1
|
Brandão PR, Crespo MTB, Nascimento FX. Phylogenomic and comparative analyses support the reclassification of several Komagataeibacter species as novel members of the Novacetimonas gen. nov. and bring new insights into the evolution of cellulose synthase genes. Int J Syst Evol Microbiol 2022; 72. [PMID: 35175916 DOI: 10.1099/ijsem.0.005252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Komagataeibacter harbours bacteria presenting the ability to produce increased levels of crystalline nanocellulose, as well as strains used in the industrial production of fermented products and beverages. Still, most of the studies of this biotechnologically relevant genus were conducted based on limited phenotypic methodologies and taxonomical classifications. In this work, a detailed analysis of the currently described genus Komagataeibacter was conducted based on phylogenomic analysis, unveiling the phylogenomic relationships within the genus and allowing a detailed phylogenetic analysis of biotechnologically important genes such as those involved in cellulose biosynthesis (bcs genes). Phylogenomic and comparative genomic analysis revealed that several type strains formed an independent genomic group from those of other Komagataeibacter, prompting their reclassification as members of a novel genus, hereby termed Novacetimonas gen. nov. The results support the reclassification of Komagataeibacter hansenii, Komagataeibacter cocois, Komagataeibacter maltaceti and Komagataeibacter pomaceti as novel members of the genus Novacetimonas. The Novacetimonas hansenii species is the proposed representative of the novel genus. Importantly, phylogenetic analysis based on cellulose biosynthesis genes (bcsABCD, bcsAB2XYC2, bcsAB3C3, bcsAB4), showed that the evolutionary history of these genes is closely related to the strain's phylogenomic/taxonomic classification. Hence, the robust taxonomic classification of these bacteria will allow the better characterization and selection of strains for biotechnological applications.
Collapse
Affiliation(s)
- Pedro R Brandão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Maria T B Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Francisco X Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
2
|
Nyiew K, Kwong PJ, Yow Y. An overview of antimicrobial properties of kombucha. Compr Rev Food Sci Food Saf 2022; 21:1024-1053. [DOI: 10.1111/1541-4337.12892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/14/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Ke‐Ying Nyiew
- Department of Biological Sciences School of Medical and Life Sciences Sunway University Selangor Malaysia
| | - Phek Jin Kwong
- Department of Agricultural and Food Science Faculty of Science Universiti Tunku Abdul Rahman Perak Campus Kampar Malaysia
| | - Yoon‐Yen Yow
- Department of Biological Sciences School of Medical and Life Sciences Sunway University Selangor Malaysia
| |
Collapse
|
3
|
Marič L, Cleenwerck I, Accetto T, Vandamme P, Trček J. Description of Komagataeibacter melaceti sp. nov. and Komagataeibacter melomenusus sp. nov. Isolated from Apple Cider Vinegar. Microorganisms 2020; 8:E1178. [PMID: 32756518 PMCID: PMC7465234 DOI: 10.3390/microorganisms8081178] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 01/18/2023] Open
Abstract
Two novel strains AV382 and AV436 were isolated from a submerged industrial bioreactor for production of apple cider vinegar in Kopivnik (Slovenia). Both strains showed very high (≥98.2%) 16S rRNA gene sequence similarities with Komagataeibacter species, but lower 16S-23S rRNA gene internal transcribed spacer (ITS). The highest similarity of the 16S-23S rRNA gene ITS of AV382 was to Komagataeibacter kakiaceti LMG 26206T (91.6%), of AV436 to Komagataeibacter xylinus LMG 1515T (93.9%). The analysis of genome sequences confirmed that AV382 is the most closely related to K. kakiaceti (ANIb 88.2%) and AV436 to K. xylinus (ANIb 91.6%). Genome to genome distance calculations exhibit for both strains ≤47.3% similarity to all type strains of the genus Komagataeibacter. The strain AV382 can be differentiated from its closest relatives K. kakiaceti and Komagataeibacter saccharivorans by its ability to form 2-keto and 5-keto-D-gluconic acids from glucose, incapability to grow in the presence of 30% glucose, formation of C19:0 cyclo ω8c fatty acid and tolerance of up to 5% acetic acid in the presence of ethanol. The strain AV436 can be differentiated from its closest relatives K. xylinus, Komagataeibacter sucrofermentans, and Komagataeibacter nataicola by its ability to form 5-keto-D-gluconic acid, growth on 1-propanol, efficient synthesis of cellulose, and tolerance to up to 5% acetic acid in the presence ethanol. The major fatty acid of both strains is C18:1ω7c. Based on a combination of phenotypic, chemotaxonomic and phylogenetic features, the strains AV382T and AV436T represent novel species of the genus Komagataeibacter, for which the names Komagataeibactermelaceti sp. nov. and Komagataeibacter melomenusus are proposed, respectively. The type strain of Komagataeibacter melaceti is AV382T (= ZIM B1054T = LMG 31303T = CCM 8958T) and of Komagataeibacter melomenusus AV436T (= ZIM B1056T = LMG 31304T = CCM 8959T).
Collapse
Affiliation(s)
- Leon Marič
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, Faculty of Sciences, B-9000 Ghent, Belgium; (I.C.); (P.V.)
| | - Tomaž Accetto
- Animal Science Department, Biotechnical Faculty, University of Ljubljana, SI-1230 Domžale, Slovenia;
| | - Peter Vandamme
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, Faculty of Sciences, B-9000 Ghent, Belgium; (I.C.); (P.V.)
