1
|
Paschall L, Carrozzi S, Tabdanov E, Dhawan A, Szczesny SE. Cyclic loading induces anabolic gene expression in ACLs in a load-dependent and sex-specific manner. J Orthop Res 2024; 42:267-276. [PMID: 37602554 DOI: 10.1002/jor.25677] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
Anterior cruciate ligament (ACL) injuries are historically thought to be a result of a single acute overload or traumatic event. However, recent studies suggest that ACL failure may be a consequence of fatigue damage. Additionally, the remodeling response of ACLs to fatigue loading is unknown. Therefore, the objective of this study was to investigate the remodeling response of ACLs to cyclic loading. Furthermore, given that women have an increased rate of ACL rupture, we investigated whether this remodeling response is sex specific. ACLs were harvested from male and female New Zealand white rabbits and cyclically loaded in a tensile bioreactor mimicking the full range of physiological loading (2, 4, and 8 MPa). Expression of markers for anabolic and catabolic tissue remodeling, as well as inflammatory cytokines, was quantified using quantitative reverse transcription polymerase chain reaction. We found that the expression of markers for tissue remodeling of the ACL is dependent on the magnitude of loading and is sex specific. Male ACLs activated an anabolic response to cyclic loading at 4 MPa but turned off remodeling at 8 MPa. These data support the hypothesis that noncontact ACL injury may be a consequence of failed tissue remodeling and inadequate repair of microtrauma resulting from elevated loading. Compared to males, female ACLs failed to increase anabolic gene expression with loading and exhibited higher expression of catabolic genes at all loading levels, which may explain the increased rate of ACL tears in women. Together, these data provide insight into load-induced ACL remodeling and potential causes of tissue rupture.
Collapse
Affiliation(s)
- Lauren Paschall
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sabrina Carrozzi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Erdem Tabdanov
- Department of Pharmacology, The Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Aman Dhawan
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Spencer E Szczesny
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Barcellona MG, Morrissey MC. The effect of open kinetic chain knee extensor resistance training at different training loads on anterior knee laxity in the uninjured. ACTA ACUST UNITED AC 2016; 22:1-8. [PMID: 26995776 DOI: 10.1016/j.math.2015.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 12/20/2015] [Accepted: 12/27/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND The commonly used open kinetic chain knee extensor (OKCKE) exercise loads the sagittal restraints to knee anterior tibial translation. OBJECTIVE To investigate the effect of different loads of OKCKE resistance training on anterior knee laxity (AKL) in the uninjured knee. STUDY DESIGN non-clinical trial. METHODS Randomization into one of three supervised training groups occurred with training 3 times per week for 12 weeks. Subjects in the LOW and HIGH groups performed OKCKE resistance training at loads of 2 sets of 20 repetition maximum (RM) and 20 sets of 2RM, respectively. Subjects in the isokinetic training group (ISOK) performed isokinetic OKCKE resistance training using 2 sets of 20 maximal efforts. AKL was measured using the KT2000 arthrometer with concurrent measurement of lateral hamstrings muscle activity at baseline, 6 weeks and 12 weeks. RESULTS Twenty six subjects participated (LOW n = 9, HIGH n = 10, ISOK n = 7). The main finding from this study is that a 12-week OKCKE resistance training programme at loads of 20 sets of 2RM, leads to an increase in manual maximal AKL. CONCLUSIONS OKCKE resistance training at high loads (20 sets of 2RM) increases AKL while low load OKCKE resistance training (2 sets of 20RM) and isokinetic OKCKE resistance training at 2 sets of 20RM does not.
Collapse
Affiliation(s)
- Massimo G Barcellona
- Academic Department of Physiotherapy, Faculty of Life Sciences & Medicine, King's College London, UK
| | | |
Collapse
|
3
|
The effect of knee extensor open kinetic chain resistance training in the ACL-injured knee. Knee Surg Sports Traumatol Arthrosc 2015; 23:3168-77. [PMID: 24934926 DOI: 10.1007/s00167-014-3110-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the effect of different loads of knee extensor open kinetic chain resistance training on anterior knee laxity and function in the ACL-injured (ACLI) knee. METHODS Fifty-eight ACLI subjects were randomised to one of three (12-week duration) training groups. The STAND group trained according to a standardised rehabilitation protocol. Subjects in the LOW and HIGH group trained as did the STAND group but with the addition of seated knee extensor open kinetic chain resistance training at loads of 2 sets of 20 repetition maximum (RM) and 20 sets of 2RM, respectively. Anterior knee laxity and measurements of physical and subjective function were performed at baseline, 6 and 12 weeks. Thirty-six subjects were tested at both baseline and 12 weeks (STAND n = 13, LOW n = 11, HIGH n = 12). RESULTS The LOW group demonstrated a reduction in 133 N anterior knee laxity between baseline and 12 weeks testing when compared to the HIGH and the STAND groups (p = 0.009). Specifically, the trained-untrained knee laxity decreased an average of approximately 5 mm in the LOW group while remaining the same in the other two groups. CONCLUSION Twelve weeks of knee extensor open kinetic chain resistance training at loads of 2 sets of 20RM led to a reduction in anterior knee laxity in the ACLI knee. This reduction in laxity does not appear to offer any significant short-term functional advantages when compared to a standard rehabilitation protocol. These results indicate that knee laxity can be decreased with resistance training of the thigh muscles. LEVEL OF EVIDENCE Randomised controlled trial, Level II.
