1
|
Tang J, Bu W, Hu W, Zhao Z, Liu L, Luo C, Wang R, Fan S, Yu S, Wu Q, Wang X, Zhao X. Ferroptosis Is Involved in Sex-Specific Small Intestinal Toxicity in the Offspring of Adult Mice Exposed to Polystyrene Nanoplastics during Pregnancy. ACS NANO 2023; 17:2440-2449. [PMID: 36728677 DOI: 10.1021/acsnano.2c09729] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoplastics are common contaminants in the living environment. Thus far, no investigations have focused on small intestinal injury in the offspring of adult mice that were exposed to nanoplastics through the respiratory system during pregnancy. Here, we evaluated potential intestinal injury in the offspring of adult mice that were subjected to maternal 80 nm polystyrene nanoparticle (PS-NP) exposure during gestation. PS-NP exposure significantly reduced the birth weight of female mice compared with male mice. However, the adult body weights of the female and male offspring were substantially greater in the PS-NP-exposed groups. Additionally, we found that exposure to PS-NPs during pregnancy caused histological changes in the small intestines of both female and male offspring. Mechanistic analysis revealed upregulation of reactive oxygen species in the small intestines, as indicated by changes in the levels of superoxide dismutase (SOD) and malondialdehyde (MDA). Furthermore, exposure to PS-NPs led to downregulation of GPx4, FTH1, and FTL protein levels, indicating initiation of ferroptosis. Notably, the changes in mRNA expression levels of GPx4, FTH1, and FTL differed between female and male offspring. Although all phenotypes failed to demonstrate classic dose-dependent effects, the data imply that small intestinal toxicity is greater in female offspring than in male offspring. Our results suggest that PS-NP exposure during pregnancy causes sex-specific small intestinal toxicity, which might contribute to reactive oxygen species activation and subsequent ferroptosis. Overall, this study showed toxic effects in offspring after PS-NP exposure during pregnancy.
Collapse
Affiliation(s)
- Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Wenxuan Hu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zixuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Susu Fan
- Nantong University Analysis & Testing Center, Nantong 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Qiyun Wu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
2
|
Tirapelli LF, Martins-Oliveira A, Batalhão ME, Tirapelli DP, Carnio EC, Tanus-Santos JE, Queiroz RH, Padovan CM, Tirapelli CR. Ethanol consumption increases the expression of endothelial nitric oxide synthase, inducible nitric oxide synthase and metalloproteinases in the rat kidney. J Pharm Pharmacol 2011; 64:68-76. [DOI: 10.1111/j.2042-7158.2011.01396.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
The effects of longterm ethanol consumption on the levels of nitric oxide (NO) and the expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS) and metalloproteinase-2 (MMP-2) were studied in rat kidney.
Methods
Male Wistar rats were treated with 20% ethanol (v/v) for 6 weeks. Nitrite and nitrate generation was measured by chemiluminescence. Protein and mRNA levels of eNOS and iNOS were assessed by immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. MMP-2 activity was determined by gelatin zymography. Histopathological changes in kidneys and indices of renal function (creatinine and urea) and tissue injury (mitochondrial respiration) were also investigated.
Results
Chronic ethanol consumption did not alter malondialdehyde levels in the kidney. Ethanol consumption induced a significant increase in renal nitrite and nitrate levels. Treatment with ethanol increased mRNA expression of both eNOS and iNOS. Immunohistochemical assays showed increased immunostaining for eNOS and iNOS after treatment with ethanol. Kidneys from ethanol-treated rats showed increased activity of MMP-2. Histopathological investigation of kidneys from ethanol-treated animals revealed tubular necrosis. Indices of renal function and tissue injury were not altered in ethanol-treated rats.
