1
|
Advances in understanding the functions of native GlyT1 and GlyT2 neuronal glycine transporters. Neurochem Int 2016; 99:169-177. [DOI: 10.1016/j.neuint.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/20/2022]
|
2
|
Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress. Cell Death Discov 2016; 2:16018. [PMID: 27551511 PMCID: PMC4979450 DOI: 10.1038/cddiscovery.2016.18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Noble gases such as xenon and argon have been reported to provide neuroprotection against acute brain ischemic/anoxic injuries. Herein, we wished to evaluate the protective potential of these two gases under conditions relevant to the pathogenesis of chronic neurodegenerative disorders. For that, we established cultures of neurons typically affected in Alzheimer's disease (AD) pathology, that is, cortical neurons and basal forebrain cholinergic neurons and exposed them to L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to generate sustained, low-level excitotoxic stress. Over a period of 4 days, PDC caused a progressive loss of cortical neurons which was prevented substantially when xenon replaced nitrogen in the cell culture atmosphere. Unlike xenon, argon remained inactive. Xenon acted downstream of the inhibitory and stimulatory effects elicited by PDC on glutamate uptake and efflux, respectively. Neuroprotection by xenon was mimicked by two noncompetitive antagonists of NMDA glutamate receptors, memantine and ketamine. Each of them potentiated xenon-mediated neuroprotection when used at concentrations providing suboptimal rescue to cortical neurons but most surprisingly, no rescue at all. The survival-promoting effects of xenon persisted when NMDA was used instead of PDC to trigger neuronal death, indicating that NMDA receptor antagonism was probably accountable for xenon’s effects. An excess of glycine failed to reverse xenon neuroprotection, thus excluding a competitive interaction of xenon with the glycine-binding site of NMDA receptors. Noticeably, antioxidants such as Trolox and N-acetylcysteine reduced PDC-induced neuronal death but xenon itself lacked free radical-scavenging activity. Cholinergic neurons were also rescued efficaciously by xenon in basal forebrain cultures. Unexpectedly, however, xenon stimulated cholinergic traits and promoted the morphological differentiation of cholinergic neurons in these cultures. Memantine reproduced some of these neurotrophic effects, albeit with less efficacy than xenon. In conclusion, we demonstrate for the first time that xenon may have a therapeutic potential in AD.
Collapse
|
3
|
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121:799-817. [PMID: 24578174 PMCID: PMC4133642 DOI: 10.1007/s00702-014-1180-8] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
Glutamate is the most abundant free amino acid in the brain and is at the crossroad between multiple metabolic pathways. Considering this, it was a surprise to discover that glutamate has excitatory effects on nerve cells, and that it can excite cells to their death in a process now referred to as "excitotoxicity". This effect is due to glutamate receptors present on the surface of brain cells. Powerful uptake systems (glutamate transporters) prevent excessive activation of these receptors by continuously removing glutamate from the extracellular fluid in the brain. Further, the blood-brain barrier shields the brain from glutamate in the blood. The highest concentrations of glutamate are found in synaptic vesicles in nerve terminals from where it can be released by exocytosis. In fact, glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. It took, however, a long time to realize that. The present review provides a brief historical description, gives a short overview of glutamate as a transmitter in the healthy brain, and comments on the so-called glutamate-glutamine cycle. The glutamate transporters responsible for the glutamate removal are described in some detail.
Collapse
Affiliation(s)
- Y. Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| | - N. C. Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| |
Collapse
|
4
|
Hinzman JM, Thomas TC, Quintero JE, Gerhardt GA, Lifshitz J. Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J Neurotrauma 2012; 29:1197-208. [PMID: 22233432 DOI: 10.1089/neu.2011.2261] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Disrupted regulation of extracellular glutamate in the central nervous system contributes to and can exacerbate the acute pathophysiology of traumatic brain injury (TBI). Previously, we reported increased extracellular glutamate in the striatum of anesthetized rats 2 days after diffuse brain injury. To determine the mechanism(s) responsible for increased extracellular glutamate, we used enzyme-based microelectrode arrays (MEAs) coupled with specific pharmacological agents targeted at in vivo neuronal and glial regulation of extracellular glutamate. After TBI, extracellular glutamate was significantly increased in the striatum by (∼90%) averaging 4.1±0.6 μM compared with sham 2.2±0.4 μM. Calcium-dependent neuronal glutamate release, investigated by local application of an N-type calcium channel blocker, was no longer a significant source of extracellular glutamate after TBI, compared with sham. In brain-injured animals, inhibition of glutamate uptake with local application of an excitatory amino acid transporter inhibitor produced significantly greater increase in glutamate spillover (∼ 65%) from the synapses compared with sham. Furthermore, glutamate clearance measured by locally applying glutamate into the extracellular space revealed significant reductions in glutamate clearance parameters in brain-injured animals compared with sham. Taken together, these data indicate that disruptions in calcium-mediated glutamate release and glial regulation of extracellular glutamate contribute to increased extracellular glutamate in the striatum 2 days after diffuse brain injury. Overall, these data suggest that therapeutic strategies used to regulate glutamate release and uptake may improve excitatory circuit function and, possibly, outcomes following TBI.