Collapse
|
4
|
Vauhnik R, Perme MP, Barcellona MG, Morrissey MC, Sevšek F, Rugelj D. Effect of repeated passive anterior loading on human knee anterior laxity. ACTA ACUST UNITED AC 2015; 20:709-14. [DOI: 10.1016/j.math.2015.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/02/2015] [Accepted: 02/20/2015] [Indexed: 11/26/2022]
|
5
|
Zhang Y, Huang W, Jiang J, Xie J, Xu C, Wang C, Yin L, Yang L, Zhou K, Chen P, Sung KP. Influence of TNF-α and biomechanical stress on matrix metalloproteinases and lysyl oxidases expressions in human knee synovial fibroblasts. Knee Surg Sports Traumatol Arthrosc 2014; 22:1997-2006. [PMID: 23377799 DOI: 10.1007/s00167-013-2425-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/21/2013] [Indexed: 01/10/2023]
Abstract
PURPOSE It was reported that not only ACL but also the synovium may be the major regulator of matrix metalloproteinases (MMPs) in synovial fluids after ACL injury. In order to further confirm whether synovium is capable of regulating the microenvironment in the process of ACL injury, the complicated microenvironment of joint cavity after ACL injury was mimicked and the combined effects of mechanical injury and inflammatory factor [tumour necrosis factor-α (TNF-α)] on expressions of lysyl oxidases (LOXs) and MMPs in synovial fibroblasts derived from normal human synovium were studied. METHODS Human normal knee joint synovial fibroblasts were stimulated for 1-6 h with mechanical stretch and inflammatory factor (TNF-α). Total RNA was harvested, reverse transcribed and assessed by real-time polymerase chain reaction for the expression of LOXs and MMP-1, 2, 3 messenger RNAs. MMP-2 activity was assayed from the collected culture media samples using zymography. RESULTS Compared to control group, our results showed that 6% physiological stretch increased MMP-2 and LOXs (except LOXL-3), decreased MMP-1 and MMP-3; injurious stretch (12%) decreased LOXs (except LOXL-2)and increased MMP-1, 2 and 3; the combination of injurious stretch and TNF-α decreased LOXs and increased MMP-1, 2 and 3 in synovial fibroblasts in a synergistical manner. CONCLUSION This study demonstrated that combination of mechanical injury and inflammatory factors up-regulated the expressions of MMPs and down-regulated the expressions of LOXs in synovial fibroblasts, eventually alter the balance of tissue healing. Thus, synovium may be involved in regulating the microenvironment of joint cavity. Based on the mechanism, early interventions to inhibit the production of MMPs or promote the production of LOXs in the synovial fibroblasts should be performed to facilitate the healing of tissue.
Collapse
Affiliation(s)
- Yanjun Zhang
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sardone F, Traina F, Tagliavini F, Pellegrini C, Merlini L, Squarzoni S, Santi S, Neri S, Faldini C, Maraldi N, Sabatelli P. Effect of mechanical strain on the collagen VI pericellular matrix in anterior cruciate ligament fibroblasts. J Cell Physiol 2014; 229:878-86. [PMID: 24356950 DOI: 10.1002/jcp.24518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022]
Abstract
Cell-extracellular matrix interaction plays a major role in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. Collagen VI is a widely expressed non-fibrillar collagen, which regulates tissues homeostasis. The objective of the present investigation was to extend our understanding of the role of collagen VI in human ACL. This study shows that collagen VI is associated both in vivo and in vitro to the cell membrane of knee ACL fibroblasts, contributing to the constitution of a microfibrillar pericellular matrix. In cultured cells the localization of collagen VI at the cell surface correlated with the expression of NG2 proteoglycan, a major collagen VI receptor. The treatment of ACL fibroblasts with anti-NG2 antibody abolished the localization of collagen VI indicating that collagen VI pericellular matrix organization in ACL fibroblasts is mainly mediated by NG2 proteoglycan. In vitro mechanical strain injury dramatically reduced the NG2 proteoglycan protein level, impaired the association of collagen VI to the cell surface, and promoted cell cycle withdrawal. Our data suggest that the injury-induced alteration of specific cell-ECM interactions may lead to a defective fibroblast self-renewal and contribute to the poor regenerative ability of ACL fibroblasts.