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia;
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
4
|
Vinegar production from Citrus bergamia by-products and preservation of bioactive compounds. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03549-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives. Appl Microbiol Biotechnol 2020; 104:6565-6585. [PMID: 32529377 PMCID: PMC7347698 DOI: 10.1007/s00253-020-10671-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
The strains of the Komagataeibacter genus have been shown to be the most efficient bacterial nanocellulose producers. Although exploited for many decades, the studies of these species focused mainly on the optimisation of cellulose synthesis process through modification of culturing conditions in the industrially relevant settings. Molecular physiology of Komagataeibacter was poorly understood and only a few studies explored genetic engineering as a strategy for strain improvement. Only since recently the systemic information of the Komagataeibacter species has been accumulating in the form of omics datasets representing sequenced genomes, transcriptomes, proteomes and metabolomes. Genetic analyses of the mutants generated in the untargeted strain modification studies have drawn attention to other important proteins, beyond those of the core catalytic machinery of the cellulose synthase complex. Recently, modern molecular and synthetic biology tools have been developed which showed the potential for improving targeted strain engineering. Taking the advantage of the gathered knowledge should allow for better understanding of the genotype–phenotype relationship which is necessary for robust modelling of metabolism as well as selection and testing of new molecular engineering targets. In this review, we discuss the current progress in the area of Komagataeibacter systems biology and its impact on the research aimed at scaled-up cellulose synthesis as well as BNC functionalisation.Key points • The accumulated omics datasets advanced the systemic understanding of Komagataeibacter physiology at the molecular level. • Untargeted and targeted strain modification approaches have been applied to improve nanocellulose yield and properties. • The development of modern molecular and synthetic biology tools presents a potential for enhancing targeted strain engineering. • The accumulating omic information should improve modelling of Komagataeibacter’s metabolism as well as selection and testing of new molecular engineering targets. |
Collapse
|
6
|
Naloka K, Yukphan P, Matsutani M, Matsushita K, Theeragool G. Komagataeibacter diospyri sp. nov., a novel species of thermotolerant bacterial nanocellulose-producing bacterium. Int J Syst Evol Microbiol 2020; 70:251-258. [PMID: 31622229 DOI: 10.1099/ijsem.0.003745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermotolerant bacterial nanocellulose-producing strains, designated MSKU 9T and MSKU 15, were isolated from persimmon and sapodilla fruits, respectively. These strains were aerobic, Gram-stain-negative, had rod-shaped cells, were non-motile and formed white-cream colonies. Phylogeny based on the 16S rRNA gene sequences revealed that MSKU 9T and MSKU 15 represented members of the genus Komagataeibacter and formed a monophyletic branch with K. swingsii JCM 17123T and K. europaeus DSM 6160T. The genomic analysis revealed that overall genomic relatedness index values of MSKU 9T with K. swingsii JCM 17123T and K. europaeus DSM 6160T were ~90 % average nucleotide identity (ANI) and ≤58.2 % digital DNA-DNA hybridization (dDDH), respectively. MSKU 9T and MSKU 15 can be differentiated from the closely related K. swingsii JCM 17123T by their growth on 30 % d-glucose and ability to utilize and to form acid from raffinose and sucrose as carbon sources, and from K. europaeus DSM 6160T by their ability to grow without acetic acid. The genomic DNA G+C contents of MSKU 9T and MSKU 15 were 60.4 and 60.2 mol%, respectively. The major fatty acids of MSKU 9T and MSKU 15 were summed feature 8 (C18 : 1 ω7c and/or C18 : 1ω6c). The respiratory quinone was determined to be Q10. On the basis of the results of the polyphasic taxonomic analysis, MSKU 9T (=TBRC 9844T=NBRC 113802T) represents a novel species of the genus Komagataeibacter, for which the name Komagataeibacter diospyri sp. nov. is proposed.
Collapse
Affiliation(s)
- Kallayanee Naloka
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Pattaraporn Yukphan
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Minenosuke Matsutani
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunobu Matsushita
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.,Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Gunjana Theeragool
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
7
|
In Vitro Thermal and Ethanol Adaptations to Improve Vinegar Fermentation at High Temperature of Komagataeibacter oboediens MSKU 3. Appl Biochem Biotechnol 2019; 189:144-159. [PMID: 30957194 DOI: 10.1007/s12010-019-03003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/27/2019] [Indexed: 12/30/2022]
Abstract
High temperature and high ethanol concentrations obviously affect vinegar fermentation. The thermotolerant and ethanol-resistant strains are expected to become one of the technologies for effective vinegar fermentation. This study aimed to further improve thermotolerant Komagataeibacter oboediens MSKU 3 through thermal and ethanol adaptations for acetic acid fermentation. The MSKU 3 strain was independently cultured by a repetitive cultivation in gradually increasing temperature from 37 to 39 °C for thermal adaptation, while adaptation to ethanol was carried out from concentrations of 3 to 5.5% (v/v) at 37 °C. Acetic acid fermentation revealed that the thermo-adapted T4 strain could produce 2.82% acidity with 3% ethanol at 39 °C, whereas the ethanol-adapted E3 strain could produce 3.54% acidity with 5.5% ethanol at 37 °C, in contrast to the parental strain, MSKU 3, in which no fermentation occurs at either 39 °C or 5.5% ethanol. Furthermore, genome mapping analysis of T4 and E3 strains against the genome of parental strain MSKU 3 revealed several mutated genes that are associated with thermotolerance or ethanol adaptation. The occurrence of these adaptation-associated mutations during adaptive evolution was also analyzed. Therefore, adapted strains T4 and E3 revealed the potential of Komagataeibacter oboediens strain improvement to further enhance vinegar fermentation with high ethanol concentration at high temperature.
Collapse
|
8
|
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547-1549. [PMID: 29722887 DOI: 10.1007/0-387-30745-1_9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Glen Stecher
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Michael Li
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Christina Knyaz
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Koichiro Tamura
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
9
|
Simon L, Škraban J, Kyrpides NC, Woyke T, Shapiro N, Cleenwerck I, Vandamme P, Whitman WB, Trček J. Paenibacillus aquistagni sp. nov., isolated from an artificial lake accumulating industrial wastewater. Antonie van Leeuwenhoek 2017; 110:1189-1197. [PMID: 28555445 DOI: 10.1007/s10482-017-0891-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Strain 11T was isolated from water of an artificial lake accumulating industrial wastewater on the outskirts of Celje, Slovenia. Phenotypic characterisation showed strain 11T to be a Gram-stain positive, spore forming bacterium. The 16S rRNA gene sequence identified strain 11T as a member of the genus Paenibacillus, closely related to Paenibacillus alvei (96.2%). Genomic similarity with P. alvei 29T was 73.1% (gANI), 70.2% (ANIb), 86.7% (ANIm) and 21.7 ± 2.3% (GGDC). The DNA G+C content of strain 11T was determined to be 47.5%. The predominant menaquinone of strain 11T was identified as MK-7 and the major fatty acid as anteiso-C15:0. The peptidoglycan was found to contain meso-diaminopimelic acid. In contrast to its close relatives P. alvei DSM 29T, Paenibacillus apiarius DSM 5581T and Paenibacillus profundus NRIC 0885T, strain 11T was found to be able to ferment D-fructose, D-mannose and D-xylose. A draft genome of strain 11T contains a cluster of genes associated with type IV pilin synthesis usually found in clostridia, and only sporadically in other Gram-positive bacteria. Genotypic, chemotaxonomic, physiological and biochemical characteristics of strain 11T presented in this study support the creation of a novel species within the genus Paenibacillus, for which the name Paenibacillus aquistagni sp. nov. is proposed, with strain 11T (=ZIM B1027T =LMG 29561T =CCM 8679T ) as the type strain.