Collapse
Affiliation(s)
- Jason M Hinzman
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | |
Collapse
|
5
|
Lund TM, Obel LF, Risa Ø, Sonnewald U. β-Hydroxybutyrate is the preferred substrate for GABA and glutamate synthesis while glucose is indispensable during depolarization in cultured GABAergic neurons. Neurochem Int 2011; 59:309-18. [DOI: 10.1016/j.neuint.2011.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/31/2011] [Accepted: 06/03/2011] [Indexed: 11/26/2022]
|
6
|
Hinzman JM, Thomas TC, Burmeister JJ, Quintero JE, Huettl P, Pomerleau F, Gerhardt GA, Lifshitz J. Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: an enzyme-based microelectrode array study. J Neurotrauma 2010; 27:889-99. [PMID: 20233041 DOI: 10.1089/neu.2009.1238] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) survivors often suffer from a wide range of post-traumatic deficits, including impairments in behavioral, cognitive, and motor function. Regulation of glutamate signaling is vital for proper neuronal excitation in the central nervous system. Without proper regulation, increases in extracellular glutamate can contribute to the pathophysiology and neurological dysfunction seen in TBI. In the present studies, enzyme-based microelectrode arrays (MEAs) that selectively measure extracellular glutamate at 2 Hz enabled the examination of tonic glutamate levels and potassium chloride (KCl)-evoked glutamate release in the prefrontal cortex, dentate gyrus, and striatum of adult male rats 2 days after mild or moderate midline fluid percussion brain injury. Moderate brain injury significantly increased tonic extracellular glutamate levels by 256% in the dentate gyrus and 178% in the dorsal striatum. In the dorsal striatum, mild brain injury significantly increased tonic glutamate levels by 200%. Tonic glutamate levels were significantly correlated with injury severity in the dentate gyrus and striatum. The amplitudes of KCl-evoked glutamate release were increased significantly only in the striatum after moderate injury, with a 249% increase seen in the dorsal striatum. Thus, with the MEAs, we measured discrete regional changes in both tonic and KCl-evoked glutamate signaling, which were dependent on injury severity. Future studies may reveal the specific mechanisms responsible for glutamate dysregulation in the post-traumatic period, and may provide novel therapeutic means to improve outcomes after TBI.
Collapse
Affiliation(s)
- Jason M Hinzman
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Schousboe A, Waagepetersen HS. Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res 2005; 8:221-5. [PMID: 16371316 DOI: 10.1007/bf03033975] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glutamate homeostasis in the brain is maintained by its well balanced release, uptake and metabolism. It appears that astrocytes play a prominent role in this context since they possess a very powerful battery of glutamate transporters. Thus, malfunction of astrocytic glutamate transporters will lead to an excessively high extracellular glutamate concentration which may result in neurodegeneration caused by the excitotoxic action of glutamate.