Collapse
Affiliation(s)
- Francesca Sardone
- National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; IOR-IRCCS, SC Laboratory of Musculoskeletal Cell Biology, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Xie J, Huang W, Jiang J, Zhang Y, Xu Y, Xu C, Yang L, Chen PCY, Sung KLP. Differential expressions of lysyl oxidase family in ACL and MCL fibroblasts after mechanical injury. Injury 2013; 44:893-900. [PMID: 23010071 DOI: 10.1016/j.injury.2012.08.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 02/02/2023]
Abstract
Lysyl oxidase (LOX) family has the capacity to catalyse the cross-linking of collagen and elastin, implicating its important fundamental roles in tissue development and injury healing. However, the variations in expression of the LOX family in the normal and injured anterior cruciate ligament (ACL) are not fully known. To better understand the role of LOX family in the self-healing inability mechanism of injured ACL, this study is to measure the LOX family's differential expressions in ACL and medial collateral ligament (MCL) fibroblasts after mechanical injury induced by using an equi-biaxial stretching chamber. The cells received various degrees of mechanical stretch 0% (resting state), 6% (physiological state) and 12% (injurious state), respectively. The gene profile and protein expressions were analysed by semi-quantitative PCR, quantitative real-time PCR and Western blotting. At physiological state, gene expression showed LOX in ACL was 2.6-5.2 folds higher than that in MCL in all culture time periods, LOXL-4 1.2-3.6 folds, but LOXL-3 in MCL showed 1.1-4.8 folds higher than that in ACL. In injurious state, MCL gene expressions were 2.8-29.6 folds higher than ACL in LOX, LOXL-2, LOXL-3 and LOXL-4 at 2, 6 and 12h periods. These differential expression profiles of the LOX family in the two ligament tissues were further used to explain the intrinsic differences between ACL and MCL, and why injured ACL could not be amenable to repair itself, whereas MCL could.
Collapse
Affiliation(s)
- Jing Xie
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huey DJ, Athanasiou KA. Tension-compression loading with chemical stimulation results in additive increases to functional properties of anatomic meniscal constructs. PLoS One 2011; 6:e27857. [PMID: 22114714 PMCID: PMC3218070 DOI: 10.1371/journal.pone.0027857] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study aimed to improve the functional properties of anatomically-shaped meniscus constructs through simultaneous tension and compression mechanical stimulation in conjunction with chemical stimulation. METHODS Scaffoldless meniscal constructs were subjected to simultaneous tension and compressive stimulation and chemical stimulation. The temporal aspect of mechanical loading was studied by employing two separate five day stimulation periods. Chemical stimulation consisted of the application of a catabolic GAG-depleting enzyme, chondroitinase ABC (C-ABC), and an anabolic growth factor, TGF-β1. Mechanical and chemical stimulation combinations were studied through a full-factorial experimental design and assessed for histological, biochemical, and biomechanical properties following 4 wks of culture. RESULTS Mechanical loading applied from days 10-14 resulted in significant increases in compressive, tensile, and biochemical properties of meniscal constructs. When mechanical and chemical stimuli were combined significant additive increases in collagen per wet weight (4-fold), compressive instantaneous (3-fold) and relaxation (2-fold) moduli, and tensile moduli in the circumferential (4-fold) and radial (6-fold) directions were obtained. CONCLUSIONS This study demonstrates that a stimulation regimen of simultaneous tension and compression mechanical stimulation, C-ABC, and TGF-β1 is able to create anatomic meniscus constructs replicating the compressive mechanical properties, and collagen and GAG content of native tissue. In addition, this study significantly advances meniscus tissue engineering by being the first to apply simultaneous tension and compression mechanical stimulation and observe enhancement of tensile and compressive properties following mechanical stimulation.
Collapse
Affiliation(s)
- Daniel J. Huey
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| |
Collapse
|
9
|
Romani WA, Langenberg P, Belkoff SM. Sex, collagen expression, and anterior cruciate ligament strength in rats. J Athl Train 2011; 45:22-8. [PMID: 20064044 DOI: 10.4085/1062-6050-45.1.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Sex-specific responses to steroid sex hormones have been suggested as a potential cause for the disparate anterior cruciate ligament (ACL) injury rates between male and female athletes. Type 1 collagen (T1C) and type 3 collagen (T3C) are crucial structural components that define the ligament's ability to withstand tensile loads. Messenger RNA (mRNA) is an important mediator of downstream collagen synthesis and remodeling, but the sex-specific mechanisms of collagen mRNA expression and ACL strength are unknown. OBJECTIVE To examine the influence of sex on T1C and T3C mRNA expression and mass-normalized stiffness and peak failure load in the ACLs of skeletally mature rats. DESIGN Observational study. SETTING Basic sciences and biomechanical testing laboratories. PATIENTS OR OTHER PARTICIPANTS Nineteen 12-week-old male (n = 9) and female (n = 10) Sprague Dawley rats. MAIN OUTCOME MEASURE(S) We used real-time polymerase chain reaction to determine T1C and T3C mRNA expression and a hydraulic materials testing device to measure ACL stiffness and failure load. Nonparametric Wilcoxon rank sum tests were used to compare the groups. RESULTS Female rats had lower amounts of T3C mRNA expression and higher normalized ACL tangent stiffness and failure load than male rats. CONCLUSIONS These findings suggest that sex-specific differences in T1C and T3C mRNA expression may play an important role in the downstream mechanical properties of the ACL.
