1
|
Capshaw G, Brown AD, Peña JL, Carr CE, Christensen-Dalsgaard J, Tollin DJ, Womack MC, McCullagh EA. The continued importance of comparative auditory research to modern scientific discovery. Hear Res 2023; 433:108766. [PMID: 37084504 PMCID: PMC10321136 DOI: 10.1016/j.heares.2023.108766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
A rich history of comparative research in the auditory field has afforded a synthetic view of sound information processing by ears and brains. Some organisms have proven to be powerful models for human hearing due to fundamental similarities (e.g., well-matched hearing ranges), while others feature intriguing differences (e.g., atympanic ears) that invite further study. Work across diverse "non-traditional" organisms, from small mammals to avians to amphibians and beyond, continues to propel auditory science forward, netting a variety of biomedical and technological advances along the way. In this brief review, limited primarily to tetrapod vertebrates, we discuss the continued importance of comparative studies in hearing research from the periphery to central nervous system with a focus on outstanding questions such as mechanisms for sound capture, peripheral and central processing of directional/spatial information, and non-canonical auditory processing, including efferent and hormonal effects.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98105, USA
| | - José L Peña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molly C Womack
- Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Elizabeth A McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
2
|
Manley GA. Otoacoustic Emissions in Non-Mammals. Audiol Res 2022; 12:260-272. [PMID: 35645197 PMCID: PMC9149831 DOI: 10.3390/audiolres12030027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Otoacoustic emissions (OAE) that were sound-induced, current-induced, or spontaneous have been measured in non-mammalian land vertebrates, including in amphibians, reptiles, and birds. There are no forms of emissions known from mammals that have not also been observed in non-mammals. In each group and species, the emission frequencies clearly lie in the range known to be processed by the hair cells of the respective hearing organs. With some notable exceptions, the patterns underlying the measured spectra, input-output functions, suppression threshold curves, etc., show strong similarities to OAE measured in mammals. These profound similarities are presumably traceable to the fact that emissions are produced by active hair-cell mechanisms that are themselves dependent upon comparable nonlinear cellular processes. The differences observed—for example, in the width of spontaneous emission peaks and delay times in interactions between peaks—should provide insights into how hair-cell activity is coupled within the organ and thus partially routed out into the middle ear.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Department of Neuroscience, Faculty of Medicine, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Engler S, Köppl C, Manley GA, de Kleine E, van Dijk P. Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba). Hear Res 2019; 385:107835. [PMID: 31710933 DOI: 10.1016/j.heares.2019.107835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/30/2019] [Accepted: 10/27/2019] [Indexed: 11/20/2022]
Abstract
Spontaneous otoacoustic emissions (SOAEs) have been observed in a variety of different vertebrates, including humans and barn owls (Tyto alba). The underlying mechanisms producing the SOAEs and the meaning of their characteristics regarding the frequency selectivity of an individual and species are, however, still under debate. In the present study, we measured SOAE spectra in lightly anesthetized barn owls and suppressed their amplitudes by presenting pure tones at different frequencies and sound levels. Suppression effects were quantified by deriving suppression tuning curves (STCs) with a criterion of 2 dB suppression. SOAEs were found in 100% of ears (n = 14), with an average of 12.7 SOAEs per ear. Across the whole SOAE frequency range of 3.4-10.2 kHz, the distances between neighboring SOAEs were relatively uniform, with a median distance of 430 Hz. The majority (87.6%) of SOAEs were recorded at frequencies that fall within the barn owl's auditory fovea (5-10 kHz). The STCs were V-shaped and sharply tuned, similar to STCs from humans and other species. Between 5 and 10 kHz, the median Q10dB value of STC was 4.87 and was thus lower than that of owl single-unit neural data. There was no evidence for secondary STC side lobes, as seen in humans. The best thresholds of the STCs varied from 7.0 to 57.5 dB SPL and correlated with SOAE level, such that smaller SOAEs tended to require a higher sound level to be suppressed. While similar, the frequency-threshold curves of auditory-nerve fibers and STCs of SOAEs differ in some respects in their tuning characteristics indicating that SOAE suppression tuning in the barn owl may not directly reflect neural tuning in primary auditory nerve fibers.
Collapse
Affiliation(s)
- Sina Engler
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, The Netherlands; Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands.
