1
|
Hart CE, Gorman-Lewis D. Energetic investigations of Acidianus ambivalens metabolism during anaerobic sulfur reduction and comparisons to aerobic sulfur oxidation. Extremophiles 2025; 29:19. [PMID: 40183960 DOI: 10.1007/s00792-025-01385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Acidianus ambivalens is a metabolically flexible facultative anaerobe that can oxidize and reduce elemental sulfur with O2 and H2, respectively. In this work, the growth energetics of Acidianus ambivalens were determined under anaerobic conditions at 76 °C with H2 oxidation by elemental sulfur serving as the energy-yielding catabolic reaction. The biomass yields (C-mol of biomass per mol of H2 consumed) ranged from approximately 0.004 to 0.01. Growth rates ranged from 0.003 to 0.012 h-1. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from - 881 to - 3349 kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from - 610 to - 4090 kJ/C-mol. The Gibbs energy consumed by anaerobic cultures was compared to sulfur-oxidizing cultures under aerobic and microaerobic conditions to determine the effects of environmental and substrate redox state on energetics. This comparison revealed that aerobic cultures were inefficient relative to microaerobic and anaerobic conditions. These results suggest that aerobic conditions induce a measurable oxidative stress on cultures. The similarities in growth efficiency and energy budgets under microaerobic and anaerobic conditions may allow Acidianus ambivalens to be competitive in natural environments either by oxidizing or reducing elemental sulfur.
Collapse
Affiliation(s)
- Chloé E Hart
- University of Washington, Earth and Space, Sciences, Seattle, USA
| | | |
Collapse
|
2
|
Liu LJ, Jiang Z, Wang P, Qin YL, Xu W, Wang Y, Liu SJ, Jiang CY. Physiology, Taxonomy, and Sulfur Metabolism of the Sulfolobales, an Order of Thermoacidophilic Archaea. Front Microbiol 2021; 12:768283. [PMID: 34721370 PMCID: PMC8551704 DOI: 10.3389/fmicb.2021.768283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
The order Sulfolobales (phylum Crenarchaeota) is a group of thermoacidophilic archaea. The first member of the Sulfolobales was discovered in 1972, and current 23 species are validly named under the International Code of Nomenclature of Prokaryotes. The majority of members of the Sulfolobales is obligately or facultatively chemolithoautotrophic. When they grow autotrophically, elemental sulfur or reduced inorganic sulfur compounds are their energy sources. Therefore, sulfur metabolism is the most important physiological characteristic of the Sulfolobales. The functions of some enzymes and proteins involved in sulfur reduction, sulfur oxidation, sulfide oxidation, thiosulfate oxidation, sulfite oxidation, tetrathionate hydrolysis, and sulfur trafficking have been determined. In this review, we describe current knowledge about the physiology, taxonomy, and sulfur metabolism of the Sulfolobales, and note future challenges in this field.
Collapse
Affiliation(s)
- Li-Jun Liu
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Ling Qin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Xu
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yang Wang
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Kotsyurbenko OR, Cordova JA, Belov AA, Cheptsov VS, Kölbl D, Khrunyk YY, Kryuchkova MO, Milojevic T, Mogul R, Sasaki S, Słowik GP, Snytnikov V, Vorobyova EA. Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection. ASTROBIOLOGY 2021; 21:1186-1205. [PMID: 34255549 PMCID: PMC9545807 DOI: 10.1089/ast.2020.2296] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
The search for life beyond Earth has focused on Mars and the icy moons Europa and Enceladus, all of which are considered a safe haven for life due to evidence of current or past water. The surface of Venus, on the other hand, has extreme conditions that make it a nonhabitable environment to life as we know it. This is in contrast, however, to its cloud layer, which, while still an extreme environment, may prove to be a safe haven for some extreme forms of life similar to extremophiles on Earth. We consider the venusian clouds a habitable environment based on the presence of (1) a solvent for biochemical reactions, (2) appropriate physicochemical conditions, (3) available energy, and (4) biologically relevant elements. The diversity of extreme microbial ecosystems on Earth has allowed us to identify terrestrial chemolithoautotrophic microorganisms that may be analogs to putative venusian organisms. Here, we hypothesize and describe biological processes that may be performed by such organisms in the venusian clouds. To detect putative venusian organisms, we describe potential biosignature detection methods, which include metal-microbial interactions and optical methods. Finally, we describe currently available technology that can potentially be used for modeling and simulation experiments.
Collapse
Affiliation(s)
- Oleg R. Kotsyurbenko
- Yugra State University, The Institute of Oil and Gas, School of Ecology, Khanty-Mansiysk, Russian Federation
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
| | - Jaime A. Cordova
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrey A. Belov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Vladimir S. Cheptsov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
- Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Denise Kölbl
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Yuliya Y. Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Ekaterinburg, Russian Federation
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Margarita O. Kryuchkova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Tetyana Milojevic
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, California, USA
| | - Satoshi Sasaki
- School of Biosciences and Biotechnology/School of Health Sciences, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Grzegorz P. Słowik
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Valery Snytnikov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Elena A. Vorobyova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| |
Collapse
|
4
|
A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol 2021; 6:946-959. [PMID: 34155373 DOI: 10.1038/s41564-021-00918-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
The accrual of genomic data from both cultured and uncultured microorganisms provides new opportunities to develop systematic taxonomies based on evolutionary relationships. Previously, we established a bacterial taxonomy through the Genome Taxonomy Database. Here, we propose a standardized archaeal taxonomy that is derived from a 122-concatenated-protein phylogeny that resolves polyphyletic groups and normalizes ranks based on relative evolutionary divergence. The resulting archaeal taxonomy, which forms part of the Genome Taxonomy Database, is stable for a range of phylogenetic variables including marker gene selection, inference methods, corrections for rate heterogeneity and compositional bias, tree rooting scenarios and expansion of the genome database. Rank normalization is shown to robustly correct for substitution rates varying up to 30-fold using simulated datasets. Taxonomic curation follows the rules of the International Code of Nomenclature of Prokaryotes while taking into account proposals to formally recognize the rank of phylum and to use genome sequences as type material. This taxonomy is based on 2,392 archaeal genomes, 93.3% of which required one or more changes to their existing taxonomy, mainly owing to incomplete classification. We identify 16 archaeal phyla and reclassify 3 major monophyletic units from the former Euryarchaeota and one phylum that unites the Thaumarchaeota-Aigarchaeota-Crenarchaeota-Korarchaeota (TACK) superphylum into a single phylum.
Collapse
|
5
|
Hart C, Gorman-Lewis D. Energetics of Acidianus ambivalens growth in response to oxygen availability. GEOBIOLOGY 2021; 19:48-62. [PMID: 32902110 DOI: 10.1111/gbi.12413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
All life requires energy to drive metabolic reactions such as growth and cell maintenance; therefore, fluctuations in energy availability can alter microbial activity. There is a gap in our knowledge concerning how energy availability affects the growth of extreme chemolithoautotrophs. Toward this end, we investigated the growth of thermoacidophile Acidianus ambivalens during sulfur oxidation under aerobic to microaerophilic conditions. Calorimetry was used to measure enthalpy (ΔHinc ) of microbial activity, and chemical changes in growth media were measured to calculate Gibbs energy change (ΔGinc ) during incubation. In all experiments, Gibbs energy was primarily dissipated through the release of heat, which suggests enthalpy-driven growth. In microaerophilic conditions, growth was significantly more efficient in terms of biomass yield (defined as C-mol biomass per mole sulfur consumed) and resulted in lower ΔGinc and ΔHinc . ΔGinc in oxygen-limited (OL) and oxygen- and CO2 -limited (OCL) microaerophilic growth conditions resulted in averages of -1.44 × 103 kJ/C-mol and -7.56 × 102 kJ/C-mol, respectively, and average ΔHinc values of -1.11 × 105 kJ/C-mol and -4.43 × 104 kJ/C-mol, respectively. High-oxygen experiments resulted in lower biomass yield values, an increase in ΔGinc to -1.71 × 104 kJ/C-mol, and more exothermic ΔHinc values of -4.71 × 105 kJ/C-mol. The observed inefficiency in high-oxygen conditions may suggest larger maintenance energy demands due to oxidative stresses and a preference for growth in microaerophilic environments.
