1
|
Luo J, Yan Z, Guo S, Chen W. Recent Advances in Atherosclerotic Disease Screening Using Pervasive Healthcare. IEEE Rev Biomed Eng 2021; 15:293-308. [PMID: 34003754 DOI: 10.1109/rbme.2021.3081180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerosis screening helps the medical model transform from therapeutic medicine to preventive medicine by assessing degree of atherosclerosis prior to the occurrence of fatal vascular events. Pervasive screening emphasizes atherosclerotic monitoring with easy access, quick process, and advanced computing. In this work, we introduced five cutting-edge pervasive technologies including imaging photoplethysmography (iPPG), laser Doppler, radio frequency (RF), thermal imaging (TI), optical fiber sensing and piezoelectric sensor. IPPG measures physiological parameters by using video images that record the subtle skin color changes consistent with cardiac-synchronous blood volume changes in subcutaneous arteries and capillaries. Laser Doppler obtained the information on blood flow by analyzing the spectral components of backscattered light from the illuminated tissues surface. RF is based on Doppler shift caused by the periodic movement of the chest wall induced by respiration and heartbeat. TI measures vital signs by detecting electromagnetic radiation emitted by blood flow. The working principle of optical fiber sensor is to detect the change of light properties caused by the interaction between the measured physiological parameter and the entering light. Piezoelectric sensors are based on the piezoelectric effect of dielectrics. All these pervasive technologies are noninvasive, mobile, and can detect physiological parameters related to atherosclerosis screening.
Collapse
|
2
|
Khan K, Albanese I, Yu B, Shalal Y, Al-Kindi H, Alaws H, Tardif JC, Gourgas O, Cerutti M, Schwertani A. Urotensin II, urotensin-related peptide, and their receptor in aortic valve stenosis. J Thorac Cardiovasc Surg 2019; 161:e1-e15. [PMID: 31679703 DOI: 10.1016/j.jtcvs.2019.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Aortic valve stenosis (AVS) is the most common cause of surgical valve replacement worldwide. The vasoactive peptide urotensin II (UII) is upregulated in atherosclerosis and several other cardiovascular diseases; however, its role in the pathogenesis of AVS remains to be determined. Here, we investigated the expression of UII, urotensin-related peptide (URP), and the urotensin receptor (UT) and the role this system plays in AVS. METHODS Immunohistochemistry and reverse-transcriptase polymerase chain reaction were used to examine the cellular localization and mRNA expression, of UII, URP, and UT in calcified and noncalcified aortic valves. Human aortic valve interstitial cells were isolated from normal valves and treated with UII or URP, and changes in cell proliferation, cholesterol efflux, calcium deposition, and β-catenin translocation were assessed. RESULTS The mRNA expression of UII, URP, and UT was significantly greater in patients with AVS. There was abundant presence of UII, URP, and UT immunostaining in diseased compared with nondiseased valves and correlated significantly with presence of calcification (P < .0001) and fibrosis (P < .0001). Treating human aortic valve interstitial cells with UII or URP significantly increased cell proliferation (P < .0001) and decreased cholesterol efflux (P = .0011 and P = .0002, respectively). UII also significantly reduced ABCA1 protein expression (P = .0457) and increased β-catenin nuclear translocation (P < .0001) and mineral deposition (P < .0001). CONCLUSIONS Together, these data suggest that the urotensin system plays a role in the pathogenesis of AVS and warrants further investigation.