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Geoffrey A Manley
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Emile de Kleine
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, The Netherlands; Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands
| | - Pim van Dijk
- University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, The Netherlands; Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, The Netherlands
| |
Collapse
|
4
|
Köppl C. Birds – same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models. Hear Res 2011; 273:65-71. [DOI: 10.1016/j.heares.2010.03.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
|
5
|
|
6
|
Varghese GI, Zhu X, Frisina RD. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice. Hear Res 2005; 209:60-7. [PMID: 16061336 DOI: 10.1016/j.heares.2005.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 06/21/2005] [Indexed: 11/29/2022]
Abstract
One role of the medial olivocochlear (MOC) auditory efferent system is to suppress cochlear outer hair cell (OHC) responses when presented with a contralateral sound. Using distortion product otoacoustic emissions (DPOAEs), the effects of active changes in OHC responses due to the MOC as a function of age can be observed when contralateral stimulation with a pure tone is applied. Previous studies have shown that there are age-related declines of the MOC when broad band noise is presented to the contralateral ear. In this study, we measured age-related changes in CBA/CaJ mice by comparing DPOAE generation with and without a contralateral pure tone at three different frequencies (12, 22, and 37 kHz). Young (n = 16), middle (n = 10) and old-aged (n = 10) CBA mice were tested. DPOAE-grams were obtained using L1 = 65 and L2 = 50 dB SPL, F1/F2 = 1.25, using eight points per octave covering a frequency range from 5.6-44.8 kHz. The pure tone was presented contralaterally at 55 dB SPL. DPOAE-grams and ABR levels indicated age-related hearing loss in the old mice. In addition, there was an overall change in DPOAEs in the middle-aged and old groups relative to the young. Pure tone stimulation was not as effective as a suppressor compared to broadband noise. An increase in pure tone frequency from 12 to 22 kHz induced greater suppression of DPOAEs, but the 37 kHz was least effective. These results indicate that as the mouse ages, there are significant changes in the efficiency of the suppression mechanism as elicited by contralateral narrowband stimuli. These findings reinforce the idea that age-related changes in the MOC or the operating points of OHCs play a role in the progression of presbycusis - age-related hearing loss in mammals.
Collapse
Affiliation(s)
- George I Varghese
- Department of Otolaryngology, University of Rochester School of Medicine and Dentistry, NY 14642-8629, USA
| | | | | |
Collapse
|
7
|
Ipakchi R, Kyin T, Saunders JC. Loss and recovery of sound-evoked otoacoustic emissions in young chicks following acoustic trauma. Audiol Neurootol 2005; 10:209-19. [PMID: 15809500 DOI: 10.1159/000084842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 12/20/2004] [Indexed: 11/19/2022] Open
Abstract
Young and adult chickens exhibit substantial inner-ear damage and post-exposure deterioration in cochlear nerve activity following exposure to intense sound. Both the structural and functional losses largely recover in both age groups within 2-4 weeks after exposure. However, some aspects of acoustic trauma differ between the young and adult chicken ear. Overstimulation in the young chick causes considerable post-exposure loss and then recovery of the steady-state endocochlear potential, while in the adult animal there is little post-exposure effect on this potential. Moreover, in adults there is post-exposure loss but little recovery in the distortion product otoacoustic emission (DPOAE). The present study explores the possibility of an age difference in the effects of overstimulation on the DPOAE by examining these emissions in young chicks following exposure to an intense pure tone. Chicks exposed to intense sound were formed into groups at 0 and 12 days of recovery, and these were complemented by two additional groups of age-matched controls. The cubic difference tone emission (the 2f(1)-f(2) DPOAE component) was measured at 9 levels for 13 frequencies in all groups. Shortly after the exposure, the DPOAE reliably declined with the maximum loss at or above the exposure tone frequency. The exposed chicks examined 12 days after exposure showed complete recovery of the DPOAE. It would appear that 12 days of recovery sufficiently repaired inner ear damage to completely restore DPOAE production. This result is different from that in adult chicken and may be related to the greater severity of acoustic damage in the adult ear, a reduced susceptibility of the young ear to acoustic trauma, or the ability of the young animal to more successfully repair the inner ear.
Collapse
Affiliation(s)
- Ramin Ipakchi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
8
|
Abstract
The influence of the crossed medial efferent system on cochlear mechanics of the mustached bat was tested by measuring delayed evoked otoacoustic emissions (DEOAEs), cochlear microphonics, distortion product otoacoustic emissions (DPOAEs) and stimulus frequency otoacoustic emissions. Contralaterally delivered sinusoids, broadband noise and bat echolocation calls were used for acoustic stimulation of the efferent system. With all four measures we found a level-dependent suppression under stimulation with both broadband noise and echolocation calls. In addition, the sharply tuned cochlear resonance of the mustached bat which is involved in processing echolocation signals at 61 kHz shifted upward in frequency by several 100 Hz. Presentation of sinusoids did not have any significant effect. DEOAEs and DPOAEs were in some cases enhanced during contralateral presentation of the bat calls at moderate intensities. The most important function of the efferent system in the mustached bat might be the control of the extraordinarily fine-tuned resonator of this species, which is close to instability as evident from the very pronounced evoked otoacoustic emissions which sometimes convert into spontaneous otoacoustic emissions of high level.