Collapse
Affiliation(s)
- Arne Schousboe
- Dept. of Pharmacology, Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
8
|
Lang RJ, Haynes JM, Kelly J, Johnson J, Greenhalgh J, O'brien C, Mulholland EM, Baker L, Munsie M, Pouton CW. Electrical and neurotransmitter activity of mature neurons derived from mouse embryonic stem cells by Sox-1 lineage selection and directed differentiation. Eur J Neurosci 2005; 20:3209-21. [PMID: 15610154 DOI: 10.1111/j.1460-9568.2004.03782.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sx1TV2/16C is a mouse embryonic stem (ES) cell line in which one copy of the Sox1 gene, an early neuroectodermal marker, has been targeted with a neomycin (G418) selection cassette. A combination of directed differentiation with retinoic acid and G418 selection results in an enriched neural stem cell population that can be further differentiated into neurons. After 6-7 days post-plating (D6-7PP) most neurons readily fired tetrodotoxin (TTX)-sensitive action potentials due to the expression of TTX-sensitive Na(+) and tetraethylammonium (TEA)-sensitive K(+) channels. Neurons reached their maximal cell capacitance after D6-7PP; however, ion channel expression continued until at least D21PP. The percentage of cells receiving spontaneous synaptic currents (s.s.c.) increased with days in culture until 100% of cells received a synaptic input by D20PP. Spontaneous synaptic currents were reduced in amplitude and frequency by TTX, or upon exposure to a Ca(2+)-free, 2.5 mm Mg(2+) saline. S.s.c. of rapid decay time constants were preferentially blocked by the nonNMDA glutamatergic receptor antagonists CNQX or NBQX. Ca(2+) levels within ES cell-derived neurons increased in response to glutamate receptor agonists l-glutamate, AMPA, N-methyl-d-aspartate (NMDA) and kainic acid and to acetylcholine, ATP and dopamine. ES cell-derived neurons also generated cationic and Cl(-)-selective currents in response to NMDA and glycine or GABA, respectively. It was concluded that ES-derived neurons fire action potentials, receive excitatory and inhibitory synaptic input and respond to various neurotransmitters in a manner akin to primary central neurons.
Collapse
Affiliation(s)
- R J Lang
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Raiteri L, Stigliani S, Siri A, Passalacqua M, Melloni E, Raiteri M, Bonanno G. Glycine taken up through GLYT1 and GLYT2 heterotransporters into glutamatergic axon terminals of mouse spinal cord elicits release of glutamate by homotransporter reversal and through anion channels. Biochem Pharmacol 2005; 69:159-68. [PMID: 15588724 DOI: 10.1016/j.bcp.2004.08.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 08/11/2004] [Indexed: 11/19/2022]
Abstract
Glycine concentration-dependently elicited [3H]D-aspartate ([3H]D-ASP) release from superfused mouse spinal cord synaptosomes. Glycine effect was insensitive to strychnine or 5,7-dichlorokynurenic acid, but was prevented by the glycine transporter blocker glycyldodecylamide. Glycine also evoked release of endogenous glutamate, which was sensitive to glycyldodecylamide and abolished in low-Na+ medium. Experiments with purified synaptosomes and gliasomes show that the glycine-evoked [3H]D-ASP release largely originates from glutamatergic nerve terminals. The glycine-evoked [3H]D-ASP release was halved by NFPS, a selective blocker of GLYT1 transporters, or by Org 25543, a selective GLYT2 blocker, and almost abolished by a mixture of the two, suggesting that activation of GLYT1 and GLYT2 present on glutamatergic terminals triggers the release of [3H]D-ASP. Accordingly, confocal microscopy experiments show localization of GLYT1 and GLYT2 in purified synaptosomes immuno-stained for the vesicular glutamate transporter vGLUT1. The glycine effect was independent of extra- and intraterminal Ca2+ ions. It was partly inhibited by the glutamate transporter blocker DL-TBOA and largely prevented by the anion channel blockers niflumic acid and NPPB. To conclude, transporters for glycine (GLYT1 or/and GLYT2) and for glutamate coexist on the same spinal cord glutamatergic terminals. Activation of glycine heterotransporters elicits glutamate release partly by homotransporter reversal and largely through anion channels.