Collapse
Affiliation(s)
- Kashif Khan
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Isabella Albanese
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Bin Yu
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Yousif Shalal
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Hamood Al-Kindi
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Hossney Alaws
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | | | - Ophélie Gourgas
- Department of Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Marta Cerutti
- Department of Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Adel Schwertani
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Al-Rifai R, Tournois C, Kheirallah S, Bouland N, Poitevin G, Nguyen P, Beljebbar A. Subcutaneous and transcutaneous monitoring of murine hindlimb ischemia by in vivo Raman spectroscopy. Analyst 2019; 144:4677-4686. [PMID: 31268052 DOI: 10.1039/c8an02449a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have investigated the development of murine hindlimb ischemia from day 1 to day 55 after femoral artery ligation (FAL) using blood flow analysis, functional tests, histopathological staining, and in vivo Raman spectroscopy. FAL resulted in hindlimb blood deprivation and the loss of functionality as attested by the blood flow analysis and functional tests, respectively. The limbs recovered a normal circulation progressively without recovering complete functionality. Histological analysis showed changes in the morphology of muscle fibers with intense inflammation. From day 22 to day 55 post-ischemia, regeneration of the myofibers was observed. Raman spectroscopic results related to subcutaneous analysis made the identification of modification in the biochemical constituents of hindlimb muscles possible during disease progression. Ischemia was characterized by a quantitative increase in the lipid content and a decrease in the protein content. The lipid to protein ratio can be used as a spectroscopic marker to score the severity of ischemia. Multivariate statistical analysis PC-LDA (Principal Component-Linear Discriminant Analysis) was used to classify all the data measured for the normal and ischemic tissues. This classification illustrated an excellent separation between the control and ischemic tissues at any time during the course of ischemic development. In vivo Raman spectroscopy was then applied to assess the potential of this technique as a screening tool to explore an ischemic disease non-invasively (transcutaneously). For this purpose, the influence of skin on the diagnostic accuracy was evaluated; transcutaneous analysis revealed the accuracy of this technique, indicating its potential in the in situ monitoring of muscle structural changes during ischemia.
Collapse
Affiliation(s)
- Rida Al-Rifai
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Claire Tournois
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France and Laboratoire d'Hématologie, CHU Robert Debré, Reims, France
| | | | - Nicole Bouland
- Laboratoire d'Anatomopathologie, Université de Reims Champagne-Ardenne, France
| | - Gaël Poitevin
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Philippe Nguyen
- EA 3801, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France and Laboratoire d'Hématologie, CHU Robert Debré, Reims, France
| | - Abdelilah Beljebbar
- BioSpectroscopie Translationnelle BioSpecT, EA 7506, Université de Reims Champagne-Ardenne, France.
| |
Collapse
|
4
|
Abstract
Skin hydration is a complex process that influences the physical and mechanical properties of skin. Various technologies have emerged over the years to assess this parameter, with the current standard being electrical probe-based instruments. Nevertheless, their inability to provide detailed information has prompted the use of sophisticated spectroscopic and imaging methodologies, which are capable of in-depth skin analysis that includes structural and composition details. Modern imaging and spectroscopic techniques have transformed skin research in the dermatological and cosmetics disciplines, and are now commonly employed in conjunction with traditional methods for comprehensive assessment of both healthy and pathological skin. This article reviews current techniques employed in measuring skin hydration, and gives an account on their principle of operation and applications in skin-related research.
Collapse
|
5
|
Chaichi A, Prasad A, Gartia MR. Raman Spectroscopy and Microscopy Applications in Cardiovascular Diseases: From Molecules to Organs. BIOSENSORS 2018; 8:E107. [PMID: 30424523 PMCID: PMC6315865 DOI: 10.3390/bios8040107] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023]
Abstract
Noninvasive and label-free vibrational spectroscopy and microscopy methods have shown great potential for clinical diagnosis applications. Raman spectroscopy is based on inelastic light scattering due to rotational and vibrational modes of molecular bonds. It has been shown that Raman spectra provide chemical signatures of changes in biological tissues in different diseases, and this technique can be employed in label-free monitoring and clinical diagnosis of several diseases, including cardiovascular studies. However, there are very few literature reviews available to summarize the state of art and future applications of Raman spectroscopy in cardiovascular diseases, particularly cardiac hypertrophy. In addition to conventional clinical approaches such as electrocardiography (ECG), echocardiogram (cardiac ultrasound), positron emission tomography (PET), cardiac computed tomography (CT), and single photon emission computed tomography (SPECT), applications of vibrational spectroscopy and microscopy will provide invaluable information useful for the prevention, diagnosis, and treatment of cardiovascular diseases. Various in vivo and ex vivo investigations can potentially be performed using Raman imaging to study and distinguish pathological and physiological cardiac hypertrophies and understand the mechanisms of other cardiac diseases. Here, we have reviewed the recent literature on Raman spectroscopy to study cardiovascular diseases covering investigations on the molecular, cellular, tissue, and organ level.
