1
|
Gates C, Backos DS, Reigan P, Kang HJ, Koerner C, Mirzaei J, Natale NR. Isoxazolo[3,4-d]pyridazinones positively modulate the metabotropic glutamate subtypes 2 and 4. Bioorg Med Chem 2018; 26:4797-4803. [PMID: 30143366 PMCID: PMC6675577 DOI: 10.1016/j.bmc.2018.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022]
Abstract
Isoxazolo[3,4-d] pyridazinones ([3,4-d]s) are selective positive modulators of the metabotropic glutamate receptors (mGluRs) subtypes 2 and 4, with no functional cross reactivity at mGluR1a, mGLuR5 or mGluR8. Modest binding for two of the [3,4-d]s is observed at the allosteric fenobam mGluR5 site, but not sufficient to translate into a functional effect. The structure activity relationship (SAR) for mGluR2 and mGluR4 are distinct: the compounds which select for mGluR2 all contain fluorine on the N-6 aryl group. Furthermore, the [3,4-d]s in this study showed no significant binding at inhibitory GABAA, nor excitatory NMDA receptors, and previously we had disclosed that they lack significant activity at the System Xc-Antiporter. A homology model based on Conn's mGluR1 crystal structure was examined, and suggested explanations for a preference for allosteric over orthosteric binding, subtype selectivity, and suggested avenues for optimization of efficacy as a reasonable working hypothesis.
Collapse
Affiliation(s)
- Christina Gates
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, United States
| | - Donald S Backos
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, United States
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, United States
| | - Hye Jin Kang
- Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Department of Pharmacology, School of Medicine, 2113 Genetics Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Chris Koerner
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, United States
| | - Joseph Mirzaei
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, United States
| | - N R Natale
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, United States.
| |
Collapse
|
2
|
Wang H, Wang X, Li Y, Yu H, Wang C, Feng C, Xu G, Chen J, You J, Wang P, Wu X, Zhao R, Zhang G. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium. Exp Ther Med 2018; 15:3791-3800. [PMID: 29581737 PMCID: PMC5863573 DOI: 10.3892/etm.2018.5902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 01/26/2023] Open
Abstract
It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yan Li
- No.1 English Department, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohui Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiajun Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
3
|
NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 2016; 533:481-6. [PMID: 27144355 PMCID: PMC4922311 DOI: 10.1038/nature17998] [Citation(s) in RCA: 1148] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamine’s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants.
Collapse
|
4
|
Puri RK, Reynolds JN, Brien JF. Effects of chronic prenatal ethanol exposure on NMDA receptor number and affinity for [3H]MK-801 in the cerebral cortex of the young postnatal and adult guinea-pig. Reprod Fertil Dev 2007; 15:207-14. [PMID: 12921695 DOI: 10.1071/rd03022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 05/01/2003] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to test the hypothesis that chronic prenatal ethanol exposure (CPEE) produces changes in the number and/or affinity of N-methyl-D-aspartate (NMDA) receptors in the cerebral cortex that are developmental-age-dependent. Timed, pregnant Dunkin-Hartley-strain guinea-pigs received oral intubation of one of the following regimens, given daily as two equally divided doses 2 h apart, from gestational day (GD) 2 to GD 67 (term, ~GD 68): (i) 4 g ethanol kg(-1) maternal bodyweight; (ii) isocaloric sucrose with pair feeding; or (iii) water. Maternal blood ethanol concentration was measured on GD 57 or 58 at 1 h after the daily dose, and was 51.1 +/- 8.5 mM (235 +/- 39 mg dL(-1); n = 8). At postnatal day (PD) 11 (pre-weaning) and PD 61 (adulthood), body, brain and cerebral cortical weights of the offspring were measured. The number of NMDA receptors and their affinity for [(3)H]MK-801 were measured in a crude cerebral cortical membrane preparation using saturation isotherm analysis to determine the B(max) and K(D). Chronic prenatal ethanol exposure decreased offspring brain and cerebral cortical weights at PD 11 and PD 61. At PD 11, there was no CPEE-induced change of [(3)H]MK-801 binding characteristics in the cerebral cortex. At PD 61, both B(max) and K(D) for [(3)H]MK-801 binding to cerebral cortical NMDA receptors were decreased by CPEE compared with the isocaloric sucrose/pair-fed and water treatment groups. Loss of cerebral cortical NMDA receptors and increased affinity of the remaining receptors for [(3)H]MK-801 in the adult guinea-pig, compared with no change in the number or affinity of these receptors in the young postnatal offspring, demonstrated that the effects of CPEE on these ionotropic glutamate receptors are developmental-age-dependent.