Collapse
Affiliation(s)
- William A Romani
- MedStar Research Institute, Orthopedic and Sports Health Research, Baltimore, MD, USA.
| | | | | |
Collapse
|
10
|
Breshears LA, Cook JL, Stoker AM, Fox DB, Luther JK. The Effect of Uniaxial Cyclic Tensile Load on Gene Expression in Canine Cranial Cruciate Ligamentocytes. Vet Surg 2010; 39:433-43. [DOI: 10.1111/j.1532-950x.2010.00679.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Tang Z, Yang L, Xue R, Zhang J, Wang Y, Chen PC, Sung KLP. Differential expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after a mechanical injury: involvement of the p65 subunit of NF-kappaB. Wound Repair Regen 2009; 17:709-16. [PMID: 19769723 DOI: 10.1111/j.1524-475x.2009.00529.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The anterior cruciate ligament (ACL) is known to have a poor healing ability, especially in comparison with the medial collateral ligament, which can heal relatively well. In this study, we detected significant increases in the mRNA levels of multiple matrix metalloproteinases (MMPs) (MMP-1, -2, -7, -9, -11, -14, -17, -21, -23A, -24, -25, -27, and -28) and tissue inhibitors of metalloproteinases (TIMPs) (TIMP-1, -2, -3, and -4) in ACL fibroblasts after an in vitro injury with an equi-biaxial stretch chamber. However, only some MMPs (MMP-7, -9, -14, -21, and -24) showed increases in injured medial collateral ligament fibroblasts, and to a much lesser degree than that observed in the injured ACL fibroblasts. Zymography revealed a 6.3-fold increase of MMP-2 activity in injured ACL but not medial collateral ligament fibroblasts, which agrees with the global MMP activities assay. Bay-11 and curcumin can significantly decrease MMP-2 activities to 13% and 29% in injured ACL fibroblasts, respectively, which implies the involvement of p65 subunits of nuclear factor kappaB and AP-1 pathways. Furthermore, Bay-11 can decrease the global MMP activity released from injured ACL fibroblasts in a dose-dependent manner. In summary, the differential expression and activities of MMPs might help to explain the poor healing ability of ACL, and the p65 subunit of nuclear factor kappaB might be a potential target to facilitate the ACL repair.
Collapse
Affiliation(s)
- Zhenyu Tang
- "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Tetsunaga T, Furumatsu T, Abe N, Nishida K, Naruse K, Ozaki T. Mechanical stretch stimulates integrin alphaVbeta3-mediated collagen expression in human anterior cruciate ligament cells. J Biomech 2009; 42:2097-103. [PMID: 19647831 DOI: 10.1016/j.jbiomech.2009.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/24/2009] [Accepted: 06/02/2009] [Indexed: 12/20/2022]
Abstract
Biomechanical stimuli have fundamental roles in the maintenance and remodeling of ligaments including collagen gene expressions. Mechanical stretching signals are mainly transduced by cell adhesion molecules such as integrins. However, the relationships between stress-induced collagen expressions and integrin-mediated cellular behaviors are still unclear in anterior cruciate ligament cells. Here, we focused on the stretch-related responses of different cells derived from the ligament-to-bone interface and midsubstance regions of human anterior cruciate ligaments. Chondroblastic interface cells easily lost their potential to produce collagen genes in non-stretched conditions, rather than fibroblastic midsubstance cells. Uni-axial mechanical stretches increased the type I collagen gene expression of interface and midsubstance cells up to 14- and 6-fold levels of each non-stretched control, respectively. Mechanical stretches also activated the stress fiber formation by shifting the distribution of integrin alphaVbeta3 to the peripheral edges in both interface and midsubstance cells. In addition, integrin alphaVbeta3 colocalized with phosphorylated focal adhesion kinase in stretched cells. Functional blocking analyses using anti-integrin antibodies revealed that the stretch-activated collagen gene expressions on fibronectin were dependent on integrin alphaVbeta3-mediated cellular adhesions in the interface and midsubstance cells. These findings suggest that the integrin alphaVbeta3-mediated stretch signal transduction might have a key role to stimulate collagen gene expression in human anterior cruciate ligament, especially in the ligament-to-bone interface.