Collapse
Affiliation(s)
- Chloe Hart
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Drew Gorman-Lewis
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Itoh T, Miura T, Sakai HD, Kato S, Ohkuma M, Takashina T. Sulfuracidifex tepidarius gen. nov., sp. nov. and transfer of Sulfolobus metallicus Huber and Stetter 1992 to the genus Sulfuracidifex as Sulfuracidifex metallicus comb. nov. Int J Syst Evol Microbiol 2020; 70:1837-1842. [DOI: 10.1099/ijsem.0.003981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel, strictly aerobic, sulfur-dependent, thermoacidophilic strains, IC-006T and IC-007, were isolated from a solfataric field at Hakone Ohwaku-dani, Kanagawa, Japan. Cells of the two strains were irregular cocci with a diameter of 1.0–1.8 µm. They were strict aerobes and grew in a temperature range between 45 and 69 °C (optimally at 65 °C) and a pH range between 0.4 and 5.5 (optimally at pH 3.5). They required sulfur or a reduced sulfur compound, and sulfur was oxidized to sulfate. They grew autotrophically or mixotrophically utilizing several sugars and complex organic substances as carbon sources. The DNA G+C content was 42.4 mol%. A comparison of the 16S rRNA gene sequences among members of the order
Sulfolobales
indicated that they were closely related to
Sulfolobus metallicus
, forming an independent lineage within this order. The two isolates and
Sulfolobus metallicus
were also diffentiated based on their phenotypic properties from the other members of the order
Sulfolobales
. Detailed comparisons of the phenotypic properties and DNA–DNA hybridization study illustrated that the two isolates belong to a species different from
Sulfolobus metallicus
. On the basis of the phylogenetic and phenotypic comparisons, we propose a new genus and species, Sulfuracidifex tepidarius gen. nov., sp. nov. to accommodate strains IC-006T and IC-007. The type strain of Sulfuracidifex tepidarius is IC-006T (=JCM 16833T=DSM 104736T). In addition,
Sulfolobus metallicus
should be transferred to the new genus as Sulfuracidifex metallicus comb. nov.: the type strain is Kra23T (=DSM 6482T=JCM 9184T=NBRC 15436T).
Collapse
Affiliation(s)
- Takashi Itoh
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Tatsuki Miura
- Graduate School of Life Sciences, Toyo University, Oura, Japan, Gunma 374-0193
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Hiroyuki D. Sakai
- Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Tomonori Takashina
- Graduate School of Life Sciences, Toyo University, Oura, Japan, Gunma 374-0193
| |
Collapse
|
7
|
Draft Genome Sequence of Acidianus ambivalens DSM 3772, an Aerobic Thermoacidophilic Sulfur Disproportionator. Microbiol Resour Announc 2020; 9:9/3/e01415-19. [PMID: 31948968 PMCID: PMC6965586 DOI: 10.1128/mra.01415-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe the genome sequence of Acidianus ambivalens DSM 3772, an archaeon belonging to the Sulfolobales order that was first isolated from continental solfataric fields. This thermoacidophile was sequenced because it utilizes a unique sulfur disproportionation pathway that enables this metabolism under aerobic conditions, in contrast to obligately anaerobic bacterial sulfur disproportionators. Here, we describe the genome sequence of Acidianus ambivalens DSM 3772, an archaeon belonging to the Sulfolobales order that was first isolated from continental solfataric fields. This thermoacidophile was sequenced because it utilizes a unique sulfur disproportionation pathway that enables this metabolism under aerobic conditions, in contrast to obligately anaerobic bacterial sulfur disproportionators.
Collapse
|
8
|
Zeldes BM, Loder AJ, Counts JA, Haque M, Widney KA, Keller LM, Albers S, Kelly RM. Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilicSulfolobales. Environ Microbiol 2019; 21:3696-3710. [DOI: 10.1111/1462-2920.14712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin M. Zeldes
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Andrew J. Loder
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - James A. Counts
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Mashkurul Haque
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Karl A. Widney
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Lisa M. Keller
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Sonja‐Verena Albers
- Institute of Biology II – MicrobiologyUniversity of Freiburg Freiburg Germany
| | - Robert M. Kelly
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| |
Collapse
|
9
|
Hynek BM, Rogers KL, Antunovich M, Avard G, Alvarado GE. Lack of Microbial Diversity in an Extreme Mars Analog Setting: Poás Volcano, Costa Rica. ASTROBIOLOGY 2018; 18:923-933. [PMID: 29688767 PMCID: PMC6067093 DOI: 10.1089/ast.2017.1719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Poás volcano in Costa Rica has been studied as a Mars geochemical analog environment, since both the style of hydrothermal alteration present and the alteration mineralogy are consistent with Mars' relict hydrothermal systems. The site hosts an active volcano, with high-temperature fumaroles (up to 980°C) and an ultra-acidic lake. This lake, Laguna Caliente, is one of the most dynamic environments on Earth, with frequent phreatic eruptions, temperatures ranging from near-ambient to almost boiling, a pH range of -1 to 1.5, and a wide range of chemistries and redox potential. Martian acid-sulfate hydrothermal systems were likely similarly dynamic and equally challenging to life. The microbiology existing within Laguna Caliente was characterized for the first time, with sampling taking place in November, 2013. The diversity of the microbial community was surveyed via extraction of environmental DNA from fluid and sediment samples followed by Illumina sequencing of the 16S rRNA gene. The microbial diversity was limited to a single species of the bacterial genus Acidiphilium. This organism likely gets its energy from oxidation of reduced sulfur in the lake, including elemental sulfur. Given Mars' propensity for sulfur and acid-sulfate environments, this type of organism is of significant interest to the search for past or present life on the Red Planet. Key Words: Mars astrobiology-Acid-sulfate hydrothermal systems-Extremophiles-Acidic-High temperature-Acidiphilium bacteria. Astrobiology 18, 923-933.
Collapse
Affiliation(s)
- Brian M. Hynek
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
- Address correspondence to:Brian M. HynekLaboratory for Atmospheric and Space PhysicsUniversity of Colorado3665 Discovery Dr.Boulder, CO 80303
| | - Karyn L. Rogers
- Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Monique Antunovich
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
| | - Geoffroy Avard
- OVSICORI, National University of Costa Rica, Heredia, Costa Rica
| | - Guillermo E. Alvarado
- Centro de Investigaciones Geológicas, Red Sismológica Nacional, Universidad de Costa Rica, Costa Rica
| |
Collapse
|
10
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part II. [4Fe-4S] and [3Fe-4S] iron-sulfur proteins. J Struct Biol 2018; 202:250-263. [DOI: 10.1016/j.jsb.2018.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 01/27/2023]
|
11
|
Sakai HD, Kurosawa N. Saccharolobus caldissimus gen. nov., sp. nov., a facultatively anaerobic iron-reducing hyperthermophilic archaeon isolated from an acidic terrestrial hot spring, and reclassification of Sulfolobus solfataricus as Saccharolobus solfataricus comb. nov. and Sulfolobus shibatae as Saccharolobus shibatae comb. nov. Int J Syst Evol Microbiol 2018; 68:1271-1278. [PMID: 29485400 DOI: 10.1099/ijsem.0.002665] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel hyperthermophilic archaeon of strain HS-3T, belonging to the family Sulfolobaceae, was isolated from an acidic terrestrial hot spring in Hakone Ohwaku-dani, Japan. Based on 16S rRNA gene sequence analysis, the closest phylogenetic relatives of strain HS-3T were, first, Sulfolobus solfataricus (96.4 %) and, second, Sulfolobus shibatae (96.2 %), indicating that the strain belongs to the genus Sulfolobus. However, the sequence similarity to the type species of the genus Sulfolobus (Sulfolobus acidocaldarius) was remarkably low (91.8 %). In order to determine whether strain HS-3T belongs to the genus Sulfolobus, its morphological, biochemical and physiological characteristics were examined in parallel with those of S. solfataricus and S. shibatae. Although there were some differences in chemolithotrophic growth between strain HS-3T, S. solfataricus and S. shibatae, their temperature, pH and facultatively anaerobic characteristics of growth, and their utilization of various sugars were almost identical. In contrast, the utilization of various sugars by S. acidocaldarius was quite different from that of HS-3T, S. solfataricus and S. shibatae. Phylogenetic evidence based on the 16S and the 23S rRNA gene sequences also clearly distinguished the monophyletic clade composed of strain HS-3T, S. solfataricus, and S. shibatae from S. acidocaldarius. Based on these results, we propose a new genus and species, Saccharolobus caldissimus gen. nov., sp. nov., for strain HS-3T, as well as two reclassifications, Saccharolobus solfataricus comb. nov. and Saccharolobus shibatae comb. nov. The type strain of Saccharolobus caldissimus is HS-3T (=JCM 32116T and InaCC Ar80T). The type species of the genus is Saccharolobus solfataricus.