Collapse
Affiliation(s)
- Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Alisha Prasad
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
6
|
Kuzmin AN, Pliss A, Prasad PN. Ramanomics: New Omics Disciplines Using Micro Raman Spectrometry with Biomolecular Component Analysis for Molecular Profiling of Biological Structures. BIOSENSORS-BASEL 2017; 7:bios7040052. [PMID: 29140259 PMCID: PMC5746775 DOI: 10.3390/bios7040052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Modern instrumentation for Raman microspectroscopy and current techniques in analysis of spectral data provide new opportunities to study molecular interactions and dynamics at subcellular levels in biological systems. Implementation of biomolecular component analysis (BCA) to microRaman spectrometry provides basis for the emergence of Ramanomics, a new biosensing discipline with unprecedented capabilities to measure concentrations of distinct biomolecular groups in live cells and organelles. Here we review the combined use of microRaman-BCA techniques to probe absolute concentrations of proteins, DNA, RNA and lipids in single organelles of live cells. Assessing biomolecular concentration profiles of organelles at the single cell level provides a physiologically relevant set of biomarkers for cellular heterogeneity. In addition, changes to an organelle's biomolecular concentration profile during a cellular transformation, whether natural, drug induced or disease manifested, can provide molecular insight into the nature of the cellular process.
Collapse
Affiliation(s)
- Andrey N Kuzmin
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
- Advanced Cytometry Instrumentation Systems, LLC, 640 Ellicott Street-Suite 499, Buffalo, NY 14203, USA.
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
- Advanced Cytometry Instrumentation Systems, LLC, 640 Ellicott Street-Suite 499, Buffalo, NY 14203, USA.
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260-3000, USA.
| |
Collapse
|
7
|
Liu S, Rong M, Zhang H, Chen N, Pang F, Chen Z, Wang T, Yan J. In vivo Raman measurement of levofloxacin lactate in blood using a nanoparticle-coated optical fiber probe. BIOMEDICAL OPTICS EXPRESS 2016; 7:810-815. [PMID: 27231590 PMCID: PMC4866457 DOI: 10.1364/boe.7.000810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Monitoring drug concentrations in vivo is very useful for adjusting a drug dosage during treatment and for drug research. Specifically, cutting-edge "on-line" drug research relies on knowing how drugs are metabolized or how they interact with the blood in real-time. Thus, this study explored performing in vivo Raman measurements of the model drug levofloxacin lactate in the blood using a nanoparticle-coated optical fiber probe (optical fiber nano-probe). The results show that we were able to measure real-time changes in the blood concentration of levofloxacin lactate, suggesting that this technique could be helpful for performing drug analyses and drug monitoring in a clinical setting without repeatedly withdrawing blood from patients.
Collapse
Affiliation(s)
- Shupeng Liu
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China;
| | - Ming Rong
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Heng Zhang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Na Chen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China;
| | - Fufei Pang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Zhenyi Chen
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Tingyun Wang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information, Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jianshe Yan
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China;
| |
Collapse
|
8
|
Abstract
There has been great interest in the possibility of identifying plaques that might be the site of future acute coronary events. These plaques are termed vulnerable and the majority are lipid-rich with an abundance of inflammatory cells and a thin fibrous cap. Several techniques developed to identify these plaques are in various stages of development and in the near future, one might employ a strategy to potentially identify and therapeutically modify such lesions during percutaneous intervention to avoid future acute events. Although this approach of identifying the vulnerable plaque seems promising, there are significant potential limitations. The natural history of a vulnerable plaque is unknown and clinical trials utilizing this strategy of identification and therapeutic intervention are lacking. Moreover, in any given patient, multiple vulnerable plaques are likely to be present. This article reviews some of the techniques for identifying a vulnerable plaque and discusses the potential advantages and limitations of this strategy.