Conclusions
Ethanol consumption increased renal metalloproteinase expression/activity, which was accompanied by histopathological changes in the kidney and elevated NO generation. Since iNOS-derived NO and MMPs contribute to progressive renal injury, the increased levels of NO and MMPs observed in ethanol-treated rats might contribute to progressive renal damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Regina H Queiroz
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological, and Food Science Analysis, SP, Brazil
| | - Claudia M Padovan
- Faculty of Philosophy Science and Letters of Ribeirão Preto, Department of Psychology, University of São Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Tirapelli LF, Batalhão ME, Jacob-Ferreira AL, Tirapelli DP, Carnio EC, Tanus-Santos JE, Queiroz RH, Uyemura SA, Padovan CM, Tirapelli CR. Chronic ethanol consumption induces histopathological changes and increases nitric oxide generation in the rat liver. Tissue Cell 2011; 43:384-91. [PMID: 21930289 DOI: 10.1016/j.tice.2011.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
In the present work we evaluated the effect of ethanol consumption in histopathological liver changes and several biochemical biomarkers employed in the detection of hepatic dysfunction. Male Wistar rats were treated with ethanol 20% (vol/vol) for 6 weeks. Histopathological investigation of livers from ethanol-treated animals revealed steatosis. Indices of hepatic function (transaminases) and mitochondrial respiration were not altered in ethanol-treated rats. Chronic ethanol consumption did not alter malondialdehyde (MDA) levels in the liver. Ethanol consumption induced a significant increase on hepatic nitrite and nitrate levels. Treatment with ethanol increased both mRNA expression and immunostaining of iNOS, but not eNOS. Finally, ethanol consumption did not alter hepatic levels of metalloproteinase (MMP)-2 and MMP-9. We conclude that alterations on biochemical biomarkers (nitrite and nitrate levels) and histopathology occurred in ethanol-treated rats, supporting the practice of including both types of evaluation in toxicity studies to detect potential ethanol-related hepatic effects. In our model of ethanol consumption, histopathological liver changes were accompanied by elevation in nitrite and nitrate levels indicating increased nitric oxide (NO) generation. Since iNOS-derived NO contributes to hepatic injury, the increased levels of NO described in our study might contribute to a progressive hepatic damage. Therefore, increases in NO generation may be an early indicator of ethanol-induced liver damage.
Collapse
Affiliation(s)
- Luis F Tirapelli
- Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Toda N, Ayajiki K. Vascular actions of nitric oxide as affected by exposure to alcohol. Alcohol Alcohol 2010; 45:347-55. [PMID: 20522422 DOI: 10.1093/alcalc/agq028] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vasodilator substances liberated from endothelial cells, mainly nitric oxide (NO), play important roles in physiologically regulating blood flow and blood pressure and preventing pathological vascular damage. Impairment of these actions promotes the genesis of cardiovascular diseases such as hypertension, cerebral and cardiac hypoperfusion, impaired vasodilatation and atherosclerosis. Low concentrations of alcohol induce increased release of NO from the endothelium due to activation and expression of NO synthase (NOS). In contrast, administration of high concentrations of alcohol or its chronic ingestion impairs endothelial functions in association with reduced NO bioavailability. The endogenous NOS inhibitor asymmetric dimethylarginine may participate in decreased synthesis of NO. Chronic alcohol intake also impairs penile erectile function possibly by interfering with endothelial, but not nitrergic nerve, function. This review article summarizes the vascular actions of NO derived from endothelial and neuronal NOS as affected by alcohol, other than wine, and acetaldehyde in healthy individuals, human materials and various experimental animals.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka 541-0052, Japan.