Collapse
Affiliation(s)
- Hiroyuki D Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
12
|
Ranawat P, Rawat S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4105-4133. [PMID: 29238927 DOI: 10.1007/s11356-017-0869-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.
Collapse
Affiliation(s)
- Preeti Ranawat
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
13
|
Jadhav K, Jadhav I. Sulfur oxidation by Achromobacter xylosoxidans strain wsp05 reveals ecological widening over which thiotrophs are distributed. World J Microbiol Biotechnol 2017; 33:192. [PMID: 28975472 DOI: 10.1007/s11274-017-2359-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Achromobacter xylosoxidans is a versatile bacterium known for its ability to degrade aromatic compounds. However, its ability to oxidize sulfur compounds for electron and energy source is not reported much. In the present work, the Gram-negative bacterium Achromobacter xylosoxidans strain wsp05 isolated from a waste stabilization ponds (WSPs) system was studied for its ability to oxidize reduced sulfur compounds. The strain was able to oxidize thiosulfate and sodium sulfite. To observe the effect of physicochemical parameters on the rate of sulfur oxidation, strain wsp05 was grown in thiosulfate (20 mM) containing minimal salt medium at varied pH, temperature and ammonium and phosphate ions concentration. Maximum thiosulfate oxidation was observed at 30 °C with initial pH of 7-7.2. The strain was characterized using universal 16S rRNA gene primers revealing high similarity (> 99%) with Achromobacter xylosoxidans NBRC 15126T belonging to β-proteobacteria. In the present study, we investigated the sulfur oxidation properties of the Achromobacter xylosoxidans strain wsp05, which revealed an ecological and phylogenetic widening over which the thiotrophs are distributed.
Collapse
Affiliation(s)
- Kapilesh Jadhav
- School of Studies in Botany, Vikram University Ujjain, Ujjain, 456010, India. .,School of Life Sciences, Jaipur National University, Jaipur, 302017, India.
| | - Indrani Jadhav
- School of Studies in Botany, Vikram University Ujjain, Ujjain, 456010, India.,School of Life Sciences, Jaipur National University, Jaipur, 302017, India
| |
Collapse
|
14
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Polyextremophiles and the Constraints for Terrestrial Habitability. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Kondrat’eva TF, Pivovarova TA, Tsaplina IA, Fomchenko NV, Zhuravleva AE, Murav’ev MI, Melamud VS, Bulayev AG. Diversity of the communities of acidophilic chemolithotrophic microorganisms in natural and technogenic ecosystems. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712010080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Evolution of a new enzyme for carbon disulphide conversion by an acidothermophilic archaeon. Nature 2011; 478:412-6. [PMID: 22012399 DOI: 10.1038/nature10464] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/19/2011] [Indexed: 11/09/2022]
Abstract
Extremophilic organisms require specialized enzymes for their exotic metabolisms. Acid-loving thermophilic Archaea that live in the mudpots of volcanic solfataras obtain their energy from reduced sulphur compounds such as hydrogen sulphide (H(2)S) and carbon disulphide (CS(2)). The oxidation of these compounds into sulphuric acid creates the extremely acidic environment that characterizes solfataras. The hyperthermophilic Acidianus strain A1-3, which was isolated from the fumarolic, ancient sauna building at the Solfatara volcano (Naples, Italy), was shown to rapidly convert CS(2) into H(2)S and carbon dioxide (CO(2)), but nothing has been known about the modes of action and the evolution of the enzyme(s) involved. Here we describe the structure, the proposed mechanism and evolution of a CS(2) hydrolase from Acidianus A1-3. The enzyme monomer displays a typical β-carbonic anhydrase fold and active site, yet CO(2) is not one of its substrates. Owing to large carboxy- and amino-terminal arms, an unusual hexadecameric catenane oligomer has evolved. This structure results in the blocking of the entrance to the active site that is found in canonical β-carbonic anhydrases and the formation of a single 15-Å-long, highly hydrophobic tunnel that functions as a specificity filter. The tunnel determines the enzyme's substrate specificity for CS(2), which is hydrophobic. The transposon sequences that surround the gene encoding this CS(2) hydrolase point to horizontal gene transfer as a mechanism for its acquisition during evolution. Our results show how the ancient β-carbonic anhydrase, which is central to global carbon metabolism, was transformed by divergent evolution into a crucial enzyme in CS(2) metabolism.
Collapse
|
18
|
Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol Adv 2010; 28:839-48. [PMID: 20627124 DOI: 10.1016/j.biotechadv.2010.07.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Industrial biomining processes to extract copper, gold and other metals involve the use of extremophiles such as the acidophilic Acidithiobacillus ferrooxidans (Bacteria), and the thermoacidophilic Sulfolobus metallicus (Archaea). Together with other extremophiles these microorganisms subsist in habitats where they are exposed to copper concentrations higher than 100mM. Herein we review the current knowledge on the Cu-resistance mechanisms found in these microorganisms. Recent information suggests that biomining extremophiles respond to extremely high Cu concentrations by using simultaneously all or most of the following key elements: 1) a wide repertoire of Cu-resistance determinants; 2) duplication of some of these Cu-resistance determinants; 3) existence of novel Cu chaperones; 4) a polyP-based Cu-resistance system, and 5) an oxidative stress defense system. Further insight of the biomining community members and their individual response to copper is highly relevant, since this could provide key information to the mining industry. In turn, this information could be used to select the more fit members of the bioleaching community to attain more efficient industrial biomining processes.
Collapse
Affiliation(s)
- Alvaro Orell
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, and Millennium Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
19
|
Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota. Microbiology (Reading) 2010; 156:256-269. [DOI: 10.1099/mic.0.034298-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two new autotrophic carbon fixation cycles have been recently described in Crenarchaeota. The 3-hydroxypropionate/4-hydroxybutyrate cycle using acetyl-coenzyme A (CoA)/propionyl-CoA carboxylase as the carboxylating enzyme has been identified for (micro)aerobic members of the Sulfolobales. The dicarboxylate/4-hydroxybutyrate cycle using oxygen-sensitive pyruvate synthase and phosphoenolpyruvate carboxylase as carboxylating enzymes has been found in members of the anaerobic Desulfurococcales and Thermoproteales. However, Sulfolobales include anaerobic and Desulfurococcales aerobic autotrophic representatives, raising the question of which of the two cycles they use. We studied the mechanisms of autotrophic CO2 fixation in the strictly anaerobic Stygiolobus azoricus (Sulfolobales) and in the facultatively aerobic Pyrolobus fumarii (Desulfurococcales). The activities of all enzymes of the 3-hydroxypropionate/4-hydroxybutyrate cycle were found in the anaerobic S. azoricus. In contrast, the aerobic or denitrifying P. fumarii possesses all enzyme activities of the dicarboxylate/4-hydroxybutyrate cycle. We conclude that autotrophic Crenarchaeota use one of the two cycles, and that their distribution correlates with the 16S rRNA-based phylogeny of this group, rather than with the aerobic or anaerobic lifestyle.
Collapse
|
20
|
Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 2009; 33:999-1043. [PMID: 19645821 DOI: 10.1111/j.1574-6976.2009.00187.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lithotrophic sulfur oxidation is an ancient metabolic process. Ecologically and taxonomically diverged prokaryotes have differential abilities to utilize different reduced sulfur compounds as lithotrophic substrates. Different phototrophic or chemotrophic species use different enzymes, pathways and mechanisms of electron transport and energy conservation for the oxidation of any given substrate. While the mechanisms of sulfur oxidation in obligately chemolithotrophic bacteria, predominantly belonging to Beta- (e.g. Thiobacillus) and Gammaproteobacteria (e.g. Thiomicrospira), are not well established, the Sox system is the central pathway in the facultative bacteria from Alphaproteobacteria (e.g. Paracoccus). Interestingly, photolithotrophs such as Rhodovulum belonging to Alphaproteobacteria also use the Sox system, whereas those from Chromatiaceae and Chlorobi use a truncated Sox complex alongside reverse-acting sulfate-reducing systems. Certain chemotrophic magnetotactic Alphaproteobacteria allegedly utilize such a combined mechanism. Sulfur-chemolithotrophic metabolism in Archaea, largely restricted to Sulfolobales, is distinct from those in Bacteria. Phylogenetic and biomolecular fossil data suggest that the ubiquity of sox genes could be due to horizontal transfer, and coupled sulfate reduction/sulfide oxidation pathways, originating in planktonic ancestors of Chromatiaceae or Chlorobi, could be ancestral to all sulfur-lithotrophic processes. However, the possibility that chemolithotrophy, originating in deep sea, is the actual ancestral form of sulfur oxidation cannot be ruled out.