Collapse
Affiliation(s)
- Luca Raiteri
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Borisova T, Krisanova N, Himmelreich N. Exposure of animals to artificial gravity conditions leads to the alteration of the glutamate release from rat cerebral hemispheres nerve terminals. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2004; 33:1362-1367. [PMID: 15803628 DOI: 10.1016/j.asr.2003.09.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The biochemical basis underlying the effects of altered gravity on the process of nervous signal transmission is not clear. We have investigated the effect of hypergravity stress (created by centrifugation of rats at l0 g for 1 h) on the basal and stimulated release of L-[14C]glutamate (a chemical transmitter of excitatory signals) from isolated rat brain nerve terminals (synaptosomes). It has been shown that the hypergravity stress exerted a different influence on the Ca(2+)-dependent and the Ca(2+)-independent component of neurotransmitter release. The Ca(2+)-dependent L-[14C]glutamate release evoked by potassium chloride was equal to 14.4 +/- 0.7% of total synaptosomal label for control animals and 6.2 +/- 1.9% for animals, exposed to hypergravity (P < or = 0.05) and was more than twice decreased as a result of the hypergravity stress. We observed no statistically significant difference in the Ca(2+)-independent component of L-[14C]glutamate release. For control group and animals exposed to the hypergravity stress it was equal to 7.7 +/- 2.8% and 12.9 +/- 2.0%, respectively. We have also investigated the effect of the hypergravity stress on the activity of high-affinity Na(+)-dependent glutamate transporters. Km and Vmax of L-[14C]glutamate uptake have been determined. The maximal velocity of glutamate uptake was decreased as a result of hypergravity loading, but no difference in the Km values between control rats and hypergravity exposed animals was observed. These findings indicate that hypergravity stress alters neurotransmitter reuptake and exocytotic neurotransmitter release processes.
Collapse
Affiliation(s)
- T Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine.
| | | | | |
Collapse
|
11
|
Bak LK, Schousboe A, Waagepetersen HS. Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools. Neurochem Int 2003; 43:417-24. [PMID: 12742087 DOI: 10.1016/s0197-0186(03)00030-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, was distinguished employing the competitive, non-transportable glutamate transport inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA). NMDA (300 microM)-induced release was enhanced (50%) by a simultaneous elevation of the extracellular potassium concentration to 15 mM, which lifts the voltage-dependent magnesium block of the NMDA receptors. This NMDA/K(+)-induced release was not sensitive to DL-TBOA (100 microM) but was inhibited by 75% in the presence of the unspecific calcium channel antagonist La(3+) (100 microM). Glutamate (100 microM) induced a large fractional release of the preloaded [3H]D-aspartate and in the presence of DL-TBOA the release was reduced by approximately 50%. In contrast, release evoked by 25 microM glutamate was not inhibited by DL-TBOA. These results indicate that the release elicited by 100 microM glutamate is comprised of a significant glutamate transporter-mediated component in addition to the vesicular release while the NMDA/K(+)-induced release is vesicular in nature. It is likely that the high glutamate concentration (100 microM) may facilitate heteroexchange of the preloaded [3H]D-aspartate.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Pharmacology, The Royal Danish School of Pharmacy, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
12
|
Role of astrocytes in homeostasis of glutamate and GABA during physiological and pathophysiological conditions. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Janáky R, Dohovics R, Hermann A, Oja SS, Saransaari P. Effects of metabotropic glutamate receptor agonists and antagonists on D-aspartate release from mouse cerebral cortical and striatal slices. Neurochem Res 2001; 26:1217-24. [PMID: 11874203 DOI: 10.1023/a:1013963222332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cytosolic release of L-glutamate has been held to be responsible for the increase in extracellular glutamate to toxic levels in the brain. The mechanism and regulation of this release was now studied in cerebral cortical and striatal slices with D-[3H]aspartate, a non-metabolized analogue of L-glutamate and a poor substrate for vesicular uptake. L-Glutamate and D-aspartate strongly stimulated the release in a concentration-dependent manner. Of the ionotropic glutamate receptor agonists, only kainate enhanced the basal release in the striatum. Of the metabotropic glutamate receptor ligands, the group I agonist (S)-3,5-dihydroxyphenylglycine (S-DHPG) failed to affect the basal release but inhibited the D-aspartate-evoked release in the striatum. The group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) had no effect on the basal release in either preparation but enhanced the L-glutamate-evoked release and inhibited the D-aspartate-evoked release in the striatum, not however in the cerebral cortex. The group II agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) and the group II antagonist (2S)-2-ethylglutamate (EGLU) were without effect on the basal, D-aspartate- and L-glutamate-evoked releases of D-[3H]aspartate in either preparation. The group III agonist L-serine-O-phosphate (L-SOP) failed to affect the basal release but reduced the D-aspartate-evoked release in the striatum. The group III antagonist (RS)alpha-methylserine-O-phosphate (MSOP) failed to affect the basal release but increased the glutamate-evoked release and inhibited the D-aspartate-evoked release in the striatum. Both L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC) and (2S,1'S,2'R)-2-carboxycyclopropyl)glycine (L-CCG-III), transportable inhibitors of the high-affinity glutamate uptake, enhanced the basal release, more strongly in the striatum than in the cerebral cortex. L-CCG-III also increased the L-glutamate-evoked release in the striatum. Nontransportable dihydrokainate enhanced the basal release much less and failed to affect the glutamate-evoked release. The results indicate that the release of glutamate from cytosolic pools is carrier-mediated via homoexchange. This process is regulated in the striatum by metabotropic group I and group III receptors in a manner different from the regulation of the vesicular release of glutamate from presynaptic terminals.