Collapse
Affiliation(s)
- Lučka Simon
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jure Škraban
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | | | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia. .,Department of Biology, Faculty of Chemistry and Chemical Engineering, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
| |
Collapse
|
10
|
Ber P, Trappen SV, Vandamme P, Trček J. Aeromicrobium choanae sp. nov., an actinobacterium isolated from the choana of a garden warbler. Int J Syst Evol Microbiol 2017; 67:357-361. [DOI: 10.1099/ijsem.0.001632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Polona Ber
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Stefanie Van Trappen
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Peter Vandamme
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Sciences, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Janja Trček
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
11
|
Trček J, Lipoglavšek L, Avguštin G. 16S rRNA in situ Hybridization Followed by Flow Cytometry for Rapid Identification of Acetic Acid Bacteria Involved in Submerged Industrial Vinegar Production. Food Technol Biotechnol 2016; 54:108-112. [PMID: 27904400 DOI: 10.17113/ftb.54.01.16.4041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acetic acid bacteria are involved in many biotechnological processes such as vitamin C, gluconic acid, miglitol or acetic acid production, and others. For a technologist trying to control the industrial process, the ability to follow the microbiological development of the process is thus of importance. During the past few years hybridization in a combination with flow cytometry has often been used for this purpose. Since vinegar is a liquid, it is an ideal matrix for flow cytometry analysis. In this work we have constructed a specific probe for highly acetic acid-resistant species of the acetic acid bacteria and a protocol for in situ hybridization, which in combination with flow cytometry enables direct monitoring of bacteria producing vinegar with >10% of acetic acid. The approach was successfully applied for monitoring microbiota during industrial vinegar production.
Collapse
Affiliation(s)
- Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia; Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17,
SI-2000 Maribor, Slovenia
| | - Luka Lipoglavšek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3,
SI-1230 Domžale, Slovenia
| | - Gorazd Avguštin
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3,
SI-1230 Domžale, Slovenia
| |
Collapse
|
12
|
Trček J, Mahnič A, Rupnik M. Diversity of the microbiota involved in wine and organic apple cider submerged vinegar production as revealed by DHPLC analysis and next-generation sequencing. Int J Food Microbiol 2016; 223:57-62. [DOI: 10.1016/j.ijfoodmicro.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/21/2016] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
|
13
|
Adaptation and tolerance of bacteria against acetic acid. Appl Microbiol Biotechnol 2015; 99:6215-29. [DOI: 10.1007/s00253-015-6762-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
|
14
|
Yetiman AE, Kesmen Z. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. Int J Food Microbiol 2015; 204:9-16. [PMID: 25828705 DOI: 10.1016/j.ijfoodmicro.2015.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/24/2015] [Accepted: 03/12/2015] [Indexed: 11/16/2022]
Abstract
Culture-dependent and culture-independent methods were combined for the investigation of acetic acid bacteria (AAB) populations in traditionally produced vinegars and mother of vinegar samples obtained from apple and grape. The culture-independent denaturing gradient gel electrophoresis (DGGE) analysis, which targeted the V7-V8 regions of the 16S rRNA gene, showed that Komagataeibacter hansenii and Komagataeibacter europaeus/Komagataeibacter xylinus were the most dominant species in almost all of the samples analyzed directly. The culture-independent GTG5-rep PCR fingerprinting was used in the preliminary characterization of AAB isolates and species-level identification was carried out by sequencing of the 16S rRNA gene, 16S-23S rDNA internally transcribed to the spacer (ITS) region and tuf gene. Acetobacter okinawensis was frequently isolated from samples obtained from apple while K. europaeus was identified as the dominant species, followed by Acetobacter indonesiensis in the samples originating from grape. In addition to common molecular techniques, real-time PCR intercalating dye assays, including DNA melting temperature (Tm) and high resolution melting analysis (HRM), were applied to acetic acid bacterial isolates for the first time. The target sequence of ITS region generated species-specific HRM profiles and Tm values allowed discrimination at species level.
Collapse
Affiliation(s)
- Ahmet E Yetiman
- Erciyes University, Faculty of Engineering, Food Engineering Department, Kayseri, Turkey
| | - Zülal Kesmen
- Erciyes University, Faculty of Engineering, Food Engineering Department, Kayseri, Turkey.
| |
Collapse
|
15
|
Trček J, Barja F. Updates on quick identification of acetic acid bacteria with a focus on the 16S-23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry. Int J Food Microbiol 2014; 196:137-44. [PMID: 25589227 DOI: 10.1016/j.ijfoodmicro.2014.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/13/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Acetic acid bacteria have attracted much attention over the past few years, due mainly to their metabolic traits that are of interest to the biotechnology industry. In addition, it turns out that their ecological habitats are almost unlimited since they have been found as symbionts in different insects and also as emerging opportunistic human pathogens. Very surprising is the finding that they colonize niches considered anaerobic, disproving the generalized statement that they are strict aerobes. Since they have taken on different biological roles in our environment, more and more people are charged with the task of identifying them. However, this turns out to be not always easy, especially if we are using phenotypic approaches for identification. A substantial step forward in making the identification of acetic acid bacteria easier was made possible using molecular biological methods, which have been extensively tested since 2000. However, some molecular methods require expensive machines and experienced staff, and moreover the level of their discrimination varies. All these factors must be considered when selecting the most appropriate approach for identifying acetic acid bacteria. With this objective in mind, this review article discusses the benefits and drawbacks of molecular biological methods for identification of acetic acid bacteria, with a focus on the 16S-23S rRNA gene ITS regions and the recently described alternative method for identification of acetic acid bacteria, MALDI-TOF MS.
Collapse
Affiliation(s)
- Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia; Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia.
| | - François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Jussy-Geneva, Switzerland
| |
Collapse
|
16
|
Gullo M, Verzelloni E, Canonico M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Trček J. Plasmid analysis of high acetic acid-resistant bacterial strains by two-dimensional agarose gel electrophoresis and insights into the phenotype of plasmid pJK2-1. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0966-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Jayabalan R, Malbaša RV, Lončar ES, Vitas JS, Sathishkumar M. A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr Rev Food Sci Food Saf 2014; 13:538-550. [DOI: 10.1111/1541-4337.12073] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/07/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Rasu Jayabalan
- Food Microbiology and Bioprocess Laboratory; Dept. of Life Science; Natl. Inst. of Technology; Rourkela 769 008 Odisha India
| | - Radomir V. Malbaša
- Univ. of Novi Sad; Faculty of Technology; Bulevar Cara Lazara 1 21000 Novi Sad Serbia
| | - Eva S. Lončar
- Univ. of Novi Sad; Faculty of Technology; Bulevar Cara Lazara 1 21000 Novi Sad Serbia
| | - Jasmina S. Vitas
- Univ. of Novi Sad; Faculty of Technology; Bulevar Cara Lazara 1 21000 Novi Sad Serbia
| | - Muthuswamy Sathishkumar
- R&D Div; Eureka Forbes Ltd; Schedule No. 42, P-3/C Haralukunte, Kudlu, Bangalore 560068 India
| |
Collapse
|
19
|
Slapšak N, Cleenwerck I, De Vos P, Trček J. Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium. Syst Appl Microbiol 2012; 36:17-21. [PMID: 23273842 DOI: 10.1016/j.syapm.2012.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/29/2022]
Abstract
Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529(T) and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Trček and Teuber [34] revealed the same but unique restriction profiles for LMG 1529(T) and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA-DNA hybridizations confirmed their novel species identity by 73% DNA-DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529(T) and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)(5)-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529(T) and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529(T) and SKU 1109 is C(18:1ω7c) (60.2-64.8%). The DNA G+C content of LMG 1529(T) and SKU 1109 is 62.5 and 63.3mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529(T) (=NBRC 14815(T)=NCIMB 8752(T)).