Collapse
Affiliation(s)
- Wriddhiman Ghosh
- Department of Microbiology, University of Burdwan, West Bengal, India.
| | | |
Collapse
|
21
|
Abstract
In order to survive extremes of pH, temperature, salinity and pressure, organisms have been found to develop unique defences against their environment, leading to the biosynthesis of novel molecules ranging from simple osmolytes and lipids to complex secondary metabolites. This review highlights novel molecules isolated from microorganisms that either tolerate or favour extreme growth conditions.
Collapse
Affiliation(s)
- Zoe E Wilson
- Department of Chemistry, University of Auckland, 23 Symonds St, Auckland, 1010, New Zealand
| | | |
Collapse
|
22
|
Xiao S, Xie X, Liu J. Microbial communities in acid water environments of two mines, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1045-1050. [PMID: 18976840 DOI: 10.1016/j.envpol.2008.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 05/27/2023]
Abstract
To understand the compositions and structures of microbial communities in different acid-aqueous environments, a PCR-based cloning approach was used. A total of five samples were collected from two mines in China. Two samples, named as G1 and G2, were acid mine drainage (AMD) samples and from Yunfu sulfide mine in Guangdong province, China. The rest of the three samples named as D1, DY and D3, were from three sites undertaking bioleaching in Yinshan lead-zinc mine in Jiangxi province, China. Phylogenetic analysis revealed that bacteria in the five samples fell into six putative divisions, which were alpha-Proteobacteria, beta-Proteobacteria, gamma-Proteobacteria, Firmicutes, Actinobacteria and Nitrospira. Archaea was only detected in the three samples from Yinshan lead-zinc mine, which fell into two phylogenentic divisions, Thermoplsma and Ferroplasma. In addition, the results of principal component analysis (PCA) suggested that more similar the geochemical properties in samples were, more similar microbial community structures in samples were.
Collapse
Affiliation(s)
- Shengmu Xiao
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | | | | |
Collapse
|
23
|
Abstract
Thermophilic anaerobes are Archaea and Bacteria that grow optimally at temperatures of 50 degrees C or higher and do not require the use of O(2) as a terminal electron acceptor for growth. The prokaryotes with this type of physiology are studied for a variety of reasons, including (a) to understand how life can thrive under extreme conditions, (b) for their biotechnological potential, and (c) because anaerobic thermophiles are thought to share characteristics with the early evolutionary life forms on Earth. Over 300 species of thermophilic anaerobes have been described; most have been isolated from thermal environments, but some are from mesobiotic environments, and others are from environments with temperatures below 0 degrees C. In this overview, the authors outline the phylogenetic and physiological diversity of thermophilic anaerobes as currently known. The purpose of this overview is to convey the incredible diversity and breadth of metabolism within this subset of anaerobic microorganisms.
Collapse
Affiliation(s)
- Isaac D Wagner
- 212 Biological Sciences Building, 1000 Cedar Street, University of Georgia, Athens, GA 30602-2605, USA
| | | |
Collapse
|
24
|
Molecular diversity of 16S rRNA and gyrB genes in copper mines. Arch Microbiol 2007; 189:101-10. [PMID: 17957354 DOI: 10.1007/s00203-007-0298-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 06/23/2007] [Accepted: 08/04/2007] [Indexed: 10/22/2022]
Abstract
The molecular diversities of the microbial communities from four sites impacted by acid mine drainage (AMD) at Dexing Copper Mine in Jiangxi province of China were studied using 16S rRNA sequences and gyrB sequences. Of the four sampled sites, each habitat exhibited distinct geochemical characteristics and the sites were linked geographically allowing us to correlate microbial community structure to geochemical characteristics. In the present study, we examined the molecular diversity of 16S rRNA and gyrB genes from water at these sites using a PCR-based cloning approach. We found that the microbial community appears to be composed primarily of Proteobacteria, Acidobacteria, Actinobacteria, Nitrospira, Firmicutes, Chlorella and unknown phylotypes. Of clones affiliated with Nitrospira, Leptospirillum ferrooxidans, Leptospirillum ferriphilum and Leptospirillum group III were all detected. Principal-component analysis (PCA) revealed that the distribution of the microbial communities was influenced greatly by geochemical characteristics. The overall PCA profiles showed that the sites with similar geochemical characteristics had more similar microbial community structures. Moreover, our results also indicated that gyrB sequence analysis may be very useful for differentiating very closely related species in the study of microbial communities.
Collapse
|
25
|
Plumb JJ, Haddad CM, Gibson JAE, Franzmann PD. Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 2007; 57:1418-1423. [PMID: 17625168 DOI: 10.1099/ijs.0.64846-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, extremely thermoacidophilic, obligately chemolithotrophic archaeon (strain JP7T) was isolated from a solfatara on Lihir Island, Papua New Guinea. Cells of this organism were non-motile, Gram-negative staining, irregular-shaped cocci, 0.5–1.5 μm in size, that grew aerobically by oxidation of sulfur, Fe2+ or mineral sulfides. Cells grew anaerobically using Fe3+ as a terminal electron acceptor and H2S as an electron donor but did not oxidize hydrogen with elemental sulfur as electron acceptor. Strain JP7T grew optimally at 74 °C (temperature range 45–83 °C) and pH 0.8–1.4 (pH range 0.35–3.0). On the basis of 16S rRNA gene sequence similarity, strain JP7T was shown to belong to the Sulfolobaceae, being most closely related to the type strains of Acidianus ambivalens (93.7 %) and Acidianus infernus (93.6 %). Cell-membrane lipid structure, DNA base composition and 16S rRNA gene sequence similarity data support the placement of this strain in the genus Acidianus. Differences in aerobic and anaerobic metabolism, temperature and pH range for growth, and 16S rRNA gene sequence differentiate strain JP7T from recognized species of the genus Acidianus, and an emendation of the description of the genus is proposed. Strain JP7T is considered to represent a novel species of the genus Acidianus, for which the name Acidianus sulfidivorans sp. nov. is proposed. The type strain is JP7T (=DSM 18786T=JCM 13667T).
Collapse
MESH Headings
- Acidianus/classification
- Acidianus/genetics
- Acidianus/isolation & purification
- Acidianus/metabolism
- Aerobiosis
- Base Composition
- Cell Membrane/chemistry
- DNA, Archaeal/chemistry
- DNA, Archaeal/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Ferric Compounds/metabolism
- Ferrous Compounds/metabolism
- Genes, rRNA
- Hydrogen/metabolism
- Hydrogen-Ion Concentration
- Lipids/analysis
- Locomotion
- Molecular Sequence Data
- Oxidation-Reduction
- Papua New Guinea
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Soil Microbiology
- Sulfides/metabolism
- Sulfur/metabolism
- Temperature
Collapse
Affiliation(s)
- Jason J Plumb
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Christina M Haddad
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - John A E Gibson
- School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tasmania 7001, Australia
- CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tasmania, 7001, Australia
| | - Peter D Franzmann
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| |
Collapse
|
26
|
He Z, Xiao S, Xie X, Zhong H, Hu Y, Li Q, Gao F, Li G, Liu J, Qiu G. Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine. Extremophiles 2006; 11:305-14. [PMID: 17177020 DOI: 10.1007/s00792-006-0044-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
Two acid mine drainage (AMD) samples were studied by a PCR-based cloning approach, which were from Yunfu sulfide mine in Guangdong province, China. A total of 15 operational taxonomic units (OTUs) were obtained from the two AMD samples. The percentage of overlapped OTUs in two AMD samples was 42.1%. Phylogenetic analysis revealed that the bacterium in the two samples fell into four putative divisions, which were Nitrospira, alpha-Proteobacteria, beta-Proteobacteria, and gamma-Proteobacteria four families. Organisms of genuses Acidithiobacillus and Gallionella, which were in gamma-Proteobacteria family and beta-Proteobacteria family, respectively, were dominant in two samples. The proportions of clones affiliated with Gallionella in each sample were 47.2% (G2) and 16.9% (G1). The result suggested that organisms of Gallionella were a very important composition in microbial communities of the two AMD samples we studied. In addition, the PCR amplification of archaeal 16S rDNA genes form these two AMD samples have been performed with two sets of archaea-specific primers, but no PCR product found.