Collapse
Affiliation(s)
- Tomonori Tetsunaga
- Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Kaneko D, Sasazaki Y, Kikuchi T, Ono T, Nemoto K, Matsumoto H, Toyama Y. Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro. Connect Tissue Res 2009; 50:263-9. [PMID: 19637062 PMCID: PMC2730820 DOI: 10.1080/03008200902846270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyclic stretching is pivotal to maintenance of the ligaments. However, it is still not clear when ligament fibroblasts switch on expression of genes related to the mechanotransduction pathway in response to cyclic stretching. This in vitro study investigated, using ligament fibroblasts, the time-dependent changes in distribution and gene expression of beta1 integrin, the cytoskeleton, and collagens after the application of 6% cyclic stretching at a frequency of 0.1 Hz for 3 hr on silicon membranes. We carried out confocal laser scanning microscopy to demonstrate changes in distribution of these components as well as quantitative real-time RT-PCR to quantify levels of these gene expression both during application of cyclic stretching and at 0, 2, 6, 12, and 18 hr after the termination of stretching. Control (unstretched) cells were used at each time point. Within 1 hr of the application of stretching, the fibroblasts and their actin stress fibers became aligned in a direction perpendicular to the major axis of stretch, whereas control (unstretched) cells were randomly distributed. In response to cyclic stretching, upregulation of actin at the mRNA level was first observed within 1 hr after the onset of stretching, while upregulation of beta1 integrin and type I and type III collagens was observed between 2 and 12 hr after the termination of stretching. These results indicate that the fibroblasts quickly modify their morphology in response to cyclic stretching, and subsequently they upregulate the expression of genes related to the mechanotransduction pathway mainly during the resting period after the termination of stretching.
Collapse
|
14
|
Haudenschild AK, Hsieh AH, Kapila S, Lotz JC. Pressure and Distortion Regulate Human Mesenchymal Stem Cell Gene Expression. Ann Biomed Eng 2009; 37:492-502. [DOI: 10.1007/s10439-008-9629-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/16/2008] [Indexed: 12/13/2022]
|
15
|
Zhang J, Yang L, Tang Z, Xue R, Wang Y, Luo Z, Huang W, Sung KLP. Expression of MMPs and TIMPs family in human ACL and MCL fibroblasts. Connect Tissue Res 2009; 50:7-13. [PMID: 19212848 DOI: 10.1080/03008200802376139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human ACL (anterior cruciate ligament) is susceptible to injury but has poor healing response, whereas an injured MCL (medial collateral ligament) can be repaired relatively well. Since MMPs (matrix metalloproteases) and TIMPs (tissue inhibitor of metalloproteases) are involved in this tissue remodeling process, investigation of different response of MMPs and TIMPs family in ACL and MCL fibroblasts might lead to understanding the differential matrix remodeling process as well as their different healing ability. The first step would be determination of whether these tissue remodeling effectors are present in ligaments. In this study, we designed primers for real-time RT-PCR and determined the expression of MMPs and TIMPs family in ACL and MCL fibroblasts with synovium as a positive control. Semiquantitative RT-PCR revealed that multiple MMPs and TIMPs expressed in human ACL and MCL fibroblasts except MMP-8, 10, 12, 13, 15, 16, 20, and 26. MMP-7 was present in MCL but not in ACL fibroblast. Quantitative real-time RT-PCR showed that mRNA levels of MMP-1, 2, 14, 17, 23A, and 23B and TIMP-4 are significantly higher in MCL than in ACL fibroblasts. However, MMP-3 is higher in ACL than in MCL fibroblasts. We conclude that numerous MMPs and TIMPs family members that are differentially expressed in ACL and MCL might be involved in the differential matrix remodeling process as well as the differential healing ability of ACL and MCL.
Collapse
Affiliation(s)
- Jin Zhang
- 111 Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang P, Yang L, You X, Singh GK, Zhang L, Yan Y, Sung KLP. Mechanical stretch regulates the expression of matrix metalloproteinase in rheumatoid arthritis fibroblast-like synoviocytes. Connect Tissue Res 2009; 50:98-109. [PMID: 19296301 DOI: 10.1080/03008200802348625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mechanical stretch plays a crucial role in articular joints. In rheumatoid arthritis (RA), it is well known that fibroblast-like synoviocytes (FLS) produce matrix metalloproteinases (MMPs), resulting in local invasion into and degradation of bone and cartilage. We sought to examine whether mechanical stretch regulates the expression and underlying signal pathways of MMP secretion (MMP-1, -3, -13) in RA-FLS. FLS were grown on elastic silicone membrane in an equibiaxial strain apparatus and were exposed to 6% mechanical stretch (equivalent to gentle stretch exercise) for 15 min and 75 min, respectively. Semiquantitative PCR and real-time PCR were used to measure and analyze gene expression. Protein levels were determined by Western blotting. The results showed that 15 min of mechanical stretch inhibited MMP-1 and MMP-13 mRNA and protein level. However, the degree of inhibition by 75 min of stretch in expression of MMP-1 and MMP-13 was lower compared with 15 min stretch groups. The mRNA expression of ERK-1, ets-1 and citied-2 were increased by 6% mechanical stretch under both time points, however c-jun and c-fos mRNA level were affected differently after 15 min and 75 min mechanical stretch compared to control group. There were no significant changes on MMP-3 and ets-2 mRNA level under both 6% mechanical stretch time points. In the presence of pro-inflammatory cytokines (IL-1beta and TNF-alpha), the stretch also reduced the mRNA expression of MMP-1 and MMP-13. In short, our results showed that gentle mechanical strain affects MMP-1 and MMP-13 expression, potentially through the ERK-1-ets-1-cited-2-c-jun signaling pathway.