Collapse
Affiliation(s)
- Nina Slapšak
- University of Maribor, Faculty of Natural Sciences and Mathematics, Department of Biology, Maribor, Slovenia
| | | | | | | |
Collapse
|
20
|
Hidalgo C, Mateo E, Mas A, Torija M. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki). Food Microbiol 2012; 30:98-104. [DOI: 10.1016/j.fm.2011.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
|
21
|
Barata A, Malfeito-Ferreira M, Loureiro V. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Int J Food Microbiol 2012; 154:152-61. [PMID: 22277696 DOI: 10.1016/j.ijfoodmicro.2011.12.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/18/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022]
Abstract
This study investigated the microbiota of sour rotten wine grapes and its impact on wine fermentations. Yeasts, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) were enumerated and identified on sound and sour rot grapes during the ripening stage. The alteration of the ecological balance induced by sour rot was particularly evidenced by the unequivocal increase of yeast and AAB counts on rotten grapes, since the beginning of ripening. Yeast and AAB species diversity in rotten grape samples were much higher than those found in sound grapes. LAB populations were low detected from both healthy and sour rotten grapes. The yeast species Issatchenkia occidentalis, Zygoascus hellenicus and Zygosaccharomyces bailii and the AAB species Gluconacetobacter hansenii, Gluconacetobacter intermedius and Acetobacter malorum, were recovered from damaged grapes and resulting grape juices in the winery. Acetobacter orleaniensis and Acetobacter syzygii were only recovered from sour rotten grapes. Dekkera bruxellensis and Oenococcus oeni were only recovered after wine fermentation induced by starter inoculation, irrespective of grape health, probably originating from cellar environment. After malolactic fermentation, racking and sulphur dioxide addition the only remaining species were the yeast Trigonopsis cantarellii and Saccharomyces cerevisiae, independently of the grape health status.
Collapse
Affiliation(s)
- André Barata
- Laboratório de Microbiologia, Departamento de Recursos Naturais Ambiente e Território, Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Technical University of Lisbon, Lisboa, Portugal.
| | | | | |
Collapse
|
22
|
Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J GEN APPL MICROBIOL 2012; 58:397-404. [DOI: 10.2323/jgam.58.397] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Iino T, Suzuki R, Tanaka N, Kosako Y, Ohkuma M, Komagata K, Uchimura T. Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar. Int J Syst Evol Microbiol 2011; 62:1465-1469. [PMID: 21841006 DOI: 10.1099/ijs.0.031773-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel acetic acid bacteria, strains G5-1(T) and I5-1, were isolated from traditional kaki vinegar (produced from fruits of kaki, Diospyros kaki Thunb.), collected in Kumamoto Prefecture, Japan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains G5-1(T) and I5-1 formed a distinct subline in the genus Gluconacetobacter and were closely related to Gluconacetobacter swingsii DST GL01(T) (99.3% 16S rRNA gene sequence similarity). The isolates showed 96-100% DNA-DNA relatedness with each other, but <53% DNA-DNA relatedness with closely related members of the genus Gluconacetobacter. The isolates could be distinguished from closely related members of the genus Gluconacetobacter by not producing 2- and 5-ketogluconic acids from glucose, producing cellulose, growing without acetic acid and with 30% (w/v) d-glucose, and producing acid from sugars and alcohols. Furthermore, the genomic DNA G+C contents of strains G5-1(T) and I5-1 were a little higher than those of their closest phylogenetic neighbours. On the basis of the phenotypic characteristics and phylogenetic position, strains G5-1(T) and I5-1 are assigned to a novel species, for which the name Gluconacetobacter kakiaceti sp. nov. is proposed; the type strain is G5-1(T) (=JCM 25156(T)=NRIC 0798(T)=LMG 26206(T)).
Collapse
Affiliation(s)
- Takao Iino
- Japan Collection of Microorganisms, RIKEN BioResource Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Rei Suzuki
- Laboratory of General and Applied Microbiology, Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Naoto Tanaka
- NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Yoshimasa Kosako
- Japan Collection of Microorganisms, RIKEN BioResource Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuo Komagata
- Laboratory of General and Applied Microbiology, Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Tai Uchimura
- Laboratory of General and Applied Microbiology, Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
24
|
Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0288-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
25
|
|
26
|
Matsutani M, Hirakawa H, Yakushi T, Matsushita K. Genome-wide phylogenetic analysis of Gluconobacter, Acetobacter, and Gluconacetobacter. FEMS Microbiol Lett 2010; 315:122-8. [DOI: 10.1111/j.1574-6968.2010.02180.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Fernández-Pérez R, Torres C, Sanz S, Ruiz-Larrea F. Rapid molecular methods for enumeration and taxonomical identification of acetic acid bacteria responsible for submerged vinegar production. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1331-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int J Food Microbiol 2010; 138:130-6. [DOI: 10.1016/j.ijfoodmicro.2010.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/23/2009] [Accepted: 01/06/2010] [Indexed: 11/22/2022]
|
29
|
Suzuki R, Lisdiyanti P, Komagata K, Uchimura T. MxaF gene, a gene encoding alpha subunit of methanol dehydrogenase in and false growth of acetic acid bacteria on methanol. J GEN APPL MICROBIOL 2009; 55:101-10. [PMID: 19436127 DOI: 10.2323/jgam.55.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MxaF gene, a gene encoding alpha subunit of methanol dehydrogenase, was investigated for acetic acid bacteria, and growth on methanol was examined for the bacteria by using various media. Of 21 strains of acetic acid bacteria studied, Acidomonas methanolica strains showed the presence of mxaF gene exclusively, and grew on a defined medium containing methanol. Further, none of the strains tested of which the growth on methanol had been previously reported, except for Acidomonas methanolica, showed the presence of mxaF gene or the growth on methanol. Precautions were taken against false growth on compounds used for identification of bacteria.