Collapse
Affiliation(s)
- Zhiguo He
- School of Resources Processing and Bioengineering, Central South University, Changsha, 410083, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yoshida N, Nakasato M, Ohmura N, Ando A, Saiki H, Ishii M, Igarashi Y. Acidianus manzaensis sp. nov., a Novel Thermoacidophilic Archaeon Growing Autotrophically by the Oxidation of H2 with the Reduction of Fe3+. Curr Microbiol 2006; 53:406-11. [PMID: 17066338 DOI: 10.1007/s00284-006-0151-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 07/10/2006] [Indexed: 11/24/2022]
Abstract
A novel thermoacidophilic iron-reducing Archaeon, strain NA-1, was isolated from a hot fumarole in Manza, Japan. Strain NA-1 could grow autotrophically using H2 or S0 as an electron donor and Fe3+ as an electron acceptor, and also could grow heterotrophically using some organic compounds. Fe3+ and O2 served as electron acceptors for growth. However, S0, NO3-, NO2-, SO4(2-), Mn4+, fumarate, and Fe2O3 did not serve as electron acceptors. The ranges of growth temperature and pH were 60-90 degrees C (optimum: 80 degrees C) and pH 1.0-5.0 (optimum: pH 1.2-1.5), respectively. Cells were nearly regular cocci with an envelope comprised of the cytoplasmic membrane and a single outer S-layer. The crenarchaeal-specific quinone (cardariellaquinone) was detected, and the genomic DNA G + C content was 29.9 mol%. From 16S rDNA analysis, it was determined that strain NA-1 is closely related to Acidianus ambivalens (93.1%) and Acidianus infernus (93.0%). However, differences revealed by phylogenetic and phenotypic analyses clearly show that strain NA-1 represents a new species, Acidianus manzaensis, sp. nov., making it the first identified thermoacidophilic iron-reducing microorganism (strain NA-1T = NBRC 100595 = ATCC BAA 1057).
Collapse
Affiliation(s)
- Naoki Yoshida
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Karavaiko GI, Dubinina GA, Kondrat’eva TF. Lithotrophic microorganisms of the oxidative cycles of sulfur and iron. Microbiology (Reading) 2006. [DOI: 10.1134/s002626170605002x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Prato S, Cannio R, Klenk HP, Contursi P, Rossi M, Bartolucci S. pIT3, a cryptic plasmid isolated from the hyperthermophilic crenarchaeon Sulfolobus solfataricus IT3. Plasmid 2006; 56:35-45. [PMID: 16624405 DOI: 10.1016/j.plasmid.2006.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 02/21/2006] [Accepted: 02/25/2006] [Indexed: 10/24/2022]
Abstract
The plasmid pIT3 (4,967 bp) was isolated from the hyperthermophilic archaeon Sulfolobus solfataricus, strain IT3. The completely sequenced plasmid contains six open reading frames (ORFs), the largest (ORF915) spanning more than half of the plasmid and encoding a putative protein with significant similarity to the helicase domain of viral and plasmid primase proteins, as well as to the newly described archaeal primase-polymerase domain. A small ORF, (ORF80), located upstream of this putative polymerase, encodes a putative copy number control protein. Specific transcripts corresponding to the ORF80 and ORF915, were detected by Northern blot analyses, and their transcriptional start sites were determined by primer extension. Moreover, the transfer and the maintenance of the plasmid in other Sulfolobus strains were demonstrated to be effective and stable.
Collapse
Affiliation(s)
- Santina Prato
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126, Naples, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Okabayashi A, Wakai S, Kanao T, Sugio T, Kamimura K. Diversity of 16S ribosomal DNA-defined bacterial population in acid rock drainage from Japanese pyrite mine. J Biosci Bioeng 2005; 100:644-52. [PMID: 16473774 DOI: 10.1263/jbb.100.644] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/25/2005] [Indexed: 11/17/2022]
Abstract
Four acidophilic bacteria (YARDs1-4) were isolated from an acid rock drainage (ARD) from Yanahara mine, Okayama prefecture, Japan. The physiological and 16S rDNA sequence analyses revealed that YARD1 was closely affiliated with Acidithiobacillus ferrooxidans, YARD2 was an Acidiphilium-like bacterium, and YARD3 and YARD4 were sulfur-oxidizing bacteria with a relatively close relationship to A. ferrooxidans in the phylogenetic analysis. A molecular approach based on the construction of a 16S rDNA clone library was used to investigate the microbial population of the ARD. Small-subunit rRNA genes were PCR amplified, subsequently cloned and screened for variation by a restriction fragment length polymorphism (RFLP) analysis. A total of 284 clones were grouped into 133 operational taxonomic units (OTUs) by the RFLP analysis. Among them, an OTU showing the same RFLP pattern as those of the isolates from the ARD was not detected. The phylogenetic analysis based on the 16S rDNA sequences from 10 major OTUs and their close relatives revealed that 4 OTUs containing 32.1% of the total clones were loosely affiliated with Verrucomicrobia, 2 OTUs containing 6.6% of the total clones were loosely affiliated with Chloribi, and other OTUs were affiliated with Actinobacteria, Nitrospirae, and beta-Proteobacteria.
Collapse
Affiliation(s)
- Ai Okabayashi
- Department of Botany and Microbiology, Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Japan
| | | | | | | | | |
Collapse
|
31
|
Ghosh W, Bagchi A, Mandal S, Dam B, Roy P. Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. Int J Syst Evol Microbiol 2005; 55:1779-1787. [PMID: 16166666 DOI: 10.1099/ijs.0.63595-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Twelve chemolithotrophic strains were isolated from temperate orchard soil on reduced sulfur compounds as energy and electron sources and characterized on the basis of their physiological properties and ability to oxidize various reduced sulfur compounds. The new isolates could oxidize tetrathionate as well as thiosulfate, and oxidation of the latter involved conversion of thiosulfate to tetrathionate followed by its accumulation and eventual oxidation to sulfate, manifested in the production of acid. The mesophilic, neutrophilic, Gram-negative and coccoid bacteria had a respiratory metabolism. Physiologically and biochemically, all the strains were more or less similar, differing only in their growth rates and ability to utilize a few carbon compounds as single heterotrophic substrates. 16S rRNA gene sequence analysis was performed with five representative strains, which revealed a high degree of similarity (> or =99%) among them and placed the cluster in the 'Betaproteobacteria'. The strains showed low levels (93.5-95.3 %) of 16S rRNA gene sequence similarity to Pigmentiphaga kullae, Achromobacter xylosoxidans, Pelistega europaea and species belonging to the genera Alcaligenes, Taylorella and Bordetella. The taxonomic coherence of the new isolates was confirmed by DNA-DNA hybridization. On the basis of their uniformly low 16S rRNA gene sequence similarities to species of all the closest genera, unique fatty acid profile, distinct G+C content (54-55.2 mol%) and phenotypic characteristics that include efficient chemolithotrophic utilization of tetrathionate, the organisms were classified in a new genus, Tetrathiobacter gen. nov. In the absence of any significant discriminatory phenotypic or genotypic characteristics, all the new isolates are considered to constitute a single species, for which the name Tetrathiobacter kashmirensis sp. nov. (type strain WT001(T)=LMG 22695(T)=MTCC 7002(T)) is proposed.
Collapse
Affiliation(s)
- Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 C. I. T. Scheme, VII M, Kolkata - 700 054, India
| | - Angshuman Bagchi
- Bioinformatics Center, Bose Institute, P-1/12 C. I. T. Scheme, VII M, Kolkata - 700 054, India
| | - Sukhendu Mandal
- Department of Microbiology, Bose Institute, P-1/12 C. I. T. Scheme, VII M, Kolkata - 700 054, India
| | - Bomba Dam
- Department of Microbiology, Bose Institute, P-1/12 C. I. T. Scheme, VII M, Kolkata - 700 054, India
| | - Pradosh Roy
- Department of Microbiology, Bose Institute, P-1/12 C. I. T. Scheme, VII M, Kolkata - 700 054, India
| |
Collapse
|
32
|
Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, Hunt DF, Jerez CA. Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 2005; 24:197-211. [PMID: 16288845 DOI: 10.1016/j.biotechadv.2005.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
The use of acidophilic, chemolithotrophic microorganisms capable of oxidizing iron and sulfur in industrial processes to recover metals from minerals containing copper, gold and uranium is a well established biotechnology with distinctive advantages over traditional mining. A consortium of different microorganisms participates in the oxidative reactions resulting in the extraction of dissolved metal values from ores. Considerable effort has been spent in the last years to understand the biochemistry of iron and sulfur compounds oxidation, bacteria-mineral interactions (chemotaxis, quorum sensing, adhesion, biofilm formation) and several adaptive responses allowing the microorganisms to survive in a bioleaching environment. All of these are considered key phenomena for understanding the process of biomining. The use of genomics, metagenomics and high throughput proteomics to study the global regulatory responses that the biomining community uses to adapt to their changing environment is just beginning to emerge in the last years. These powerful approaches are reviewed here since they offer the possibility of exciting new findings that will allow analyzing the community as a microbial system, determining the extent to which each of the individual participants contributes to the process, how they evolve in time to keep the conglomerate healthy and therefore efficient during the entire process of bioleaching.