Collapse
Affiliation(s)
- R Janáky
- Brain Research Center, University of Tampere Medical School, Finland.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
15
|
Allen JW, El-Oqayli H, Aschner M, Syversen T, Sonnewald U. Methylmercury has a selective effect on mitochondria in cultured astrocytes in the presence of [U-(13)C]glutamate. Brain Res 2001; 908:149-54. [PMID: 11454325 DOI: 10.1016/s0006-8993(01)02628-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of methylmercury on glutamate metabolism was studied by (13)C magnetic resonance spectroscopy. Cerebral cortical astrocytes were pretreated with methylmercury, either 1 microM for 24 h, or 10 microM for 30 min, and subsequently with 0.5 mM [U-(13)C]glutamate for 2 h. Labeled glutamate, glutamine, aspartate and glutathione were present in cell extracts, and glutamine, aspartate and lactate in the medium of all groups. HPLC analysis of these amino acids showed no changes in concentrations between groups. Surprisingly, the amounts of [U-(13)C]glutamate and unlabeled glucose taken up by the astrocytes were unchanged. Furthermore, the amounts of most metabolites synthesized from [U-(13)C]glutamate were also unchanged in all groups. However, formation of [U-(13)C]lactate was decreased in the 10 microM methylmercury group. This was not observed for labeled aspartate. It is noteworthy that both [U-(13)C]lactate and [U-(13)C]aspartate can only be derived from [U-(13)C]glutamate via mitochondrial metabolism. [U-(13)C]glutamate enters the tricarboxylic acid cycle (located in mitochondria) after conversion to 2-[U-13C]oxoglutarate and [U-(13)C]aspartate is formed from [U-(13)C]oxaloacetate, as is [U-(13)C]lactate. [U-(13)C]lactate can also be formed from [U-(13)C]malate. This differential effect on labeled aspartate and lactate indicates cellular compartmentation and thus selective vulnerability of mitochondria within the astrocytes to the effects of methylmercury. The decreased lactate production from glutamate might be detrimental to surrounding cells since lactate has been shown to be an important substrate for neurons.
Collapse
Affiliation(s)
- J W Allen
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA
| | | | | | | | | |
Collapse
|
16
|
Douhou A, Troadec JD, Ruberg M, Raisman-Vozari R, Michel PP. Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors. J Neurochem 2001; 78:163-74. [PMID: 11432983 DOI: 10.1046/j.1471-4159.2001.00401.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The death of dopaminergic neurons that occurs spontaneously in mesencephalic cultures was prevented by depolarizing concentrations of K+ (20-50 mM). However, unlike that observed previously in other neuronal populations of the PNS or CNS, promotion of survival required concurrent blockade of either NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors by the specific antagonists, MK-801 and GYKI-52466, respectively. Rescued neurons appeared to be healthy and functional because the same treatment also dramatically enhanced their capacity to accumulate dopamine. The effects on survival and uptake were rather specific to dopaminergic neurons, rapidly reversible and still observed when treatment was delayed after plating. Glutamate release increased substantially in the presence of elevated concentrations of K+, and chronic treatment with glutamate induced a loss of dopaminergic neurons that was prevented by MK-801 or GYKI-52466 suggesting that an excitotoxic process interfered with survival when only the depolarizing treatment was applied. The effects of the depolarizing stimulus in the presence of MK-801 were mimicked by BAY K-8644 and abolished by nifedipine, suggesting that neuroprotection resulted from Ca(2+) influx through L-type calcium channels. Measurement of intracellular calcium revealed that MK-801 or GYKI-52466 were required to maintain Ca(2+) levels within a trophic range, thus preventing K+-induced excitotoxic stress and Ca(2+) overload. Altogether, our results suggest that dopaminergic neurons may require a finely tuned interplay between glutamatergic receptors and calcium channels for their development and maturation.