Collapse
Affiliation(s)
- Rei Suzuki
- Laboratory of General and Applied Microbiology, Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | | | | | |
Collapse
|
30
|
Cleenwerck I, De Wachter M, González A, De Vuyst L, De Vos P. Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii. Int J Syst Evol Microbiol 2009; 59:1771-86. [PMID: 19542117 DOI: 10.1099/ijs.0.005157-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amplified fragment length polymorphism (AFLP) DNA fingerprinting was investigated as a tool for fast and accurate identification of acetic acid bacteria (AAB) to the species level. One hundred and thirty five reference strains and 15 additional strains, representing 50 recognized species of the family Acetobacteraceae, were subjected to AFLP analysis using the restriction enzyme combination ApaI/TaqI and the primer combination A03/T03. The reference strains had been previously subjected to either DNA-DNA hybridization or 16S-23S rRNA spacer region gene sequence analysis and were regarded as being accurately classified at the species level. The present study revealed that six of these strains should be reclassified, namely Gluconacetobacter europaeus LMG 1518 and Gluconacetobacter xylinus LMG 1510 as Gluconacetobacter xylinus and Gluconacetobacter europaeus, respectively; Gluconacetobacter kombuchae LMG 23726(T) as Gluconacetobacter hansenii; and Acetobacter orleanensis strains LMG 1545, LMG 1592 and LMG 1608 as Acetobacter cerevisiae. Cluster analysis of the AFLP DNA fingerprints of the reference strains revealed one cluster for each species, showing a linkage level below 50 % with other clusters, except for Acetobacter pasteurianus, Acetobacter indonesiensis and Acetobacter cerevisiae. These three species were separated into two, two, and three clusters, respectively. At present, confusion exists regarding the taxonomic status of Gluconacetobacter oboediens and Gluconacetobacter intermedius; the AFLP data from this study supported their classification as separate taxa. The 15 additional strains could all be identified at the species level. AFLP analysis further revealed that some species harboured genetically diverse strains, whereas other species consisted of strains showing similar banding patterns, indicating a more limited genetic diversity. It can be concluded that AFLP DNA fingerprinting is suitable for accurate identification and classification of a broad range of AAB, as well as for the determination of intraspecific genetic diversity.
Collapse
Affiliation(s)
- Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
31
|
Abstract
The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other products of biotransformations by AAB or their enzymes include 2-keto-L-gulonic acid, which is used for the production of vitamin C; D-tagatose, which is used as a bulking agent in food and a noncalorific sweetener; and shikimate, which is a key intermediate for a large number of antibiotics. Recently, for the first time, a pathogenic acetic acid bacterium was described, representing the newest and tenth genus of AAB.
Collapse
Affiliation(s)
- Peter Raspor
- Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
32
|
Cleenwerck I, De Vos P. Polyphasic taxonomy of acetic acid bacteria: An overview of the currently applied methodology. Int J Food Microbiol 2008; 125:2-14. [DOI: 10.1016/j.ijfoodmicro.2007.04.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/15/2007] [Accepted: 04/05/2007] [Indexed: 10/22/2022]
|
33
|
Bartosik D, Putyrski M, Dziewit L, Malewska E, Szymanik M, Jagiello E, Lukasik J, Baj J. Transposable modules generated by a single copy of insertion sequence ISPme1 and their influence on structure and evolution of natural plasmids of Paracoccus methylutens DM12. J Bacteriol 2008; 190:3306-13. [PMID: 18296518 PMCID: PMC2347374 DOI: 10.1128/jb.01878-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/12/2008] [Indexed: 11/20/2022] Open
Abstract
We demonstrated that a single copy of insertion sequence ISPme1 can mobilize adjacent segments of genomic DNA of Paracoccus methylutens DM12, which leads to the generation of diverse transposable elements of various size and DNA contents. All elements (named transposable modules [TMos]) contain ISPme1 (placed at the 5' ends of the elements) and have variable 3'-end regions of between 0.5 and 5 kb. ISPme1 was shown to encode an outwardly oriented promoter, which may activate the transcription of genes transposed within TMos in evolutionarily distinct hosts. TMos may therefore be considered to be natural systems enabling gene capture, expression, and spread. However, unless these elements have been inserted into a highly conserved genetic context to enable a precise definition of their termini, it is extremely difficult or even impossible to identify them in bacterial genomes by in silico sequence analysis. We showed that TMos are present in the chromosome and plasmids of strain DM12. Sequence analysis of plasmid pMTH1 (32 kb) revealed that four TMos, previously identified with a trap vector, pMEC1, comprise 87% of its genome. Repeated TMos within pMTH1 may stimulate other structural rearrangements resulting from homologous recombination between long repeat sequences. This illustrates that TMos may play a significant role in shaping the structure of natural plasmids, which consequently may have a great impact on the evolution of plasmid genomes.
Collapse
Affiliation(s)
- Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yamada Y, Yukphan P. Genera and species in acetic acid bacteria. Int J Food Microbiol 2007; 125:15-24. [PMID: 18199517 DOI: 10.1016/j.ijfoodmicro.2007.11.077] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 09/26/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
Taxonomic studies of acetic acid bacteria were historically surveyed. The genus Acetobacter was first introduced in 1898 with a single species, Acetobacter aceti. The genus Gluconobacter was proposed in 1935 for strains with intense oxidation of glucose to gluconic acid rather than oxidation of ethanol to acetic acid and no oxidation of acetate. The genus "Acetomonas" was described in 1954 for strains with polar flagellation and no oxidation of acetate. The proposals of the two generic names were due to confusion, and "Acetomonas" was a junior subjective synonym of Gluconobacter. The genus Acetobacter was in 1984 divided into two subgenera, Acetobacter and Gluconoacetobacter. The latter was elevated to the genus Gluconacetobacter in 1998. In the acetic acid bacteria, ten genera are presently recognized and accommodated to the family Acetobacteraceae, the Alphaproteobacteria: Acetobacteer, Gluconobacter, Acidomonas, Gluconacetobacter, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia and Granulibacter. In contrast, the genus Frateuria, strains of which were once named 'pseudacetic acid bacteria', was classified into the Gammaproteobacteria. The genus Gluconacetobacter was phylogenetically divided into two groups: the Gluconacetobacter liquefaciens group and the Gluconacetobacter xylinus group. The two groups were discussed taxonomically.
Collapse
Affiliation(s)
- Yuzo Yamada
- BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand.
| | | |
Collapse
|
35
|
Gullo M, Giudici P. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. Int J Food Microbiol 2007; 125:46-53. [PMID: 18177968 DOI: 10.1016/j.ijfoodmicro.2007.11.076] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 09/19/2007] [Accepted: 11/27/2007] [Indexed: 11/24/2022]
Abstract
This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.