Collapse
Affiliation(s)
- Lissette Valenzuela
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Müller FH, Bandeiras TM, Urich T, Teixeira M, Gomes CM, Kletzin A. Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Mol Microbiol 2004; 53:1147-60. [PMID: 15306018 DOI: 10.1111/j.1365-2958.2004.04193.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiosulphate is one of the products of the initial step of the elemental sulphur oxidation pathway in the thermoacidophilic archaeon Acidianus ambivalens. A novel thiosulphate:quinone oxidoreductase (TQO) activity was found in the membrane extracts of aerobically grown cells of this organism. The enzyme was purified 21-fold from the solubilized membrane fraction. The TQO oxidized thiosulphate with tetrathionate as product and ferricyanide or decyl ubiquinone (DQ) as electron acceptors. The maximum specific activity with ferricyanide was 73.4 U (mg protein)(-1) at 92 degrees C and pH 6, with DQ it was 397 mU (mg protein)(-1) at 80 degrees C. The Km values were 2.6 mM for thiosulphate (k(cat) = 167 s(-1)), 3.4 mM for ferricyanide and 5.87 micro M for DQ. The enzymic activity was inhibited by sulphite (Ki = 5 micro M), metabisulphite, dithionite and TritonX-100, but not by sulphate or tetrathionate. A mixture of caldariella quinone, sulfolobus quinone and menaquinone was non-covalently bound to the protein. No other cofactors were detected. Oxygen consumption was measured in membrane fractions upon thiosulphate addition, thus linking thiosulphate oxidation to dioxygen reduction, in what constitutes a novel activity among Archaea. The holoenzyme was composed of two subunits of apparent molecular masses of 28 and 16 kDa. The larger subunit appeared to be glycosylated and was identical to DoxA, and the smaller was identical to DoxD. Both subunits had been described previously as a part of the terminal quinol:oxygen oxidoreductase complex (cytochrome aa3).
Collapse
Affiliation(s)
- Fabian H Müller
- Institute of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Das TK, Gomes CM, Bandeiras TM, Pereira MM, Teixeira M, Rousseau DL. Active site structure of the aa3 quinol oxidase of Acidianus ambivalens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:306-20. [PMID: 15100046 DOI: 10.1016/j.bbabio.2003.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 07/24/2003] [Accepted: 08/01/2003] [Indexed: 11/17/2022]
Abstract
The membrane bound aa(3)-type quinol:oxygen oxidoreductase from the hyperthermophilic archaeon, Acidianus ambivalens, which thrives at a pH of 2.5 and a temperature of 80 degrees C, has several unique structural and functional features as compared to the other members of the heme-copper oxygen reductase superfamily, but shares the common redox-coupled, proton-pumping function. To better understand the properties of the heme a(3)-Cu(B) catalytic site, a resonance Raman spectroscopic study of the enzyme under a variety of conditions and in the presence of various ligands was carried out. Assignments of several heme vibrational modes as well as iron-ligand stretching modes are made to serve as a basis for comparing the structure of the enzyme to that of other oxygen reductases. The CO-bound oxidase has conformations that are similar to those of other oxygen reductases. However, the addition of CO to the resting enzyme does not generate a mixed valence species as in the bovine aa(3) enzyme. The cyanide complex of the oxidized enzyme of A. ambivalens does not display the high stability of its bovine counterpart, and a redox titration demonstrates that there is an extensive heme-heme interaction reflected in the midpoint potentials of the cyanide adduct. The A. ambivalens oxygen reductase is very stable under acidic conditions, but it undergoes an earlier alkaline transition than the bovine enzyme. The A. ambivalens enzyme exhibits a redox-linked reversible conformational transition in the heme a(3)-Cu(B) center. The pH dependence and H/D exchange demonstrate that the conformational transition is associated with proton movements involving a group or groups with a pK(a) of approximately 3.8. The observed reversibility and involvement of protons in the redox-coupled conformational transition support the proton translocation model presented earlier. The implications of such conformational changes are discussed in relation to general redox-coupled proton pumping mechanisms in the heme-copper oxygen reductases.
Collapse
Affiliation(s)
- Tapan Kanti Das
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kurosawa N, Itoh YH, Itoh T. Reclassification of Sulfolobus hakonensis Takayanagi et al. 1996 as Metallosphaera hakonensis comb. nov. based on phylogenetic evidence and DNA G+C content. Int J Syst Evol Microbiol 2003; 53:1607-1608. [PMID: 13130056 DOI: 10.1099/ijs.0.02716-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic status of Sulfolobus hakonensis Takayanagi et al. 1996 was re-evaluated by fresh determinations of the 16S rDNA sequence and G+C content of the genomic DNA of the type strain, HO1-1(T). The 16S rDNA sequence of strain HO1-1(T) showed 98 % similarity to those of two Metallosphaera species and only </=92 % similarity to those of other Sulfolobus species. The DNA G+C content (46.2 mol%) is in accordance with those of Metallosphaera species. In addition, strain HO1-1(T) shares some phenotypic properties with Metallosphaera species; however, it can be differentiated from them by its capacity to utilize FeS and tetrathionate and the absence of flagella. Therefore, it is proposed that Sulfolobus hakonensis should be transferred to the genus Metallosphaera as Metallosphaera hakonensis comb. nov.
Collapse
Affiliation(s)
- Norio Kurosawa
- Departments of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Yuko H Itoh
- Departments of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
36
|
Bartolucci S, Rossi M, Cannio R. Characterization and functional complementation of a nonlethal deletion in the chromosome of a beta-glycosidase mutant of Sulfolobus solfataricus. J Bacteriol 2003; 185:3948-57. [PMID: 12813089 PMCID: PMC161586 DOI: 10.1128/jb.185.13.3948-3957.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LacS(-) mutants of Sulfolobus solfataricus defective in beta-glycosidase activity were isolated in order to explore genomic instability and exploit novel strategies for transformation and complementation. One of the mutants showed a stable phenotype with no reversion; analysis of its chromosome revealed the total absence of the beta-glycosidase gene (lacS). Fine mapping performed in comparison to the genomic sequence of S. solfataricus P2 indicated an extended deletion of approximately 13 kb. The sequence analysis also revealed that this chromosomal rearrangement was a nonconservative transposition event driven by the mobile insertion sequence element ISC1058. In order to complement the LacS(-) phenotype, an expression vector was constructed by inserting the lacS coding sequence with its 5' and 3' flanking regions into the pEXSs plasmid. Since no transformant could be recovered by selection on lactose as the sole nutrient, another plasmid construct containing a larger genomic fragment was tested for complementation; this region also comprised the lacTr (lactose transporter) gene encoding a putative membrane protein homologous to the major facilitator superfamily. Cells transformed with both genes were able to form colonies on lactose plates and to be stained with the beta-glycosidase chromogenic substrate X-Gal (5-bromo-4-chloro-3-indoyl-beta-D-galactopyranoside).
Collapse
Affiliation(s)
- Simonetta Bartolucci
- Dipartimento di Chimica Biologica, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | |
Collapse
|
37
|
Bandeiras TM, Salgueiro CA, Huber H, Gomes CM, Teixeira M. The respiratory chain of the thermophilic archaeon Sulfolobus metallicus: studies on the type-II NADH dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1557:13-9. [PMID: 12615344 DOI: 10.1016/s0005-2728(02)00374-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The membranes of the thermoacidophilic archaeon Sulfolobus metallicus exhibit an oxygen consumption activity of 0.5 nmol O(2) min(-1) mg(-1), which is insensitive to rotenone, suggesting the presence of a type-II NADH dehydrogenase. Following this observation, the enzyme was purified from solubilised membranes and characterised. The pure protein is a monomer with an apparent molecular mass of 49 kDa, having a high N-terminal amino acid sequence similarity towards other prokaryotic enzymes of the same type. It contains a covalently attached flavin, which was identified as being FMN by 31P-NMR spectroscopy, a novelty among type-II NADH dehydrogenases. Metal analysis showed the absence of iron, indicating that no FeS clusters are present in the protein. The average reduction potential of the FMN group was determined to be +160 mV, at 25 degrees C and pH 6.5, by redox titrations monitored by visible spectroscopy. Catalytically, the enzyme is a NADH:quinone oxidoreductase, as it is capable of transferring electrons from NADH to several quinones, including ubiquinone-1, ubiquinone-2 and caldariella quinone. Maximal turnover rates of 195 micromol NADH oxidized min(-1) mg(-1) at 60 degrees C were obtained using ubiquinone-2 as electron acceptor, after enzyme dilution and incubation with phospholipids.