Collapse
Affiliation(s)
- Cezar S Staniloae
- Comprehensive Cardiovascular Center, Department of Medicine, Saint Vincent Catholic Medical Centers of New York, 170 West 12th Street, NY 10011, USA
| | | |
Collapse
|
9
|
Brennan JF, Nazemi J, Motz J, Ramcharitar S. The vPredict Optical Catheter System: Intravascular Raman Spectroscopy. EUROINTERVENTION 2012; 3:635-8. [PMID: 19608493 DOI: 10.4244/eijv3i5a113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Fisher SE, Harris AT, Khanna N, Sule-Suso J. Vibrational Spectroscopy: What Does the Clinician Need? BIOMEDICAL APPLICATIONS OF SYNCHROTRON INFRARED MICROSPECTROSCOPY 2010. [DOI: 10.1039/9781849731997-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sheila E. Fisher
- Clinical Research Fellow, Section of Experimental Therapeutics, University of Leeds Room 6.01, Clinical Sciences Building, St James's University Hospital, Leeds, LS9 7JT, UK and Hon Senior Research Fellow, School of Health Studies, University of Bradford UK
| | - Andrew T Harris
- Cancer-Research UK Research Training Fellow Oral Biology, Leeds Dental Institute, University of Leeds UK
| | - Nitish Khanna
- Specialist Registrar in Medical Microbiology Western Infirmary Glasgow, Scotland UK
| | - Josep Sule-Suso
- Associate Specialist and Senior Lecturer in Oncology Cancer Centre, University Hospital of North Staffordshire and Keele University, Stoke-on-Trent UK
| |
Collapse
|
11
|
Spectroscopy to improve identification of vulnerable plaques in cardiovascular disease. Int J Cardiovasc Imaging 2009; 26:111-9. [PMID: 19760516 DOI: 10.1007/s10554-009-9500-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
Abstract
Many apparent healthy persons die from cardiovascular disease, despite major advances in prevention and treatment of cardiovascular disease. Traditional cardiovascular risk factors are able to predict cardiovascular events in the long run, but fail to assess current disease activity or nearby cardiovascular events. There is a clear relation between the occurrence of cardiovascular events and the presence of so-called vulnerable plaques. These vulnerable plaques are characterized by active inflammation, a thin cap and a large lipid pool. Spectroscopy is an optical imaging technique which depicts the interaction between light and tissues, and thereby shows the biochemical composition of tissues. In recent years, impressive advances have been made in spectroscopy technology and intravascular spectroscopy is able to assess the composition of plaques of interest and thereby to identify and actually quantify plaque vulnerability. This review summarizes the current evidence for spectroscopy as a measure of plaque vulnerability and discusses the potential role of intravascular spectroscopic imaging techniques.
Collapse
|
12
|
Owen CA, Selvakumaran J, Notingher I, Jell G, Hench LL, Stevens MM. In vitro toxicology evaluation of pharmaceuticals using Raman micro-spectroscopy. J Cell Biochem 2006; 99:178-86. [PMID: 16598770 DOI: 10.1002/jcb.20884] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Raman micro-spectroscopy combined with multivariate analysis was employed to monitor real-time biochemical changes induced in living cells in vitro following exposure to a pharmaceutical. The cancer drug etoposide (topoisomerase II inhibitor) was used to induce double-strand DNA breaks in human type II pneumocyte-like cells (A549 cell-line). Raman spectra of A549 cells exposed to 100 microM etoposide were collected and classical least squares (CLS) analysis used to determine the relative concentrations of the main cellular components. It was found that the concentrations of DNA and RNA significantly (P < 0.05) decreased, whilst the concentration of lipids significantly (P < 0.05) increased with increasing etoposide exposure time as compared to control untreated A549 cells. The concentration of DNA decreased by 27.5 and 87.0% after 24 and 48 h exposure to etoposide respectively. Principal components analysis (PCA) successfully discriminated between treated and untreated cells, with the main variance between treatment groups attributed to changes in DNA and lipid. DNA fragmentation was confirmed by Western blot analysis of apoptosis regulator protein p53 and cell metabolic activity determined by MTT assay. The over-expression of p53 protein in the etoposide treated cells indicated a significant level of DNA fragmentation and apoptosis. MTT tests confirmed that cellular metabolic activity decreased following exposure to etoposide by 29.4 and 61.2% after 24 and 48 h, respectively. Raman micro-spectroscopy may find applications in the toxicology screening of other drugs, chemicals and new biomaterials, with a range of cell types.
Collapse
Affiliation(s)
- Chris A Owen
- Department of Materials, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Short KW, Carpenter S, Freyer JP, Mourant JR. Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures. Biophys J 2005; 88:4274-88. [PMID: 15764662 PMCID: PMC1305657 DOI: 10.1529/biophysj.103.038604] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Raman spectra of cells and nuclei from cultures in the plateau (nonproliferating) and exponential (proliferating) phases of growth were measured and show that Raman spectroscopy can monitor changes due to cell proliferation. A simple fitting routine was developed using a basis set (lipid, protein, DNA, RNA) to estimate the relative amounts of biochemical components in cells and nuclei. Using relative amounts and ratios of biochemical components, reproducible differences can be detected and quantified that are not readily apparent by visual analysis of vibrational bands in the spectra. These differences, due to cell proliferation, can be assigned to specific biochemical changes. They include a decrease in the relative lipid and increases in the relative protein and RNA for both nontumorigenic exponential cells and nuclei, and an increase in the relative RNA for tumorigenic exponential cells. The lipid/RNA ratio decreases for nontumorigenic exponential cells and nuclei and tumorigenic exponential cells. The protein/lipid ratio increases for both tumorigenic and nontumorigenic exponential cells and nuclei. Finally, the lipid/DNA ratio decreases for tumorigenic exponential nuclei. This knowledge will be important for Raman detection of rapidly dividing populations of cancer cells in vivo.