Collapse
Affiliation(s)
- Markus Drexl
- Department Biologie II der Ludwig-Maximilians-Universität München, Luisenstrasse 14, D-80333 Munich, Germany.
| | | |
Collapse
|
9
|
van Dijk P, Narins PM, Mason MJ. Physiological vulnerability of distortion product otoacoustic emissions from the amphibian ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 114:2044-2048. [PMID: 14587603 DOI: 10.1121/1.1608957] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The physiological vulnerability of distortion product otoacoustic emissions (DPOAEs) was investigated in the leopard frog, Rana pipiens pipiens. For each frog, DPOAEs were recorded from the amphibian and the basilar papillae. Measurements were taken before and after either the arrest of oxygen supply due to cardioectomy, or the destruction of the central nervous system (CNS). DPOAEs in response to high-level stimuli (> 75 dB SPL) were rather robust to these insults during the first two hours post surgery. In contrast, DPOAE amplitudes in response to low-level stimuli (< 75 dB SPL) decreased significantly. On average, low-level emissions from the amphibian papilla disappeared within 6 min for cardioectomy, and after 13 min for CNS destruction. In the basilar papilla, low-level DPOAEs disappeared more slowly: on average after 34 min following cardioectomy, and after 58 min for CNS destruction. The difference in physiological vulnerability between low- and high-level emissions is similar to that in mammals and a lizard. The difference between the DPOAE decay rate of the frog's amphibian and basilar papillae suggests important differences between the hearing mechanisms of the papillae.
Collapse
Affiliation(s)
- Pim van Dijk
- Department of Otorhinolaryngology and Head & Neck Surgery, University Hospital Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | |
Collapse
|
10
|
Abstract
When the cochlea is stimulated by a sinusoidal current, the inner ear emits an acoustic signal at the stimulus frequency, termed the electrically evoked otoacoustic emission (EEOAE). Recent studies have found EEOAEs in birds lacking outer hair cells (OHCs), raising the possibility that other types of hair cells, including inner hair cells (IHCs), may generate EEOAEs. To determine the relative contribution of IHCs and OHCs to the generation of the EEOAE, we measured the amplitude of EEOAEs, distortion product otoacoustic emissions (DPOAEs), the cochlear microphonic (CM) and the compound action potential (CAP) in normal chinchillas and chinchillas with IHC lesions or IHC plus OHC lesions induced by carboplatin. Selective IHC loss had little or no effect on CM amplitude and caused a slight reduction in mean DPOAE amplitude. However, IHC loss resulted in a massive reduction in CAP amplitude. Importantly, selective IHC lesions did not reduce EEOAE amplitude, but instead, EEOAE amplitude increased at high frequencies. When both IHCs and OHCs were destroyed, the amplitude of the CM, DPOAE and EEOAE all decreased. The increase in EEOAE amplitude seen with IHC loss may be due to (1) loss of tonic efferent activity to the OHCs, (2) change in the mechanical properties of the cochlea or (3) elimination of EEOAEs produced by IHCs in phase opposition to those from OHCs.
Collapse
MESH Headings
- Action Potentials/physiology
- Animals
- Carboplatin/pharmacology
- Cell Death
- Chinchilla
- Cochlear Microphonic Potentials/physiology
- Electric Stimulation
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/pathology
- Hair Cells, Auditory/physiology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/physiology
- Otoacoustic Emissions, Spontaneous/physiology
- Perceptual Distortion/physiology
- Reference Values
Collapse
Affiliation(s)
- S Reyes
- Hearing Research Lab, 215 Parker Hall, University of Buffalo, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
11
|
Lang H, Fekete DM. Lineage Analysis in the Chicken Inner Ear Shows Differences in Clonal Dispersion for Epithelial, Neuronal, and Mesenchymal Cells. Dev Biol 2001; 234:120-37. [PMID: 11356024 DOI: 10.1006/dbio.2001.0248] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epithelial components of the vertebrate inner ear and its associated ganglion arise from the otic placode. The cell types formed include neurons, hair-cell mechanoreceptors, supporting cells, secretory cells that make endolymphatic fluid or otolithic membranes, and simple epithelial cells lining the fluid-filled cavities. The epithelial sheet is surrounded by an inner layer of connective and vascular tissues and an outer capsule of bone. To explore the mechanisms of cell fate specification in the ear, retrovirus-mediated lineage analysis was performed after injecting virus into the chicken otocyst on embryonic days 2.5-5.5. Because lineage analysis might reveal developmental compartments, an effort was made to study clonal dispersion by sampling infected cells from different parts of the same ear, including the auditory ganglion, cochlea, saccule, utricle, and semicircular canals. Lineage relationships were confirmed for 75 clones by amplification and sequencing of a variable DNA tag carried by each virus. While mesenchymal clones could span different structural parts of the ear, epithelial clones did not. The circumscribed epithelial clones indicated that their progenitors were not highly migratory. Ganglion cell clones, in contrast, were more dispersed. There was no evidence for a common lineage between sensory cells and their associated neurons, a prediction based on a proposal that the ear sensory organs and fly mechanosensory organs are evolutionarily homologous. As expected, placodal derivatives were unrelated to adjacent mesenchymal cells or to nonneuronal cells of the ganglion. Within the otic capsule, fibroblasts and cartilage cells could be related by lineage.