Collapse
Affiliation(s)
- Tiago M Bandeiras
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Hallberg KB, Johnson DB. Biodiversity of acidophilic prokaryotes. ADVANCES IN APPLIED MICROBIOLOGY 2002; 49:37-84. [PMID: 11757351 DOI: 10.1016/s0065-2164(01)49009-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- K B Hallberg
- School of Biological Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, United Kingdom
| | | |
Collapse
|
40
|
Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 2001; 67:2873-82. [PMID: 11425697 PMCID: PMC92956 DOI: 10.1128/aem.67.7.2873-2882.2001] [Citation(s) in RCA: 389] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- C G Friedrich
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Chemietechnik, Universität Dortmund, D-44221 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
41
|
Amend JP, Shock EL. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol Rev 2001; 25:175-243. [PMID: 11250035 DOI: 10.1111/j.1574-6976.2001.tb00576.x] [Citation(s) in RCA: 371] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Thermophilic and hyperthermophilic Archaea and Bacteria have been isolated from marine hydrothermal systems, heated sediments, continental solfataras, hot springs, water heaters, and industrial waste. They catalyze a tremendous array of widely varying metabolic processes. As determined in the laboratory, electron donors in thermophilic and hyperthermophilic microbial redox reactions include H2, Fe(2+), H2S, S, S2O3(2-), S4O6(2-), sulfide minerals, CH4, various mono-, di-, and hydroxy-carboxylic acids, alcohols, amino acids, and complex organic substrates; electron acceptors include O2, Fe(3+), CO2, CO, NO3(-), NO2(-), NO, N2O, SO4(2-), SO3(2-), S2O3(2-), and S. Although many assimilatory and dissimilatory metabolic reactions have been identified for these groups of microorganisms, little attention has been paid to the energetics of these reactions. In this review, standard molal Gibbs free energies (DeltaGr(0)) as a function of temperature to 200 degrees C are tabulated for 370 organic and inorganic redox, disproportionation, dissociation, hydrolysis, and solubility reactions directly or indirectly involved in microbial metabolism. To calculate values of DeltaGr(0) for these and countless other reactions, the apparent standard molal Gibbs free energies of formation (DeltaG(0)) at temperatures to 200 degrees C are given for 307 solids, liquids, gases, and aqueous solutes. It is shown that values of DeltaGr(0) for many microbially mediated reactions are highly temperature dependent, and that adopting values determined at 25 degrees C for systems at elevated temperatures introduces significant and unnecessary errors. The metabolic processes considered here involve compounds that belong to the following chemical systems: H-O, H-O-N, H-O-S, H-O-N-S, H-O-C(inorganic), H-O-C, H-O-N-C, H-O-S-C, H-O-N-S-C(amino acids), H-O-S-C-metals/minerals, and H-O-P. For four metabolic reactions of particular interest in thermophily and hyperthermophily (knallgas reaction, anaerobic sulfur and nitrate reduction, and autotrophic methanogenesis), values of the overall Gibbs free energy (DeltaGr) as a function of temperature are calculated for a wide range of chemical compositions likely to be present in near-surface and deep hydrothermal and geothermal systems.
Collapse
Affiliation(s)
- J P Amend
- Department of Earth and Planetary Sciences, Washington University, CB 1169 St. Louis, MO 63130, USA.
| | | |
Collapse
|
42
|
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001; 65:1-43. [PMID: 11238984 PMCID: PMC99017 DOI: 10.1128/mmbr.65.1.1-43.2001] [Citation(s) in RCA: 1425] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.
Collapse
Affiliation(s)
- C Vieille
- Biochemistry Department, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
43
|
Lemos RS, Gomes CM, Teixeira M. Acidianus ambivalens Complex II typifies a novel family of succinate dehydrogenases. Biochem Biophys Res Commun 2001; 281:141-50. [PMID: 11178972 DOI: 10.1006/bbrc.2001.4317] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complex II from the thermoacidophilic archaeon Acidianus ambivalens, an archetype of an emerging class of succinate dehydrogenases (SDH), was extracted from intact membranes and purified to homogeneity. The complex contains one molecule of covalently bound FAD and 10 Fe atoms. EPR studies showed that the complex contains the canonical centres S1 ([2Fe-2S]2+/1+) and S2 ([4Fe-4S]+2/+1) but lacks centre S3 ([3Fe-4S]+1/0); these observations agree with the fact that the iron-sulfur subunit contains an extra cysteine that may allow the binding of a new centre, most probably a tetranuclear one. Succinate-driven oxygen consumption is observed in intact membranes indicating that in vivo, complex II operates as a succinate:quinone oxidoreductase, despite missing the typical anchor domain subunits. The pure complex was found to contain bound caldariella quinone, the enzyme physiological partner. An alternative membrane anchoring for this new type of SDHs, based on the amphipathic nature of the putative helices found in SdhC, is suggested.
Collapse
Affiliation(s)
- R S Lemos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apt 127, Oeiras, 2780-156, Portugal
| | | | | |
Collapse
|
44
|
Gilderson G, Aagaard A, Gomes CM, Adelroth P, Teixeira M, Brzezinski P. Kinetics of electron and proton transfer during O(2) reduction in cytochrome aa(3) from A. ambivalens: an enzyme lacking Glu(I-286). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:261-70. [PMID: 11115638 DOI: 10.1016/s0005-2728(00)00195-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acidianus ambivalens is a hyperthermoacidophilic archaeon which grows optimally at approximately 80 degrees C and pH 2.5. The terminal oxidase of its respiratory system is a membrane-bound quinol oxidase (cytochrome aa(3)) which belongs to the heme-copper oxidase superfamily. One difference between this quinol oxidase and a majority of the other members of this family is that it lacks the highly-conserved glutamate (Glu(I-286), E. coli ubiquinol oxidase numbering) which has been shown to play a central role in controlling the proton transfer during reaction of reduced oxidases with oxygen. In this study we have investigated the dynamics of the reaction of the reduced A. ambivalens quinol oxidase with O(2). With the purified enzyme, two kinetic phases were observed with rate constants of 1.8&z.ccirf;10(4) s(-1) (at 1 mM O(2), pH 7.8) and 3. 7x10(3) s(-1), respectively. The first phase is attributed to binding of O(2) to heme a(3) and oxidation of both hemes forming the 'peroxy' intermediate. The second phase was associated with proton uptake from solution and it is attributed to formation of the 'oxo-ferryl' state, the final state in the absence of quinol. In the presence of bound caldariella quinol (QH(2)), heme a was re-reduced by QH(2) with a rate of 670 s(-1), followed by transfer of the fourth electron to the binuclear center with a rate of 50 s(-1). Thus, the results indicate that the quinol donates electrons to heme a, followed by intramolecular transfer to the binuclear center. Moreover, the overall electron and proton-transfer kinetics in the A. ambivalens quinol oxidase are the same as those in the E. coli ubiquinol oxidase, which indicates that in the A. ambivalens enzyme a different pathway is used for proton transfer to the binuclear center and/or other protonatable groups in an equivalent pathway are involved. Potential candidates in that pathway are two glutamates at positions (I-80) and (I-83) in the A. ambivalens enzyme (corresponding to Met(I-116) and Val(I-119), respectively, in E. coli cytochrome bo(3)).
Collapse
Affiliation(s)
- G Gilderson
- Department of Biochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
He Z, Li Y, Zhou P, Liu S. Cloning and heterologous expression of a sulfur oxygenase/reductase gene from the thermoacidophilic archaeon Acidianus sp. S5 in Escherichia coli. FEMS Microbiol Lett 2000; 193:217-21. [PMID: 11111027 DOI: 10.1111/j.1574-6968.2000.tb09427.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A thermoacidophilic, obligately chemolithotrophic, facultatively aerobic archaebacterium, Acidianus sp. S5, was isolated from acidothermal springs in southwest China. The sulfur oxygenase/reductase (SOR) gene of Acidianus sp. S5 was cloned and expressed in Escherichia coli. Several primers were designed and successfully applied for detection and cloning of the sor gene. A 3.7-kb EcoRI fragment containing the sor gene and three neighboring open reading frames was sequenced. Sequence analysis indicated that the sor gene of Acidianus sp. S5 showed 81% identity to the sor gene of Acidianus ambivalens. E. coli cells carrying the sor gene on pBV220SOR were able to overproduce SOR upon a temperature shift from 30 to 42 degrees C. SOR produced in E. coli catalyzes the oxidation of elemental sulfur and concomitant production of sulfite, thiosulfate and hydrogen sulfide. The recombinant enzyme exhibits the same catalytic properties as the one from Acidianus S5.