Collapse
Affiliation(s)
- Kurt W Short
- Bioscience Division, Los Alamos National Laboratory, NM 87545, USA.
| | | | | | | |
Collapse
|
14
|
Nithipatikom K, McCoy MJ, Hawi SR, Nakamoto K, Adar F, Campbell WB. Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells. Anal Biochem 2003; 322:198-207. [PMID: 14596828 DOI: 10.1016/j.ab.2003.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A method using confocal Raman microspectroscopy for the detection of cellular proteins in single intact cells was developed. Two approaches were used to improve the detection of these cellular components. First, compounds with high Raman scattering were investigated for potential use as Raman labels. Raman labels were conjugated to either biomolecules or biotin and used as markers in the detection of cellular enzymes and receptors. Second, silver colloids were used to increase the surface-enhanced Raman scatter (SERS) of these Raman labels. Cresyl violet and dimethylaminoazobenzene are Raman labels that provide very sensitive SERS detection by a confocal Raman microscope with a HeNe laser at wavelength of 632.8 nm. The detection of 12-lipoxygenase and cyclooxygenase-1 in single bovine coronary artery endothelial cells and the binding of angiotensin II to its receptors in zona glomerulosa cells was demonstrated.
Collapse
Affiliation(s)
- Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Moreno PR, Muller JE. Detection of high-risk atherosclerotic coronary plaques by intravascular spectroscopy. J Interv Cardiol 2003; 16:243-52. [PMID: 12800403 DOI: 10.1034/j.1600-0854.2003.8040.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple technologies are under development to identify plaque composition and vulnerability. This review article is intended to provide basic knowledge to the interventional cardiologist and the clinician about spectroscopy. The concept of light, the wavelength unit and the electromagnetic spectrum are discussed. Different types of spectra analysis including nuclear magnetic resonance, Raman, fluorescence and diffuse reflectance near-infrared spectroscopy are then carefully reviewed. Experimental data to identify atherosclerotic plaque composition for each of these techniques is provided. Potential benefits and challenges are addressed. Finally, diffuse reflectance near-infrared spectroscopy is discussed in more detail as a promising technique to characterize plaque vulnerability in humans.
Collapse
Affiliation(s)
- Pedro R Moreno
- Linda and Jack Gill Heart Institute, University of Kentucky, Lexington, KY, USA.
| | | |
Collapse
|
16
|
Affiliation(s)
- Pedro R Moreno
- The Linda and Jack Gill Heart Institute, University of Kentucky, 111B-CDD 1101 Veterans Drive, Lexington, KY 40502, USA.
| | | |
Collapse
|
17
|
Yang Z, Hou X, Jones BT, Sane DC, Thomas MJ, Schwenke DC. Determination of calcium, iron and magnesium in rabbit arteries by inductively coupled plasma atomic emission spectrometry. Microchem J 2002. [DOI: 10.1016/s0026-265x(01)00155-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Choo-Smith LP, Edwards HGM, Endtz HP, Kros JM, Heule F, Barr H, Robinson JS, Bruining HA, Puppels GJ. Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers 2002; 67:1-9. [PMID: 11842408 DOI: 10.1002/bip.10064] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Raman spectroscopy has recently been applied ex vivo and in vivo to address various biomedical issues such as the early detection of cancers, monitoring of the effect of various agents on the skin, determination of atherosclerotic plaque composition, and rapid identification of pathogenic microorganisms. This leap in the number of applications and the number of groups active in this field has been facilitated by several technological advancements in lasers, CCD detectors, and fiber-optic probes. However, most of the studies are still at the proof of concept stage. We present a discussion on the status of the field today, as well as the problems and issues that still need to be resolved to bring this technology to hospital settings (i.e., the medical laboratory, surgical suites, or clinics). Taken from the viewpoint of clinicians and medical analysts, the potential of Raman spectroscopic techniques as new tools for biomedical applications is discussed and a path is proposed for the clinical implementation of these techniques.