Collapse
Affiliation(s)
- Maria Gullo
- Department of Agricultural Sciences, University of Modena and Reggio Emilia, Via Amendola, 2, 42100 Reggio Emilia, Italy.
| | | |
Collapse
|
36
|
Trcek J, Jernejc K, Matsushita K. The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression. Extremophiles 2007; 11:627-35. [PMID: 17487444 DOI: 10.1007/s00792-007-0077-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
The strain of acetic acid bacterium, Gluconacetobacter europaeus V3, previously isolated from industrial vinegar-producing bioreactor, tolerates extremely high acetic acid concentrations of up to 10% (v/v). Increased concentration of acetic acid changed the total fatty acid composition of cells by increasing the concentration of a major unsaturated fatty acid, the cis-vaccenic acid. Among the phospholipids, the most significant change was observed for phosphatidylglycerol with 7.3-fold increase and phosphatidylethanolamin with 2.7-fold decrease in the presence of 3% (v/v) of acetic acid. The sizes of cells analyzed with scanning electron microscopy changed from short to long rods in the presence of acetic acid. The cells were covered with spongy layer. The increase of acetic acid concentration from 1 to 2% (v/v) induced the expression of PQQ-dependent alcohol dehydrogenase, but the regulation could not be demonstrated at the transcriptional level. All together, our results suggest that Ga. europaeus activates several adaptive mechanisms to resist the stress of acetic acid.
Collapse
Affiliation(s)
- Janja Trcek
- Limnos, Podlimbarskega 31, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
37
|
Dutta D, Gachhui R. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 2007; 57:353-357. [PMID: 17267978 DOI: 10.1099/ijs.0.64638-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A few members of the family Acetobacteraceae are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3T, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus Gluconacetobacter, with Gluconacetobacter hansenii LMG 1527T as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as l-alanine, l-cysteine and l-threonine served as carbon and nitrogen sources for growth of strain RG3T. Strain RG3T produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2–27.77 % DNA–DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name Gluconacetobacter kombuchae sp. nov. is proposed, with the type strain RG3T (=LMG 23726T=MTCC 6913T).
Collapse
MESH Headings
- Amino Acids/metabolism
- Bacterial Typing Techniques
- Base Composition
- Carbohydrate Metabolism
- Cellulose/biosynthesis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Food Microbiology
- Genes, rRNA
- Gluconacetobacter/classification
- Gluconacetobacter/genetics
- Gluconacetobacter/isolation & purification
- Gluconacetobacter/physiology
- Molecular Sequence Data
- Nitrogen Fixation
- Nucleic Acid Hybridization
- Phylogeny
- Quinones/analysis
- Quinones/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Tea/microbiology
Collapse
Affiliation(s)
- Debasree Dutta
- Department of Life Science & Biotechnology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Ratan Gachhui
- Department of Life Science & Biotechnology, Jadavpur University, Kolkata 700032, West Bengal, India
| |
Collapse
|
38
|
Lisdiyanti P, Navarro RR, Uchimura T, Komagata K. Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 2006; 56:2101-2111. [PMID: 16957106 DOI: 10.1099/ijs.0.63252-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ten strains previously assigned to Acetobacter hansenii (=Gluconacetobacter hansenii), Acetobacter pasteurianus LMG 1584 and eight reference strains of the genus Gluconacetobacter were reclassified by 16S rRNA gene sequencing, DNA–DNA similarity, DNA base composition and phenotypic characteristics. The A. hansenii strains and A. pasteurianus LMG 1584 were included in the cluster of acetic acid bacteria (family Acetobacteraceae) by 16S rRNA gene sequences. Further, they were separated into seven distinct groups by DNA–DNA similarity. DNA–DNA similarity group I was identified as G. hansenii. DNA–DNA similarity group II was retained as Gluconacetobacter sp., because DNA–DNA similarity between the strain and Gluconacetobacter entanii LTH 4560T could not be determined. This was due to a lack of availability of the type strain from any source. DNA–DNA similarity group III was regarded as a novel species, for which the name Gluconacetobacter saccharivorans sp. nov. (type strain, LMG 1582T=NRIC 0614T) is proposed. DNA–DNA similarity group IV included the type strains of Gluconacetobacter oboediens and Gluconacetobacter intermedius, and three A. hansenii strains. This group was identified as G. oboediens because high values of DNA–DNA similarity were obtained between the type strains and G. oboediens has priority over G. intermedius. DNA–DNA similarity group V was identified as Gluconacetobacter europaeus. DNA–DNA similarity group VI was regarded as a novel species, for which the name Gluconacetobacter nataicola sp. nov. (type strain, LMG 1536T=NRIC 0616T) is proposed. DNA–DNA similarity group VII was reclassified as Gluconacetobacter xylinus. The description of G. hansenii is emended.
Collapse
Affiliation(s)
- Puspita Lisdiyanti
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Richard R Navarro
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tai Uchimura
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuo Komagata
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
39
|
Trcek J, Toyama H, Czuba J, Misiewicz A, Matsushita K. Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol 2006; 70:366-73. [PMID: 16133326 DOI: 10.1007/s00253-005-0073-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 06/24/2005] [Accepted: 06/24/2005] [Indexed: 11/30/2022]
Abstract
In this study, we compared the growth properties and molecular characteristics of pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) among highly acetic acid-resistant strains of acetic acid bacteria. Gluconacetobacter europaeus exhibited the highest resistance to acetic acid (10%), whereas Gluconacetobacter intermedius and Acetobacter pasteurianus resisted up to 6% of acetic acid. In media with different concentrations of acetic acid, the maximal acetic acid production rate of Ga. europaeus slowly increased, but specific growth rates decreased concomitant with increased concentration of acetic acid in medium. The lag phase of A. pasteurianus was twice and four times longer in comparison to the lag phases of Ga. europaeus and Ga. intermedius, respectively. PQQ-dependent ADH activity was twice as high in Ga. europaeus and Ga. intermedius as in A. pasteurinus. The purified enzymes showed almost the same specific activity to each other, but in the presence of acetic acid, the enzyme activity decreased faster in A. pasteurianus and Ga. intermedius than in Ga. europaeus. These results suggest that high ADH activity in the Ga. europaeus cells and high acetic acid stability of the purified enzyme represent two of the unique features that enable this species to grow and stay metabolically active at extremely high concentrations of acetic acid.