Collapse
Affiliation(s)
- A Douhou
- INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtríere, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | |
Collapse
|
17
|
Waagepetersen HS, Shimamoto K, Schousboe A. Comparison of effects of DL-threo-beta-benzyloxyaspartate (DL-TBOA) and L-trans-pyrrolidine-2,4-dicarboxylate (t-2,4-PDC) on uptake and release of [3h]D-aspartate in astrocytes and glutamatergic neurons. Neurochem Res 2001; 26:661-6. [PMID: 11519725 DOI: 10.1023/a:1010939304104] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Uptake and release processes in cerebellar astrocytes and granule neurons (glutamatergic) for glutamate were investigated by the use of [3H]D-aspartate, a non-metabolizable glutamate analog. The effects of DL-threo-beta-benzyloxyaspartate (DL-TBOA) and L-trans-pyrrolidine-2,4-dicarboxylate (t-2,4-PDC) on uptake and release of [3H]D-aspartate were studied. Both compounds inhibited potently uptake of [3H]D-aspartate in neurons and astrocytes (IC50 values 10-100 microM), DL-TBOA being slightly more potent than t-2,4-PDC. Release of preloaded [3H]D-aspartate from neurons or astrocytes could be stimulated by addition of excess t-2,4-PDC whereas addition of DL-TBOA had no effect on [3H]D-aspartate efflux. Moreover, DL-TBOA inhibited significantly the depolarization-induced (55 mM KCI) release of preloaded [3H]D-aspartate in the neurons. The results reflect the fact that DL-TBOA is not transported by the glutamate carriers while t-2,4-PDC is a substrate which may heteroexchange with [3H]D-aspartate. It is suggested that DL-TBOA may be used to selectively inhibit depolarization coupled glutamate release mediated by reversal of the carriers.
Collapse
Affiliation(s)
- H S Waagepetersen
- NeuroScience PharmaBiotec Res Center, Dept of Pharmacology, The Royal Danish School of Pharmacy, Copenhagen
| | | | | |
Collapse
|
18
|
Waagepetersen HS, Sonnewald U, Gegelashvili G, Larsson OM, Schousboe A. Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using 13C magnetic resonance spectroscopy. J Neurosci Res 2001; 63:347-55. [PMID: 11170185 DOI: 10.1002/1097-4547(20010215)63:4<347::aid-jnr1029>3.0.co;2-g] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GABA exists in at least two different intracellular pools, i.e., a cytoplasmic or metabolic pool and a vesicular pool. This study was performed to gain information about the quantitative role of the tricarboxylic acid (TCA) cycle in biosynthesis of GABA from glutamine when GABA was selectively released from either one of these two pools. Cultured cerebral cortical neurons (GABAergic) were incubated in a medium containing 0.5 mM [U-13C]glutamine and subsequently depolarized for release of GABA from either the vesicular or the cytoplasmic pool. The vesicular release was induced by 55 mM K+ in the presence of tiagabine, a nontransportable inhibitor of the plasma membrane GABA carriers, whereas the cytoplasmic release via a reversal of the GABA carrier was induced by exposure to N-methyl-D-aspartate (NMDA; 50 microM) in the presence of (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate (AMPA; 50 microM). Cell extracts were analyzed by 13C magnetic resonance spectroscopy subsequent to the incubation or depolarization. The percentage of GABA generated from glutamine via the TCA cycle decreased from 60% to 46% during depolarization, inducing GABA release from the cytoplasmic pool, whereas a significant change in this parameter was not observed after release from the vesicular pool. These observations indicate that, during release from the cytoplasmic pool, the fraction of GABA synthesized directly from glutamine without involvement of the TCA cycle is more pronounced than that occurring during resting conditions and when release occurs from the vesicular pool. This might be explained by differences in the regulation of the two isoforms of glutamate decarboxylase (GAD(65) and GAD(67)), which presumably play different roles in the maintenance of GABA in the two pools. Both isoforms were found in the cultured cerebral cortical neurons, as shown by Western blotting employing an antibody recognizing GAD(65) as well as GAD(67).
Collapse
Affiliation(s)
- H S Waagepetersen
- Department of Pharmacology, Neuroscience PharmaBiotec Research Center, The Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|