. Hear Res 1998; 123:183-200. [PMID: 9745966 DOI: 10.1016/s0378-5955(98)00120-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distortion-product otoacoustic emission (DPOAE) 2f1-f2 was measured in the ear canal of the barn owl. DPOAE were elicited by primary tones in 11 frequency regions from 1 to 9 kHz. The highest DPOAE output levels and best thresholds were found for f1 frequencies of 4 to 7 kHz and additionally at the lowest f1 frequency investigated. In some cases, the DPOAE sound pressures were only 37 dB below the primary-tone levels (PTL). The optimal primary-tone frequency ratios ranged from 1.05 to 1.45 and varied strongly among the different frequency regions investigated. The largest optimal ratios were measured in the middle frequency range for f1. At lower and higher f1, the optimal ratios decreased. DPOAE levels could be suppressed in a frequency-selective way by adding a third tone. As in other non-mammals, the best suppressive frequencies were near f1, suggesting DPOAE generation near the frequency place of this primary tone. This is in contrast to what is known for mammalian species, where the DPOAE is thought to be generated near f2. To obtain 6 dB of suppression of the DPOAE level, suppressor-tone levels ranging from 13 dB below to 4 dB above the primary-tone level were necessary. The Q10dB-values of suppression tuning curves increased as a function of frequency up to a value of 15.8. This tendency resembled the increase in frequency selectivity of auditory nerve fibers in this species.
Collapse
Affiliation(s)
- G Taschenberger
- Institut für Zoologie der Technischen Universität München, Garching, Germany
| | | |
Collapse
|