Collapse
Affiliation(s)
- Janja Trcek
- Limnos, Podlimbarskega 31, 1000, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
40
|
González A, Guillamón JM, Mas A, Poblet M. Application of molecular methods for routine identification of acetic acid bacteria. Int J Food Microbiol 2006; 108:141-6. [PMID: 16386324 DOI: 10.1016/j.ijfoodmicro.2005.10.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 10/28/2005] [Accepted: 10/30/2005] [Indexed: 10/25/2022]
Abstract
Recently many new species of Acetic acid Bacteria have been described. The description and identification as new species was based on molecular techniques (sequencing of the 16S rRNA gene, DNA base ratio (% GC) determinations and DNA-DNA hybridisation) and phenotypic characterization. In the present paper, we propose a fast and reliable method for the identification most of the species currently described based on the RFLP-PCR of the 16S rRNA. According to the proposed protocol, 1 species can be identified with the use of a single enzyme, 13 with a combination of 2 enzymes, 2 species with a combination of 3 enzymes, 2 with a combination of 4 enzymes. To differentiate 5 more species RFLP-PCR of the ITS was also needed, after using 3 enzymes. Finally, a pair of species (Acetobacter pasteurianus and Acetobacter pomorum) could not be distinguished with the proposed method. However, doubts can be raised about their differentiation as separate species. Keeping these limitations in mind, the method is fast and reliable, allowing the processing of large number of samples in relatively short periods of time (less than 24 h after the isolation).
Collapse
Affiliation(s)
- Angel González
- Unitat d'Enologia del Centre de Referència de Tecnologia d'Aliments, Department Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/ Marcel-lí Domingo, s/n. 43007 Tarragona, Spain
| | | | | | | |
Collapse
|
41
|
Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, Marzotto M. Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 2005; 55:2365-2370. [PMID: 16280498 DOI: 10.1099/ijs.0.63301-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-negative, rod-shaped, non-spore-forming bacteria (DST GL01T and DST GL02T) were isolated from apple fruit juice in the region of the Italian Alps. On the basis of 16S rRNA gene sequence similarities, strains DST GL01T and DST GL02T were shown to belong to the α-subclass of the Proteobacteria, and, in particular, to the genus Gluconacetobacter, in the Gluconacetobacter xylinus branch (98·5–100 %). Chemotaxonomic data (major ubiquinone, Q10; predominant fatty acid, C18 : 1ω7c
, accounting for approximately 50 % of the fatty acid content) support the affiliation of both strains to the genus Gluconacetobacter. The results of DNA–DNA hybridizations, together with physiological and biochemical data, allowed genotypic and phenotypic differentiation between strains DST GL01T and DST GL02T and from the 11 validly published Gluconacetobacter species. They therefore represent two new species, for which the names Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov. are proposed, with the type strains DST GL01T (=LMG 22125T=DSM 16373T) and DST GL02T (=LMG 22126T=DSM 16663T), respectively.
Collapse
Affiliation(s)
- Franco Dellaglio
- Science and Technology Department, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Giovanna E Felis
- Science and Technology Department, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - Katrien Engelbeen
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Danielle Janssens
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Marta Marzotto
- Science and Technology Department, University of Verona, Strada le Grazie, 15, 37134 Verona, Italy
| |
Collapse
|
42
|
Trcek J. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S–23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene. Syst Appl Microbiol 2005; 28:735-45. [PMID: 16261863 DOI: 10.1016/j.syapm.2005.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for revealing the misclassification of strain IFO 3283 into the species A. aceti.
Collapse
Affiliation(s)
- Janja Trcek
- Limnos Ltd, Podlinmbarskega 31, Ljubljana, Slovenia.
| |
Collapse
|
43
|
Franke-Whittle IH, O'Shea MG, Leonard GJ, Sly LI. Design, development, and use of molecular primers and probes for the detection of Gluconacetobacter species in the pink sugarcane mealybug. MICROBIAL ECOLOGY 2005; 50:128-39. [PMID: 16047097 DOI: 10.1007/s00248-004-0138-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 10/19/2004] [Indexed: 05/03/2023]
Abstract
Molecular tools for the species-specific detection of Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens from the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae) were developed and used in polymerase chain reactions (PCR) and in fluorescence in situ hybridizations (FISH) to better understand the microbial diversity and the numerical significance of the acetic acid bacteria in the PSMB microenvironment. The presence of these species in the PSMB occurred over a wide range of sites, but not in all sites in sugarcane-growing areas of Queensland, Australia, and was variable over time. Molecular probes for use in FISH were also designed for the three acetic acid bacterial species, and shown to be specific only for the target species. Use of these probes in FISH of "squashed" whole mealybugs indicated that these acetic acid bacteria species represent only a small proportion of the microbial population of the PSMB. Despite the detection of Glac. sacchari, Glac. diazotrophicus, and Glac. liquefaciens by PCR from different mealybugs isolated at various times and from various sugarcane-growing areas in Queensland, Australia, these bacteria do not appear to be significant commensals in the PSMB environment.
Collapse
Affiliation(s)
- Ingrid H Franke-Whittle
- Centre for Bacterial Diversity and Identification, Department of Microbiology and Parasitology, The University of Queensland, Brisbane, Qld. 4072, Australia.
| | | | | | | |
Collapse
|
44
|
Yamashita SI, Uchimura T, Komagata K. Emendation of the genus Acidomonas Urakami, Tamaoka, Suzuki and Komagata 1989. Int J Syst Evol Microbiol 2004; 54:865-870. [PMID: 15143037 DOI: 10.1099/ijs.0.02946-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Acidomonas and the species Acidomonas methanolica were recharacterized by using the type strain (NRIC 0498T), three reference strains and 10 methanol-utilizing bacteria that were isolated from activated sludge from three different sewage-treatment plants in Tokyo. Based on 16S rDNA sequences, all strains formed a single cluster within the Acetobacteraceae that was clearly different from the genera Acetobacter, Gluconobacter, Gluconacetobacter, Asaia and Kozakia. The 14 strains were identified as a single species, Acidomonas methanolica, by DNA–DNA similarities, showed DNA G+C contents that ranged from 62 to 63 mol% and had Q-10 as the major quinone, accounting for >87 % of total ubiquinones. Cells of Acidomonas methanolica had a single polar flagellum (or occasionally polar tuft flagella); this differs from a previous study that described peritrichous flagella. Oxidation of acetate was positive for all strains, but oxidation of lactate was weakly positive and varied with strains. Dihydroxyacetone was not produced from glycerol. Pantothenic acid was an essential requirement for growth. The strains tested grew at mostly the same extent at pH 3·0–8·0. Therefore, Acidomonas methanolica should be regarded as acidotolerant, not acidophilic. The descriptions of the genus Acidomonas and the species Acidomonas methanolica Urakami, Tamaoka, Suzuki and Komagata 1989 are emended with newly obtained data.