Collapse
Affiliation(s)
- Rajan K Puri
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
5
|
Hajjhussein H, Suvarna NU, Gremillion C, Judson Chandler L, O’Donnell JM. Changes in NMDA receptor-induced cyclic nucleotide synthesis regulate the age-dependent increase in PDE4A expression in primary cortical cultures. Brain Res 2007; 1149:58-68. [PMID: 17407767 PMCID: PMC2720317 DOI: 10.1016/j.brainres.2007.02.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 02/17/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
NMDA receptor-induced cAMP and cGMP are selectively hydrolyzed by PDE4 and PDE2, respectively, in rat primary cerebral cortical and hippocampal cultures. Because cAMP levels regulate the expression of PDE4 in rat primary cortical cultures, we examined the manner in which NMDA receptor activity regulates the age-dependent increase in the expression of PDE4A observed in vivo and in vitro. Inhibiting the activity of NR2B subunit with ifenprodil blocked NMDA receptor-induced cGMP synthesis and increased NMDA receptor-induced cAMP levels in a manner that reduced PDE4 activity. Therefore, NR1/NR2B receptor-induced cGMP signaling is involved in an acute cross-talk regulation of NR1/NR2A receptor-induced cAMP levels, mediated by PDE4. Chronic inhibition of NMDA receptor activity with MK-801 reduced PDE4A1 and PDE4A5 expression and activity in a time-dependent manner; this effect was reversed by adding the PKA activator dbr-cAMP. Inhibiting GABA receptors with bicuculline increased NMDA receptor-induced cAMP synthesis and PDE4A expression in cultures treated between DIV 16 and DIV 21 but not in cultures treated between DIV 8 and DIV 13. This effect was due to a high tone of NMDA receptor-induced cGMP in younger cultures, which negatively regulated the expression of PDE4A by a PKG-mediated process. The present results are consistent with behavioral data showing that both PDE4 and PDE2 are involved in NMDA receptor-mediated memory processes.
Collapse
Affiliation(s)
- Hassan Hajjhussein
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN
| | - Neesha U. Suvarna
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN
| | - Carmen Gremillion
- Department of Pharmacology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - L. Judson Chandler
- Departments of Physiology/Neuroscience and Psychiatry, Medical University of South Carolina, Charleston, SC
| | - James M. O’Donnell
- Departments of Behavioral Medicine & Psychiatry and Neurobiology & Anatomy, West Virginia University Health Sciences Center, Morgantown, WV
| |
Collapse
|
6
|
Mitchell ES, Snyder-Keller A. c-fos and cleaved caspase-3 expression after perinatal exposure to ethanol, cocaine, or the combination of both drugs. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:107-17. [PMID: 14741756 DOI: 10.1016/j.devbrainres.2003.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Poly-drug abuse during pregnancy is a major public health concern. The combined effects of cocaine and ethanol may be more injurious to the fetal nervous system than either drug alone. In order to identify areas of the brain vulnerable to concurrent exposure, we examined the expression of the immediate-early gene (IEG), c-fos, and cleaved caspase-3, the 'executioner' caspase in apoptosis. Pregnant rats were treated with either ethanol diet, cocaine binge, or both. At birth, the brains of fetuses exposed to cocaine exhibited an increase in Fos immunoreactivity in many brain regions. Prenatal exposure to ethanol did not increase Fos expression above that observed in control rats at early points after birth. However, Fos expression at 24 h after birth was higher after ethanol diet treatment in several brain