Collapse
Affiliation(s)
- L-P Choo-Smith
- Laboratory for Intensive Care Research and Optical Spectroscopy, Erasmus University Rotterdam, Rotterdam, The Netherlands. lin-p'
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Buschman HP, Deinum G, Motz JT, Fitzmaurice M, Kramer JR, van der Laarse A, Bruschke AV, Feld MS. Raman microspectroscopy of human coronary atherosclerosis: biochemical assessment of cellular and extracellular morphologic structures in situ. Cardiovasc Pathol 2001; 10:69-82. [PMID: 11425600 DOI: 10.1016/s1054-8807(01)00064-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND We have previously shown that Raman spectroscopy can be used for chemical analysis of intact human coronary artery atherosclerotic lesions ex vivo without tissue homogenization or extraction. Here, we report the chemical analysis of individual cellular and extracellular components of atherosclerotic lesions in different stages of disease progression in situ using Raman microspectroscopy. METHODS Thirty-five coronary artery samples were taken from 16 explanted transplant recipient hearts, and thin sections were prepared. Using a high-resolution confocal Raman microspectrometer system with an 830-nm laser light, high signal-to-noise Raman spectra were obtained from the following morphologic structures: internal and external elastic lamina, collagen fibers, fat, foam cells, smooth muscle cells, necrotic core, beta-carotene, cholesterol crystals, and calcium mineralizations. Their Raman spectra were modeled by using a linear combination of basis Raman spectra from the major biochemicals present in arterial tissue, including collagen, elastin, actin, myosin, tropomyosin, cholesterol monohydrate, cholesterol linoleate, phosphatidyl choline, triolein, calcium hydroxyapatite, calcium carbonate, and beta-carotene. RESULTS The results show that the various morphologic structures have characteristic Raman spectra, which vary little from structure to structure and from artery to artery. The biochemical model described the spectrum of each morphologic structure quite well, indicating that the most essential biochemical components were included in the model. Furthermore, the biochemical composition of each structure, indicated by the fit contributions of the biochemical basis spectra of the morphologic structure spectrum, was very consistent. CONCLUSIONS The Raman spectra of various morphologic structures in normal and atherosclerotic coronary artery may be used as basis spectra in a linear combination model to analyze the morphologic composition of atherosclerotic coronary artery lesions.
Collapse
Affiliation(s)
- H P Buschman
- Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Buschman HP, Motz JT, Deinum G, Römer TJ, Fitzmaurice M, Kramer JR, van der Laarse A, Bruschke AV, Feld MS. Diagnosis of human coronary atherosclerosis by morphology-based Raman spectroscopy. Cardiovasc Pathol 2001; 10:59-68. [PMID: 11425599 DOI: 10.1016/s1054-8807(01)00063-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Recent studies have shown that chemical composition and morphology, rather than anatomy (degree of stenosis), determine atherosclerotic plaque instability and predict disease progression. Current clinical diagnostic techniques provide accurate assessment of plaque anatomy, but have limited capability to assess plaque morphology in vivo. Here we describe a technique for a morphology-based diagnosis of atherosclerosis in the coronary arteries using Raman spectroscopy that can potentially be performed in vivo using optical fiber technology. METHODS Raman tissue spectra were collected from normal and atherosclerotic coronary artery samples in different stages of disease progression (n=165) from explanted transplant recipient hearts (n=16). Raman spectra from the elastic laminae (EL), collagen fibers (CF), smooth muscle cells (SMC), adventitial adipocytes (AA) or fat cells, foam cells (FC), necrotic core (NC), cholesterol crystals (CC), beta-carotene containing crystals (beta-C), and calcium mineralizations (CM) were used as basis spectra in a linear least squares-minimization (LSM) model to calculate the contribution of these morphologic structures to the coronary artery tissue spectra. RESULTS We developed a diagnostic algorithm that used the fit-contributions of the various morphologic structures to classify 97 coronary artery samples in an initial calibration data set as either nonatherosclerotic, calcified plaque, or noncalcified atheromatous plaque. The algorithm was subsequently tested prospectively in a second validation data set, and correctly classified 64 (94%) of 68 coronary artery samples. CONCLUSIONS Raman spectroscopy provides information about the morphologic composition of intact human coronary artery without the need for excision and microscopic examination. In the future, it may be possible to use this technique to analyze the morphologic composition of atherosclerotic coronary artery lesions and assess plaque instability and disease progression in vivo.