Collapse
Affiliation(s)
- Shun-Ichi Yamashita
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tai Uchimura
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuo Komagata
- Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
45
|
Trcek J, Teuber M. Genetic and restriction analysis of the 16S-23S rDNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiol Lett 2002; 208:69-75. [PMID: 11934496 DOI: 10.1111/j.1574-6968.2002.tb11062.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The 16S-23S rDNA internal transcribed spacer regions of the acetic acid bacteria were sequenced and evaluated for molecular identification of these bacteria. All the sequenced spacers contained genes for tRNA(Ile) and tRNA(Ala), and the antitermination element. The sequences revealed 56.8-78.3% similarity. By PCR amplification of the spacers from 57 strains of acetic acid bacteria, single products of similar sizes were produced. Digestion of the spacers by HaeIII and HpaII restriction enzymes resulted in 12 distinct groups of restriction types. All the restriction profiles obtained after analysis of microbial populations from vinegar matched one of the 12 groups.
Collapse
Affiliation(s)
- Janja Trcek
- Limnos, Podlimbarskega 31, SI-1000, Ljubljana, Slovenia.
| | | |
Collapse
|
46
|
Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K. Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J GEN APPL MICROBIOL 2000; 46:147-165. [PMID: 12483588 DOI: 10.2323/jgam.46.147] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thirty-one Acetobacter strains obtained from culture collections and 45 Acetobacter strains isolated from Indonesian sources were investigated for their phenotypic characteristics, ubiquinone systems, DNA base compositions, and levels of DNA-DNA relatedness. Of 31 reference strains, six showed the presence of ubiquinone 10 (Q-10). These strains were eliminated from the genus Acetobacter. The other 25 reference strains and 45 Indonesian isolates were subjected to a systematic study and separated into 8 distinct groups on the basis of DNA-DNA relatedness. The known species, Acetobacter aceti, A. pasteurianus, and A. peroxydans are retained for three of these groups. New combinations, A. orleanensis (Henneberg 1906) comb. nov., A. lovaniensis (Frateur 1950) comb. nov., and A. estunensis (Carr 1958) comb. nov. are proposed for three other groups. Two new species, A. indonesiensis sp. nov. and A. tropicalis sp. nov. are proposed for the remaining two. No Indonesian isolates were identified as A. aceti, A. estunensis, and A. peroxydans. Phylogenetic analysis on the basis of 16S rDNA sequences was carried out for representative strains from each of the groups. This supported that the eight species belonged to the genus Acetobacter. Several strains previously assigned to the species of A. aceti and A. pasteurianus were scattered over the different species. It is evident that the value of DNA-DNA relatedness between strains comprising a new species should be determined for the establishment of the species. Thus current bacterial species without data of DNA-DNA relatedness should be reexamined for the stability of bacterial nomenclature.
Collapse
Affiliation(s)
- Puspita Lisdiyanti
- Laboratory of General and Applied Microbiology, Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Moschetti G, Blaiotta G, Villani F, Coppola S. Specific detection of Leuconostoc mesenteroides subsp. mesenteroides with DNA primers identified by randomly amplified polymorphic DNA analysis. Appl Environ Microbiol 2000; 66:422-4. [PMID: 10618258 PMCID: PMC91840 DOI: 10.1128/aem.66.1.422-424.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Randomly amplified polymorphic DNA analysis using primer 239 (5' CTGAAGCGGA 3') was performed to characterize Leuconostoc sp. strains. All the strains of Leuconostoc mesenteroides subsp. mesenteroides (with the exception of two strains), two strains formerly identified as L. gelidum, and one strain of Leuconostoc showed a common band at about 1.1 kb. This DNA fragment was cloned and sequenced in order to verify its suitability for identifying L. mesenteroides subsp. mesenteroides strains.
Collapse
Affiliation(s)
- G Moschetti
- Dipartimento di Scienza degli Alimenti, Sezione di Microbiologia Agraria, Alimentare ed Ambientale e di Igiene, Università degli Studi di Napoli "Federico II," I 80055 Portici, Italy
| | | | | | | |
Collapse
|
48
|
Navarro RR, Uchimura T, Komagata K. Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii. J GEN APPL MICROBIOL 1999; 45:295-300. [PMID: 12501359 DOI: 10.2323/jgam.45.295] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The taxonomic standing of Gluconacetobacter hansenii was clarified through phenotypic characteristics, quinones, DNA base composition, DNA relatedness, and the production of gluconic and ketogluconic acids from glucose. All strains that Gosselé et al. (Syst. Appl. Microbiol., 4, 338-368, 1983) employed in the establishment of Acetobacter hansenii (=G. hansenii) were used in this study. Phenotypic differences were shown among the strains of G. hansenii, suggesting heterogeneity within the species. The major ubiquinone was Q-10 for all strains of G. hansenii, except for strain IFO 3296, which was characterized by Q-9. This excluded IFO 3296 from the species G. hansenii and placed it in the genus Acetobacter. DNA relatedness revealed four distinct homology groups (I, II, III, and IV) among strains of the species. Group I was distinguished from the other genomic groups by a lower G1C range from 58.9 to 59.2 mol%. Groups II, III, and IV showed higher G+C contents of 60.4 to 62.2, 60.8, and 61.7 mol%, respectively. Groups I and IV produced both 2- and 5-ketogluconic acids from glucose, and Group III produced only 2-ketogluconic acid. Group II included strains that produced both 2- and 5-ketogluconic acids and strains that produced only 2-ketogluconic acid. It is clear that G. hansenii consists of genotypically heterogeneous strains comprising four homology groups (I, II, III, and IV). Since group I contains the type strain (IFO 14820(T)=LMG 1527(T)) of the species, this group is designated as the species G. hansenii.
Collapse
Affiliation(s)
- Richard R. Navarro
- Laboratory of General and Applied Microbiology, Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | |
Collapse
|
49
|
Sievers M, Schlegel HG, Caballero-Mellado J, Döbereiner J, Ludwig W. Phylogenetic identification of two major nitrogen-fixing bacteria associated with sugarcane. Syst Appl Microbiol 1998; 21:505-8. [PMID: 9924818 DOI: 10.1016/s0723-2020(98)80062-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Acetobacter diazotrophicus and Herbaspirillum seropedicae were identified by genetic methods based on 16S rRNA sequences. A specific PCR method in combination with probing was developed for A. diazotrophicus. The PCR system includes four primers, of which the primers named AC (CTGTTTCCCGCAAGGGAC) and DI (GCGCCCCATTGCTGGGTT) generated an 445 bp amplicon in all of the 11 A. diazotrophicus strains tested. The phylogenetic position of H. seropedicae was determined. H. seropedicae forms with Oxalobacter formigenes a separate lineage in the beta-subclass of Proteobacteria.
Collapse
|