Collapse
Affiliation(s)
- H Lang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907-1392, USA
| | | |
Collapse
|
12
|
Abstract
The frog inner ear contains two hearing organs: the amphibian and the basilar papilla. The amphibian papilla is sensitive to low- and mid-frequency stimuli (0.1--0.5 and 0.5--1.3 kHz, respectively, in Hyla cinerea), while the basilar papilla is sensitive to high-frequency stimuli (2.8--3.9 kHz in H. cinerea). Distortion product otoacoustic emissions (DPOAE) were recorded from the ear of the tree frog H. cinerea. In each of six ears investigated, a cubic distortion product (DP) at 2f(1)--f(2) was present when the primary frequencies f(1) and f(2) and the DP frequency were close to either the mid- or the high-frequency range. At frequencies between the sensitive ranges of both papillae, no emissions were observed. For the basilar papilla, the dependence of DP level on the primary tone frequency ratio f(2)/f(1) showed a pattern characteristic of the response of a single nonlinear resonator. Thus, in agreement with neural data, DPOAE from the basilar papilla reflect the contribution of a single auditory filter to emission generation.
Collapse
Affiliation(s)
- P van Dijk
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Maastricht, The Netherlands.
| | | |
Collapse
|
13
|
Abstract
Over the past year, much progress has been achieved in the study of both the peripheral and the central auditory systems of birds. Significant advances have been made in the study of hair cells, including elucidation of the mechanisms of selectivity for sound frequency, functional differentiation, efferent innervation, and regeneration. Most of the studies of central auditory neurones have concerned the developmental and physiological correlates of vocal learning in songbirds and sound localisation in owls.
Collapse
Affiliation(s)
- C Köppl
- Institut für Zoologie, Technische Universität München, Garching, Germany.
| | | | | |
Collapse
|
14
|
Braun M. Inferior colliculus as candidate for pitch extraction: multiple support from statistics of bilateral spontaneous otoacoustic emissions. Hear Res 2000; 145:130-40. [PMID: 10867285 DOI: 10.1016/s0378-5955(00)00083-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fibrodendritic laminae of the central nucleus of the inferior colliculus (ICC) constitute a frequency map in stacked sheets that are consistently related to the psychoacoustic critical bandwidth (CB) [Schreiner and Langner, 1997. Nature 388, 383-386]. The recently observed co-occurrence of the CB and the double CB (2CB) suggested an adaptation of the ICC frequency map to the extraction of the fundamental frequency f(0) [Braun, 1999. Hear. Res. 129, 71-82]. The present study examined a possible influence of this frequency map upon efferent signaling towards the cochlea. The f(0) distribution of 2890 monaural and 2604 binaural pairs of human spontaneous otoacoustic emissions was analyzed by three statistical methods and in each case showed non-random behavior in the CB-2CB range. Single results were (1) a bias of right ear f(0) (mode at 349 Hz) and left ear f(0) (mode at 262 Hz) towards different ranges of speech f(0) (P<0.02); (2) a bias of binaural, but not monaural, f(0) towards five of 12 semitone bins, C-G-D-A-E, representing the most frequent tones in music (P<0.003); (3) a bias of binaural, but not monaural, f(0) fine-distribution towards the exact pitch frequencies used in music, according to the international standard A4=440 Hz (P=0.03). The results support a model of lamina-based f(0) extraction in the ICC and suggest a specific colliculo-cochlear feedback for f(0) enhancement.
Collapse
Affiliation(s)
- M Braun
- Physiological Music Research, Adickes Str. 42, D-22607, Hamburg, Germany.
| |
Collapse
|