| | | |
Collapse
|
5
|
Budec M, Koko V, Todorović V, Marković D, Postić M, Drndarević N, Spasić A, Mitrović O. Possible mechanism of acute effect of ethanol on intestinal IgA expression in rat. Int Immunopharmacol 2007; 7:858-63. [PMID: 17466919 DOI: 10.1016/j.intimp.2007.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 02/14/2007] [Accepted: 02/14/2007] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to investigate the possible mechanism of acute effect of ethanol on IgA expression in rat intestine. To this end, adult female Wistar rats showing diestrus day 1 were treated with (a) ethanol (2 or 4 g/kg, i.p.); (b) N omega-nitro-L-arginine-methyl ester (L-NAME), which inhibits the activity of all isoforms of nitric oxide synthase, (30 mg/kg, s.c.) followed by ethanol 3 h later; and (c) L-NAME (30 mg/kg, s.c.) followed by saline 3 h later. Saline-injected and untreated rats were used as controls. The animals were sacrificed 0.5 h after ethanol administration. Intestinal expression of IgA was evaluated by both immunohistochemistry and Western immunoblotting. Morphometric analysis showed that acute ethanol treatment increased the number of IgA-immunoreactive cells in a dose-dependent manner. Pretreatment with L-NAME abolished this action of alcohol. Injection of L-NAME followed by saline had no influence on the number of IgA+cells. The results, obtained by Western immunoblotting, paralleled our immunohistochemical findings. Taken together, these data suggest that acute effect of ethanol on intestinal IgA might be mediated by endogenous nitric oxide.
Collapse
Affiliation(s)
- Mirela Budec
- University of Belgrade, Institute for Medical Research, Belgrade, Serbia.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Giannone PJ, Schanbacher BL, Bauer JA, Reber KM. Effects of prenatal lipopolysaccharide exposure on epithelial development and function in newborn rat intestine. J Pediatr Gastroenterol Nutr 2006; 43:284-90. [PMID: 16954948 DOI: 10.1097/01.mpg.0000232572.56397.d6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Maternal infection during pregnancy is associated with several neonatal morbidities, including periventricular leukomalacia and lung maldevelopment and injury. OBJECTIVE To test the hypothesis that responses to prenatal maternal exposure to lipopolysaccharide (LPS) alter intestinal epithelial development and function in newborn rats. DESIGN/METHODS Timed-pregnancy female Sprague-Dawley rats were administered either 2 mg LPS or an equal volume of isotonic saline by intraperitoneal injection at E16 and allowed to deliver naturally. Pups were weighed and then killed at days of life (DOL) 0, 3, 7 and 14. Morphometric parameters were measured on standard hematoxylin and eosin-stained sections using ImagePro software. Immunohistochemistry was performed with antibody specific for inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine on distal ileal intestinal samples analyzed at each time point. Optical density was determined and quantified for site-specific regions of intestinal sections. On DOL 14, in vivo mucosal permeability was measured by feeding rats fluorescein isothiocyanate (FITC) via orogastric tube; and then serum FITC was measured. RESULTS There were no significant differences in pup weights. Mucosal thicknesses were significantly less in the distal ileum from pups born to LPS-exposed dams on DOL 0, 3 and 7 (P < 0.001). On DOL 0, iNOS protein concentrations in the prenatal LPS treatment group were significantly greater than iNOS protein concentrations in the distal villus (P < 0.001), proximal villus/crypts (P < 0.01), submucosa (P < 0.001) and muscularis (P < 0.01) in the distal small intestine of the control group. On DOL 3, 7 and 14, significant differences were observed in iNOS protein concentrations in the distal villus and submucosal regions between groups (P < 0.001). On DOL 0, 3, 7 and 14, 3-nitrotyrosine immunostaining was significantly elevated in the prenatal LPS-exposed pups in the distal villus on (P < 0.001) as well as in the submucosa on DOL 3 (P < 0.001). Serum FITC measurement was significantly greater in prenatal LPS exposure group at DOL 14 (P < 0.001). CONCLUSIONS Maternal exposure to LPS during pregnancy alters intestinal growth and regulation of iNOS in the newborn rat intestine.
Collapse
Affiliation(s)
- Peter J Giannone
- Section of Neonatology, Department of Pediatrics, Center for Cardiovascular Medicine, Columbus Children's Research Institute, Columbus, Ohio 43205, USA.
| | | | | | | |
Collapse
|