regions, such as the amygdala, ventromedial hypothalamus, and medial thalamus. Only in the striatum did the combination of ethanol and cocaine cause greater Fos expression than either prenatal cocaine or ethanol alone. Increased cleaved caspase-3 expression was observed at the 24-h time point for both ethanol- and cocaine-exposed brains, most notably in the septum, retrosplenial cortex, and the hippocampus. Concurrent ethanol and cocaine exposure did not elevate cleaved caspase-3 expression beyond that of either drug alone. Analysis of the extent of c-fos and caspase-3 induction did not indicate a consistent relationship of expression in any of the drug treatment groups nor in any brain region. These results indicate that both prenatal cocaine and prenatal ethanol exposure increase Fos and cleaved caspase-3 expression in the developing brain in a time- and region-dependent manner, but that the combination of low-dose, chronic ethanol, and binge cocaine does not cause greater apoptosis.
Collapse
Affiliation(s)
- Ellen S Mitchell
- Department of Biomedical Sciences, State University at Albany, Wadsworth Center, Box 509, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
7
|
Webb B, Walker DW, Heaton MB. Nerve growth factor and chronic ethanol treatment alter calcium homeostasis in developing rat septal neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:57-71. [PMID: 12763581 DOI: 10.1016/s0165-3806(03)00100-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic ethanol treatment (CET) during development produces cellular adaptations resulting in tolerance to the acute effects of ethanol (EtOH). The objectives of this study were to determine whether CET during the prenatal period (PCET) followed by a period of in vitro CET (PCET-CET) altered intracellular calcium [Ca(2+)](i) and produced tolerance to acute EtOH treatment (AET), and whether nerve growth factor (NGF) modulated the effects of PCET-CET in cultured developing rat septal neurons. Fetuses were obtained from EtOH-fed and sucrose-fed (diet-control) female rats. Neurons from PCET fetuses were cultured in the presence of NGF (+NGF) and 200 mg/dl (mg %) EtOH and diet-control cultures received NGF and no EtOH. PCET and diet-control cultures were then divided into two groups, +NGF and -NGF (withdrawn from NGF), and exposed acutely to one of five doses of EtOH during stimulation with potassium (K(+)) chloride. [Ca(2+)](i) was measured using fura-2. PCET-CET did not affect resting [Ca(2+)](i). PCET-CET decreased and acute EtOH withdrawal increased overall K(+)-stimulated changes in [Ca(2+)](i), but only in +NGF PCET neurons. Reducing the level of EtOH from 200 to 100 mg % decreased overall K(+)-stimulated [Ca(2+)](i) in -NGF PCET neurons. The effects of PCET-CET or PCET-CET combined with NGF on overall K(+)-stimulated changes in [Ca(2+)](i) occurred mostly in the early and middle phases of the K(+)-response. NGF reduced overall K(+)-stimulated changes in [Ca(2+)](i) in PCET neurons during EtOH withdrawal and during AET with 200 mg % EtOH and increased overall K(+)-stimulated changes in [Ca(2+)](i) during AET with 400 and 800 mg % EtOH. There was no effect of NGF on overall K(+)-stimulated changes in [Ca(2+)](i) in diet-control neurons with the exception that NGF-treatment decreased overall K(+)-stimulated changes in [Ca(2+)](i) during AET with 400 mg % EtOH. The effects of AET on overall K(+)-stimulated changes in [Ca(2+)](i) mostly occurred in +NGF PCET neurons. In conclusion, CET during development of the brain could adversely affect Ca(2+)-dependent functions such as neuronal migration, neurite outgrowth, and synaptogenesis in neurons even in the presence of neurotrophin support.