Collapse
Affiliation(s)
- Ping Wang
- College of Bioengineering, Chongqing University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Fan D, Chen Z, Wang D, Guo Z, Qiang Q, Shang Y. Osterix is a key target for mechanical signals in human thoracic ligament flavum cells. J Cell Physiol 2007; 211:577-84. [PMID: 17311298 DOI: 10.1002/jcp.21016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mechanical stress is considered to be an important factor in the progression of thoracic ossification of the ligament flavum (TOLF). To elucidate the mechanism underlying mechanical stress-induced TOLF, we investigated the effect of stretching on cultured flavum ligament cells derived from TOLF and non-TOLF patients. We found that the mRNA expression of alkaline phosphatase (ALP), osteocalcin, Runx2, and osterix, but not that of Dlx5 and Msx2, was significantly increased by stretching in TOLF cells. In addition, the effect seems to be finely tuned by stretching-triggered activation of distinct mitogen-activated protein kinase cascades. Specifically, a p38 specific inhibitor, SB203580, significantly inhibited stretching-induced osterix expression as well as ALP activity, whereas a specific inhibitor of ERK1/2, U0126, prevented stretching-induced Runx2 expression. We showed that overexpression of osterix resulted in a significant increase of ALP activity in TOLF cells, and osterix-specific RNAi completely abrogated the stretching-induced ALP activity, indicating that osterix plays a key role in stretching-stimulated osteogenic effect in TOLF cells. These results suggest that mechanical stress plays important roles in the progression of TOLF through induction of osteogenic differentiation of TOLF cells, and our findings support that osterix functions as a molecular link between mechanostressing and osteogenic differentiation.
Collapse
Affiliation(s)
- Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
18
|
Androjna C, Spragg RK, Derwin KA. Mechanical Conditioning of Cell-Seeded Small Intestine Submucosa: A Potential Tissue-Engineering Strategy for Tendon Repair. ACTA ACUST UNITED AC 2007; 13:233-43. [PMID: 17518560 DOI: 10.1089/ten.2006.0050] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our long-term objective is to enhance tendon repair by delivering cells on natural biologic scaffolds to the repair site. Clinical outcomes may be improved by first preconditioning these cell-seeded constructs in bioreactors to enhance their properties at implantation and to deliver cells expressing a desired phenotype. In this work, we have investigated the effect of in vitro mechanical conditioning on small-intestine submucosa (SIS) scaffolds seeded with primary tendon cells (tenocytes). SIS scaffolds (with and without cells) were conditioned under various loading regimes over a 2-week period. In vitro cyclic loading significantly increased the biomechanical properties (e.g., stiffness) of cell-seeded SIS constructs (129.1 +/- 10.2%) from time 0. The stiffness change of cyclically loaded constructs without cells was 33.9 +/- 13.8% and of statically loaded constructs with cells was 34.0 +/- 15.2% and without cells was 33.4 +/- 10.7%. In the cell-seeded groups, our data demonstrate a direct role (e.g., cell tensioning) for cells in construct stiffening. In addition, the initial stiffness of the cell-seeded, cyclically loaded constructs was found to be a strong predictor of the change in construct stiffness. Despite the mechanical integrity of these constructs being significantly less than native tendon, our data show that structural properties can be improved with in vitro mechanical conditioning. These data provide the basis for future studies investigating in vitro conditioning (mechanical, chemical) of cell-seeded ECM scaffolds and the use of such constructs for enhancing tendon repair in vivo.