Collapse
Affiliation(s)
- Z He
- State Key Laboratory of Institute of Microbiology, Chinese Academy of Sciences, 100080, Beijing, PR China
| | | | | | | |
Collapse
|
46
|
Huber R, Huber H, Stetter KO. Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 2000; 24:615-23. [PMID: 11077154 DOI: 10.1111/j.1574-6976.2000.tb00562.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ecological studies have shown that water-containing terrestrial, subterranean and submarine high-temperature environments harbor a great diversity of hyperthermophilic prokaryotes, growing fastest at temperatures of 80 degrees C or above. The investigations included cultivation, isolation and detailed analysis of these hyperthermophiles as well as in situ 16S rRNA gene sequence analysis and in situ hybridization studies. For a safe and fast isolation of novel hyperthermophiles from mixed cultures, a new, plating-independent isolation technique was developed, based on the use of a laser microscope ('optical tweezers'). This method, combined with 16S rRNA gene sequence analysis and whole-cell hybridization using fluorescently labelled oligonucleotide probes, even allows the recovery of pure cultures of phylogenetically predicted organisms harboring novel 16S rRNA gene sequences. In their natural habitats, hyperthermophiles form complex food webs, consisting of primary producers and consumers of organic material. Their metabolic potential includes various types of aerobic and anaerobic respiration and different modes of fermentation. In hydrothermal and geothermal environments, hyperthermophiles have important ecological functions in biogeochemical processes. Members of the Sulfolobales are able to mobilize heavy metals from sulfidic ores like pyrite or chalcopyrite. Biomineralization processes of hyperthermophiles include the formation of magnetite from iron or the precipitation of arsenate as realgar, a reaction performed by a novel hyperthermophile that was isolated from Pisciarelli Solfatara, Naples, Italy.
Collapse
Affiliation(s)
- R Huber
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany.
| | | | | |
Collapse
|
47
|
Kardinahl S, Anemüller S, Schäfer G. The hyper-thermostable Fe-superoxide dismutase from the Archaeon Acidianus ambivalens: characterization, recombinant expression, crystallization and effects of metal exchange. Biol Chem 2000; 381:1089-101. [PMID: 11154067 DOI: 10.1515/bc.2000.134] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An iron-containing superoxide dismutase (SOD; EC 1.15.1.1) of the hyperthermophilic archaeon Acidianus ambivalens (Aa-SOD) has been purified and characterized and the gene has been cloned and sequenced. The SOD from the facultatively aerobic member of the crenarchaeota could be expressed in E. coli. Both, the native as well as the heterologously overproduced protein turned out to have extraordinarily high melting temperatures of 128 degrees C and 124.5 degrees C, respectively. To the best of our knowledge, this is the highest directly measured melting temperature of a native protein. Surprisingly, neither the native nor the recombinant superoxide dismutase displays 100% occupation of the metal coordination sites. Obviously it is not the incorporation of a metal ion that confers the extreme thermostability. Expression of the superoxide dismutase in the presence of different metals such as Fe, Co, Ni, Mn and Cu offered the possibility of studying the hitherto unknown cofactor preference of iron-superoxide dismutase. The recombinant enzyme displayed the highest preference for incorporation of cobalt although iron is used as the natural cofactor. Spectroscopic analysis by EPR, atomic absorption and UVNis spectroscopy as well as activity measurements and differential scanning calorimetry of the metal substituted superoxide dismutases were performed. However, the superoxide dismutase of A. ambivalens is active only with iron but may incorporate other metals equally well in the catalytic center without loss of conformational stability or heat tolerance. The co-form of the enzyme could be crystallized.
Collapse
Affiliation(s)
- S Kardinahl
- Institute of Biochemistry, Medical University of Lübeck, Germany
| | | | | |
Collapse
|
48
|
Martusewitsch E, Sensen CW, Schleper C. High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 2000; 182:2574-81. [PMID: 10762261 PMCID: PMC111323 DOI: 10.1128/jb.182.9.2574-2581.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated uracil-auxotrophic mutants of the hyperthermophilic archaeon Sulfolobus solfataricus in order to explore the genomic stability and mutational frequencies of this organism and to identify complementable recipients for a selectable genetic transformation system. Positive selection of spontaneous mutants resistant to 5-fluoroorotate yielded uracil auxotrophs with frequencies of between 10(-4) and 10(-5) per sensitive, viable cell. Four different, nonhomologous insertion sequences (ISs) were identified at different positions within the chromosomal pyrEF locus of these mutants. They ranged in size from 1,058 to 1,439 bp and possessed properties typical of known transposable elements, i.e., terminal inverted repeats, flanking duplicated target sequences, and putative transposase genes encoding motifs that are indicative of the IS4-IS5 IS element families. Between 12 and 25 copies of each IS element were found in chromosomal DNAs by Southern analyses. While characteristic fingerprint patterns created by IS element-specific probes were observed with genomic DNA of different S. solfataricus strains, no homologous sequences were identified in DNA of other well-characterized strains of the order Sulfolobales.
Collapse
Affiliation(s)
- E Martusewitsch
- Institute of Microbiology, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | | | | |
Collapse
|
49
|
Hinrichs M, Schäfer G, Anemüller S. Functional characterization of an extremely thermophilic ATPase in membranes of the crenarchaeon Acidianus ambivalens. Biol Chem 1999; 380:1063-9. [PMID: 10543443 DOI: 10.1515/bc.1999.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A plasma membrane-bound adenosine triphosphatase with specific activities up to 0.2 micromol min(-1) (mg protein)(-1) at 80 degrees C was detected in the thermoacidophilic crenarchaeon Acidianus ambivalens (DSM 3772). The enzymatic activity exhibited a broad pH-optimum in the neutral range with two suboptima at pH 5.5 and 7.0, respectively. Sulfite activation resulted in only one pH optimum at 6.25. In the presence of the divalent cations Mg2+ and Mn2+ the ATPase activity was maximal. Remarkably, the hydrolytic rates of GTP and ITP were substantially higher than for ATP. ADP and pyrophosphate were only hydrolyzed with small rates, whereas AMP was not hydrolyzed at all. Both activities could be weakly inhibited by the classical F-type ATPase inhibitor N,N'-dicyclohexylcarbodiimide, whereas azide had no influence at all. The classical inhibitor of V-type ATPases, nitrate, also exerted a small inhibitory effect. The strongly specific V-type ATPase inhibitor concanamycin A, however, showed no effect at all. The P-type ATPase inhibitor vanadate had no inhibitory effect on the ATPase activity at pH 7.0, whereas a remarkable inhibition at high concentrations could be observed for the activity at pH 5.5. Arrhenius plots for both membrane bound ATPase activities were linear up to 95 degrees C, reflecting the enormous thermostability of the enzyme.
Collapse
Affiliation(s)
- M Hinrichs
- Institut für Biochemie, Medizinische Universität zu Lübeck, Germany
| | | | | |
Collapse
|
50
|
Das TK, Gomes CM, Teixeira M, Rousseau DL. Redox-linked transient deprotonation at the binuclear site in the aa(3)-type quinol oxidase from Acidianus ambivalens: implications for proton translocation. Proc Natl Acad Sci U S A 1999; 96:9591-6. [PMID: 10449737 PMCID: PMC22253 DOI: 10.1073/pnas.96.17.9591] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hyperthermophilic archaeon Acidianus ambivalens expresses a membrane-bound aa(3)-type quinol oxidase, when grown aerobically, that we have studied by resonance Raman spectroscopy. The purified aa(3) oxidase, which does not contain bound quinol, undergoes a reversible slow conformational change at heme a(3) upon reduction, as indicated by a change in the frequency of its heme formyl stretching mode, from 1,660 cm(-1) to 1,667 cm(-1). In contrast, upon reduction of the integral membrane enzyme or the purified enzyme preincubated with decylubiquinol, this mode appears at 1,667 cm(-1) much more rapidly, suggesting a role of the bound quinol in controlling the redox-linked conformational changes. The shift of the formyl mode to higher frequency is attributed to a loss of hydrogen bonding that is associated with a group having a pKa of approximately 3.8. Based on these observations, a crucial element for proton translocation involving a redox-linked conformational change near the heme a(3) formyl group is postulated.
Collapse
Affiliation(s)
- T K Das
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|