Collapse
Affiliation(s)
- Barbara Webb
- Department of Neuroscience, Center for Alcohol Research, Gainesville, FL, USA
| | | | | |
Collapse
|
8
|
Byrnes ML, Reynolds JN, Brien JF. Brain growth spurt-prenatal ethanol exposure and the guinea pig hippocampal glutamate signaling system. Neurotoxicol Teratol 2003; 25:303-10. [PMID: 12757827 DOI: 10.1016/s0892-0362(02)00354-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study tested the hypothesis that prenatal ethanol exposure (PEE) during the brain growth spurt (BGS) in the guinea pig suppresses the glutamate-NMDA receptor-nitric oxide synthase (NOS) signaling system in the developing hippocampus. Pregnant guinea pigs [term, about gestational day (GD) 68] received daily oral administration of 2 g ethanol/kg maternal body weight/day on GD 43 and/or GD 44 and then 4 g ethanol/kg maternal body weight/day from GD 45 to GD 62, isocaloric-sucrose/pair-feeding or water. Offspring were studied at GD 63 (near-term fetus) and postnatal day (PD) 10 (young postnatal life). Maternal blood ethanol concentration during ethanol treatment, pregnancy outcome variables, no change in spontaneous locomotor activity, and decreased brain and cerebral cortical weight data were reported previously [Neurotoxicol. Teratol. 23 (2001) 355]. This BGS-PEE regimen did not affect hippocampal stimulated glutamate release in young postnatal offspring, NMDA receptors as assessed by [3H]MK-801 binding, or NOS activity in near-term fetal offspring. Furthermore, BGS-PEE did not affect the number of hippocampal CA1 and CA3 pyramidal cells and dentate gyrus granule cells in defined locations of these three regions in the hippocampal formation. These findings are in contrast to the effects of chronic prenatal exposure to this ethanol regimen throughout gestation, including suppression of the hippocampal glutamate-NMDA receptor-NOS signaling system, decreased number of hippocampal CA1 pyramidal cells, increased spontaneous locomotor activity, and impaired performance in the Morris water maze.
Collapse
Affiliation(s)
- Michelle L Byrnes
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, K7L 3N6, Kingston, ON, Canada
| | | | | |
Collapse
|
9
|
Dettmer TS, Barnes A, Iqbal U, Bailey CDC, Reynolds JN, Brien JF, Valenzuela CF. Chronic Prenatal Ethanol Exposure Alters Ionotropic Glutamate Receptor Subunit Protein Levels in the Adult Guinea Pig Cerebral Cortex. Alcohol Clin Exp Res 2003. [DOI: 10.1111/j.1530-0277.2003.tb04404.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Qiang M, Wang MW, Elberger AJ. Second trimester prenatal alcohol exposure alters development of rat corpus callosum. Neurotoxicol Teratol 2002; 24:719-32. [PMID: 12460654 DOI: 10.1016/s0892-0362(02)00267-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prenatal alcohol exposure produces many developmental defects of the central nervous system (CNS), such as in the corpus callosum (CC). This study was designed to observe the effect of prenatal alcohol exposure during the second trimester equivalent on the development of dendritic arbors of CC projection neurons (CCpn) in rat visual cortex. In addition, the effect of second trimester equivalent prenatal alcohol exposure on brain weight was determined. Pregnant dams received 1.2-6.0 g/kg ethanol (EtOH) during gestational day (G) 11-20. Controls consisted of normal and nutritionally matched pairfed (PF) dams. Pups were sacrificed on the day of birth, G26, G29 and G33. DiI crystals were placed in the midsagittal CC bundle to retrogradely label CCpn. Images of visual cortex were obtained from tissue slices using a confocal laser scanning microscope. The number and length of apical and basilar dendrite branches were determined. The results show that prenatal alcohol exposure restricted to the second trimester equivalent alters the development of the CCpn dendritic arbor and the brain weight in a blood alcohol concentration (BAC)-dependent manner. The alteration in the EtOH CCpn is manifested as an increase in the number and length of CCpn apical and basilar dendrite branches, while brain weight is reduced compared with Controls.