Collapse
Affiliation(s)
- Caroline Androjna
- The Cleveland Clinic, Department of Biomedical Engineering, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
19
|
Androjna C, Spragg RK, Derwin KA. Mechanical Conditioning of Cell-Seeded Small Intestine Submucosa: A Potential Tissue-Engineering Strategy for Tendon Repair. ACTA ACUST UNITED AC 2007. [DOI: 10.1089/ten.2007.13.ft-331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Harrison RD, Gratzer PF. Effect of extraction protocols and epidermal growth factor on the cellular repopulation of decellularized anterior cruciate ligament allografts. J Biomed Mater Res A 2006; 75:841-54. [PMID: 16123978 DOI: 10.1002/jbm.a.30486] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We are developing a decellularized bone-anterior cruciate ligament (ACL)-bone allograft for treatment of ACL disruption in young or active patients. This study demonstrates the feasibility of seeding decellularized ACL tissue with primary ligament fibroblasts. Porcine ACLs were decellularized by one of three protocols, each differing only by the detergent/solvent used during the second wash (SDS, Triton-X, or TnBP). Porcine ACL fibroblasts were obtained by explant and seeded onto tissue samples of decellularized ACL. Culture conditions were varied to compare the relative effect of three different decellularization protocols on cellular repopulation. Culture condition variables included (1) the number of cells used for seeding, (2) the addition of epidermal growth factor (EGF), and (3) culture duration. Cellular ingrowth was assessed by metabolic activity (MTT assay), DNA quantification (Hoescht dye), and histology (H&E staining). Cell counting on histological sections demonstrated that Triton-X-and TnBP-treated ligaments were more receptive to cellular ingrowth than SDS-treated samples. The addition of EGF to culture medium did not significantly increase cellular ingrowth. Both the Triton-X and TnBP decellularization treatments provide suitable, naturally derived scaffolds for the ingrowth of primary ACL fibroblasts, and should be further investigated in the development of an allograft-derived bone-ACL-bone graft.
Collapse
Affiliation(s)
- Robert D Harrison
- School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, Halifax, Nova Scotia, Canada B3H 3J5
| | | |
Collapse
|
21
|
Zhou D, Lee HS, Villarreal F, Teng A, Lu E, Reynolds S, Qin C, Smith J, Sung KLP. Differential MMP-2 activity of ligament cells under mechanical stretch injury: an in vitro study on human ACL and MCL fibroblasts. J Orthop Res 2005; 23:949-57. [PMID: 16023011 DOI: 10.1016/j.orthres.2005.01.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 01/07/2005] [Accepted: 01/28/2005] [Indexed: 02/04/2023]
Abstract
Recent studies have revealed that following injuries, ligament tissues such as anterior cruciate ligaments (ACL), release large amounts of matrix metalloproteinases (MMPs). These enzymes have a devastating effect on the healing process of the injured ligaments. Although these enzymes are produced following ligament injuries, because of different healing capacities seen between the medial collateral ligament (MCL) and ACL, we were curious to find if the MMP activity was expressed and modulated differently in these tissues. For this purpose ACL and MCL fibroblasts were seeded on equi-biaxial stretch chambers and were stretched in different levels. The stretched cells were assayed using Zymography, Western Blot and global MMP activity assays. The results showed that within 72 h after injurious stretch, production of 72 kD pro-MMP-2 increased in both ACL and MCL. However, the ACL fibroblasts generated significantly more pro-MMP-2 than the MCL fibroblasts. Furthermore we found in ACL pro-MMP-2 was converted more into active form. With 4-aminophenyl mercuric acetate (APMA) treatment, large amounts of pro-MMP-2 were converted into active form in both. This indicates that there is no significant difference between ACL and MCL fibroblasts in post-translational modification of MMP-2. The fluorescent MMP activity assays revealed that the MMP family activities were higher in the injured ACL fibroblasts than the MCL. Since the MMPs are critically involved in extracellular matrix (ECM) turnover, these findings may explain one of the reasons why the injured ACL hardly repairs. The higher levels of active MMP-2 seen in the ACL injuries may disrupt the delicate balance of ECM remodeling process. These results suggest that the generation and modulation of MMP-2 may be directly involved in the different responses seen in ACL and MCL injuries.