Collapse
Affiliation(s)
- H P Buschman
- Leiden University Medical Center, Leiden, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Buschman HP, Marple ET, Wach ML, Bennett B, Schut TC, Bruining HA, Bruschke AV, van der Laarse A, Puppels GJ. In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal Chem 2000; 72:3771-5. [PMID: 10959962 DOI: 10.1021/ac000298b] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atherosclerotic plaque vulnerability is suggested to be determined by its chemical composition. However, at present there are no in vivo techniques available that can adequately type atherosclerotic plaques in terms of chemical composition. Previous in vitro experiments have shown that Raman spectroscopy can provide such information in great detail. Here we present the results of in vitro and in vivo intravascular Raman spectroscopic experiments, in which dedicated, miniaturized fiber-optic probes were used to illuminate the blood vessel wall and to collect Raman scattered light. The results make clear that an important hurdle to clinical application of Raman spectroscopy in atherosclerosis has been overcome, namely, the ability to obtain in vivo intravascular Raman spectra of high quality. Of equal importance is the finding that the in vivo intravascular Raman signal obtained from a blood vessel is a simple summation of signal contributions of the blood vessel wall and of blood. It means that detailed information about the chemical composition of a blood vessel wall can be obtained by adapting a multiple least-squares fitting method, which was developed previously for the analysis of in vitro spectra, to account for signal contributions of blood.
Collapse
Affiliation(s)
- H P Buschman
- Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS. Prospects for in vivo Raman spectroscopy. Phys Med Biol 2000; 45:R1-59. [PMID: 10701500 DOI: 10.1088/0031-9155/45/2/201] [Citation(s) in RCA: 496] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Raman spectroscopy is a potentially important clinical tool for real-time diagnosis of disease and in situ evaluation of living tissue. The purpose of this article is to review the biological and physical basis of Raman spectroscopy of tissue, to assess the current status of the field and to explore future directions. The principles of Raman spectroscopy and the molecular level information it provides are explained. An overview of the evolution of Raman spectroscopic techniques in biology and medicine, from early investigations using visible laser excitation to present-day technology based on near-infrared laser excitation and charge-coupled device array detection, is presented. State-of-the-art Raman spectrometer systems for research laboratory and clinical settings are described. Modern methods of multivariate spectral analysis for extracting diagnostic, chemical and morphological information are reviewed. Several in-depth applications are presented to illustrate the methods of collecting, processing and analysing data, as well as the range of medical applications under study. Finally, the issues to be addressed in implementing Raman spectroscopy in various clinical applications, as well as some long-term directions for future study, are discussed.
Collapse
Affiliation(s)
- E B Hanlon
- Laser Biomedical Research Center, George R Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jaross W, Neumeister V, Lattke P, Schuh D. Determination of cholesterol in atherosclerotic plaques using near infrared diffuse reflection spectroscopy. Atherosclerosis 1999; 147:327-37. [PMID: 10559519 DOI: 10.1016/s0021-9150(99)00203-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this investigation was to examine whether near infrared diffuse reflection spectroscopy is an acceptable tool for the determination of cholesterol content in atherosclerotic plaques. Using an FT-spectrophotometer (lambda=1000-2500 nm) and fiberoptic systems (d=4 mm), the cholesterol content could be determined in mixtures of the primary compounds of the aortic wall with acceptable precision. Considering the inhomogeneous distribution of cholesterol and cholesterol esters in atherosclerotic plaques the determination of total cholesterol using this method is of acceptable efficacy, even though the calibration procedure did not reflect the composition correctly. Using an energy dose of less than 100 mW/cm(2) to avoid damage to endothelial cells, arterial tissue of about 170-200 microm thickness attenuates the reflected NIRS signal by up to 50%. Cholesterol levels could be determined accurately in atherosclerotic lesions in human aortic specimens obtained by autopsy. The correlation coefficient between the NIRS results and those of HPLC analysis calculated in the investigation of 82 different areas of 18 human aortic specimens was 0.926 (y=0.869x+0. 771, external validation). Acceptable results were also achieved by means of a coronary-catheterlike fiberoptic strand (d=l mm), despite the worsened signal/noise ratio. The results show that the development of a coronary catheter using NIRS appears to be possible in principle.
Collapse
Affiliation(s)
- W Jaross
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technical University Dresden, Fetscherstr.74, D-01307, Dresden, Germany
| | | | | | | |
Collapse
|