Collapse
Affiliation(s)
- Mei Qiang
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis 38163, USA
| | | | | |
Collapse
|
11
|
Chronic prenatal ethanol exposure increases GABA(A) receptor subunit protein expression in the adult guinea pig cerebral cortex. J Neurosci 2001. [PMID: 11404424 DOI: 10.1523/jneurosci.21-12-04381.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excessive consumption of ethanol during pregnancy can produce teratogenic effects in offspring and is the leading cause of mental deficiency in the Western world. The objective of this study was to examine the effects of chronic prenatal ethanol exposure on the number of GABA(A) receptors and relative protein levels for GABA(A) receptor alpha1 and beta2/3 subunits in the adult guinea pig cerebral cortex. Timed pregnant Dunkin-Hartley strain guinea pigs were given one of the following oral treatments daily throughout gestation: 4 gm of ethanol per kilogram of maternal body weight, isocaloric-sucrose with pair feeding, or isovolumetric water with ad libitum access to food. The ethanol treatment resulted in a peak maternal blood ethanol concentration of 328 +/- 55 mg/dl (71.3 +/- 12.0 mm) on gestational day 57 (term, approximately 68 d). Chronic prenatal exposure to ethanol resulted in increased spontaneous locomotor activity throughout development and decreased cerebral cortical weight in adult offspring. The number of cerebral cortical [(3)H]muscimol binding sites was increased in adult offspring from the ethanol treatment group, and there was a corresponding increase in the amount of GABA(A) receptor alpha1 and beta2/3 subunit proteins in these same animals. For individual offspring, there were correlations between locomotor activity and cerebral cortical weight, as well as between cerebral cortical weight and GABA(A) receptor neurochemistry. There was no effect of chronic prenatal ethanol exposure on [(3)H]MK-801 binding in this tissue. These data demonstrate that chronic prenatal ethanol exposure has long-term consequences on the regulation of GABA(A) receptor expression in the cerebral cortex.
Collapse
|
12
|
Bailey CD, Brien JF, Reynolds JN. Altered GABAA-Benzodiazepine Receptor Number and Pharmacology in the Adult Guinea Pig Cerebral Cortex After Chronic Prenatal Ethanol Exposure. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04078.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kimura KA, Chiu J, Reynolds JN, Brien JF. Effect of chronic prenatal ethanol exposure on nitric oxide synthase I and III proteins in the hippocampus of the near-term fetal guinea pig. Neurotoxicol Teratol 1999; 21:251-9. [PMID: 10386828 DOI: 10.1016/s0892-0362(98)00055-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic prenatal ethanol exposure suppresses nitric oxide synthase (NOS) enzymatic activity, in the hippocampus of the near-term fetal guinea pig at gestational day (GD) 62. The objective of this study was to determine if this decrease in NOS activity is the result of decreased NOS I and NOS III protein expression. Pregnant guinea pigs received oral administration of 4 g ethanol/kg maternal body weight/day (n = 8), isocaloric-sucrose/pair feeding (n = 8), or water (n = 8) from GD 2 to GD 61. The NOS I and NOS III protein expression and localization in the hippocampus were determined using Western blot analysis and immunohistochemistry, respectively. The chronic ethanol regimen produced fetal body, brain, and hippocampal growth restriction compared with the isocaloric-sucrose/pair fed and water groups but did not affect the expression or localization of NOS I and NOS III proteins in the hippocampus. The decrease in NOS enzymatic activity induced by chronic prenatal ethanol exposure may be the result of posttranslational modification of NOS I and/or NOS III protein in the hippocampus of the near-term fetal guinea pig.
Collapse
Affiliation(s)
- K A Kimura
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|