Collapse
Affiliation(s)
- David Zhou
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wenger KH, Woods JA, Holecek A, Eckstein EC, Robertson JT, Hasty KA. Matrix remodeling expression in anulus cells subjected to increased compressive load. Spine (Phila Pa 1976) 2005; 30:1122-6. [PMID: 15897824 DOI: 10.1097/01.brs.0000162395.56424.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Mechanobiology study of gene expression changes as a result of compressive overload of anular fibrochondrocytes. OBJECTIVE To test hypotheses regarding phenotype shift in genes coding for representative extracellular matrix (ECM) proteins and matrix modulators. SUMMARY OF THE BACKGROUND DATA In degenerative disc disease, the transfer of compressive load through the disc shifts largely from the nucleus onto the anulus. In vivo models simulating this condition have shown derangement of the collagenous ultrastructure in the anulus. In vitro models of cultured anulus cells subjected to static compressive stress generally suggest a down-regulation of synthesis. This study evaluated the expression of specific isomers of genes responsible for mechanical viability and metabolism of the disc under cyclic compressive loads. METHODS Fibrochondrocytes were digested from the anuli of 3, 2-week-old pigs, embedded in 1.5% alginate gel, and hydrostatically compressed at 0.5 Hz for 3 hours to amplitudes of 10 and 30 atm. These levels represented nominal load transfer through the healthy disc and high load transfer through the degenerative disc. Ribonucleic acid was isolated, reverse transcribed, and evaluated by real-time polymerase chain reaction for expression of type I (C-I) and type II (C-II) collagen, aggrecan, the matrix metalloproteinase (MMP-1), and the transforming growth factor beta (TGFbeta-1). Results were expressed at percentages of uncompressed controls. RESULTS The lower pressure of 10 atm resulted in up-regulation of all ECM protein genes. C-I and C-II both averaged 141%, and aggrecan 121% of controls (P < 0.05). MMP-1 and TGFbeta-1 were essentially unchanged. With the pressure increased to 30 atm, C-II remained approximately at the level expressed under lower pressure, but C-I was reduced to 42% of controls (P < 0.05), indicating a phenotype shift. MMP-1 and TGFbeta-1 also were down-regulated to 71% and 54% of controls, respectively (P < 0.05). CONCLUSIONS The up-regulation of the ECM genes with nominal pressure highlights the mechanobiological importance of common activity in fibrocartilage homeostasis. Differential regulation of the 2 primary collagen types with high pressure indicates a capacity of the anulus to remodel according to pathomechanical conditions.
Collapse
Affiliation(s)
- Karl H Wenger
- Department of Rheumatology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Lee CY, Liu X, Smith CL, Zhang X, Hsu HC, Wang DY, Luo ZP. The combined regulation of estrogen and cyclic tension on fibroblast biosynthesis derived from anterior cruciate ligament. Matrix Biol 2005; 23:323-9. [PMID: 15464364 DOI: 10.1016/j.matbio.2004.07.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 07/21/2004] [Accepted: 07/21/2004] [Indexed: 11/22/2022]
Abstract
Female athletes are two to eight times more likely to suffer a knee or ankle ligament injury than male athletes, and sex hormones have been considered to play an important role in the injury. Because ligaments are always under mechanical loading during sports, mechanical force is also a critical factor in ligament injuries. In this study, the effects of estrogen and mechanical loading on the gene expression of three major components of ligament--collagen type I, type III, and biglycan--in primary cultured porcine anterior cruciate ligament (ACL) fibroblasts were investigated individually and collectively using reverse transcript-polymerase chain reaction (RT-PCR). The results revealed that cyclic tensile loading alone increased the messenger RNA expression of collagen I but did not affect that of collagen III and biglycan, and estrogen alone increased the gene expression of collagen I and III but not of biglycan. However, combined administration of estrogen and cyclic loading inhibited the mRNA expression of all the three genes. These results suggested that the inhibition of the gene expression of major extracellular matrix component molecules caused by the combined effects of estrogen and mechanical loading, unique to females, might be responsible for the increased incidence of ligaments injury in female athletes.
Collapse
Affiliation(s)
- Chun-Yi Lee
- Department of Orthopaedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
24
|
Woo SLY, Abramowitch SD, Kilger R, Liang R. Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 2005; 39:1-20. [PMID: 16271583 DOI: 10.1016/j.jbiomech.2004.10.025] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 10/20/2004] [Indexed: 02/08/2023]
Abstract
Knee ligament injuries are common, particularly in sports and sports related activities. Rupture of these ligaments upsets the balance between knee mobility and stability, resulting in abnormal knee kinematics and damage to other tissues in and around the joint that lead to morbidity and pain. During the past three decades, significant advances have been made in characterizing the biomechanical and biochemical properties of knee ligaments as an individual component as well as their contribution to joint function. Further, significant knowledge on the healing process and replacement of ligaments after rupture have helped to evaluate the effectiveness of various treatment procedures. This review paper provides an overview of the current biological and biomechanical knowledge on normal knee ligaments, as well as ligament healing and reconstruction following injury. Further, it deals with new and exciting functional tissue engineering approaches (ex. growth factors, gene transfer and gene therapy, cell therapy, mechanical factors, and the use of scaffolding materials) aimed at improving the healing of ligaments as well as the interface between a replacement graft and bone. In addition, it explores the anatomical, biological and functional perspectives of current reconstruction procedures. Through the utilization of robotics technology and computational modeling, there is a better understanding of the kinematics of the knee and the in situ forces in knee ligaments and replacement grafts. The research summarized here is multidisciplinary and cutting edge that will ultimately help improve the treatment of ligament injuries. The material presented should serve as an inspiration to future investigators.
Collapse
Affiliation(s)
- Savio L-Y Woo
- Department of Bioengineering, Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | | | | | | |
Collapse
|