1
|
Vazquez DR, Munoz Forti K, Figueroa Rosado MM, Gutierrez Mirabal PI, Suarez-Martinez E, Castro-Rosario ME. Effect of CaS Nanostructures in the Proliferation of Human Breast Cancer and Benign Cells In Vitro. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:10494. [PMID: 37124318 PMCID: PMC10137321 DOI: 10.3390/app122010494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report on the effect of naked CaS nanostructures on the proliferation of carcinoma cancer cells and normal fibroblasts in vitro. The CaS nanostructures were prepared via the microwave-mediated decomposition of dimethyl sulfoxide (DMSO) in the presence of calcium acetate Ca ( CH 3 CO 2 ) 2 . Light scattering measurements revealed that dispersions contain CaS nanostructures in the size range of a few Å to about 1 nanometer, and are formed when DMSO is decomposed in the presence of Ca ( CH 3 CO 2 ) 2 . Theoretical calculations at the DFT/B3LYP/DGDZVP level of theory on ( C a S ) n clusters ( n = 1 , 2 , 3 , and 4) are consistent with clusters in this size range. The absorption spectra of the CaS nanostructures are dominated by strong bands in the UV, as well as weaker absorption bands in the visible. We found that a single dose of CaS nanoclusters smaller than 0.8 nm in diameter does not affect the survival and growth rate of normal fibroblasts and inhibits the proliferation rate of carcinoma cells in vitro. Larger CaS nanostructures, approximately (1.1 ± 0.2) nm in diameter, have a similar effect on carcinoma cell proliferation and survival rate. The CaS nanoclusters have little effect on the normal fibroblast cell cycle. Human carcinoma cells treated with CaS nanocluster dispersion exhibited a decreased ability to properly enter the cell cycle, marked by a decrease in cell concentration in the G0/G1 phase in the first 24 h and an increase in cells held in the SubG1 and G0/G1 phases up to 72 h post-treatment. Apoptosis and necrotic channels were found to play significant roles in the death of human carcinoma exposed to the CaS nanoclusters. In contrast, any effect on normal fibroblasts appeared to be short-lived and non-detrimental. The interaction of CaS with several functional groups was further investigated using theoretical calculations. CaS is predicted to interact with thiol ( R-SH ), hydroxide ( R - OH ), amino ( R - NH 2 ), carboxylic acid ( R - COOH ), ammonium ( R-NH 3 + ), and carboxylate ( R-COO - ) functional groups. None of these interactions are predicted to result in the dissociation of CaS. Thermodynamic considerations, on the other hand, are consistent with the dissociation of CaS into Ca 2 + ions and H 2 S in acidic media, both of which are known to cause apoptosis or cell death. Passive uptake and extracellular pH values of carcinoma cells are proposed to result in the observed selectivity of CaS to inhibit cancer cell proliferation with no significant effect on normal fibroblast cells. The results encourage further research with other cell lines in vitro as well as in vivo to translate this nanotechnology into clinical use.
Collapse
Affiliation(s)
- Daniel Rivera Vazquez
- School of Biological and Physical Sciences, Northwestern State University, Natchitoches, LA 71457, USA
- Department of Chemistry, The University of Puerto Rico at Mayaguez, Mayaguez 00680, Puerto Rico, USA
| | - Kevin Munoz Forti
- Department of Biology, The University of Puerto Rico at Ponce, Ponce 00716, Puerto Rico, USA
| | | | - Pura I. Gutierrez Mirabal
- Department of Chemistry, The University of Puerto Rico at Mayaguez, Mayaguez 00680, Puerto Rico, USA
| | - Edu Suarez-Martinez
- Department of Biology, The University of Puerto Rico at Ponce, Ponce 00716, Puerto Rico, USA
| | - Miguel E. Castro-Rosario
- Department of Chemistry, The University of Puerto Rico at Mayaguez, Mayaguez 00680, Puerto Rico, USA
- Correspondence:
| |
Collapse
|
2
|
Key Signaling Pathways Regulate the Development and Survival of Auditory Hair Cells. Neural Plast 2021; 2021:5522717. [PMID: 34194486 PMCID: PMC8214483 DOI: 10.1155/2021/5522717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
The loss of auditory sensory hair cells (HCs) is the most common cause of sensorineural hearing loss (SNHL). As the main sound transmission structure in the cochlea, it is necessary to maintain the normal shape and survival of HCs. In this review, we described and summarized the signaling pathways that regulate the development and survival of auditory HCs in SNHL. The role of the mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Notch/Wnt/Atoh1, calcium channels, and oxidative stress/reactive oxygen species (ROS) signaling pathways are the most relevant. The molecular interactions of these signaling pathways play an important role in the survival of HCs, which may provide a theoretical basis and possible therapeutic interventions for the treatment of hearing loss.
Collapse
|
3
|
Xu Z, Zeng X, Li M, Liao J, Chen Q. MicroRNA-383 promotes reactive oxygen species-induced autophagy via downregulating peroxiredoxin 3 in human glioma U87 cells. Exp Ther Med 2021; 21:439. [PMID: 33747176 PMCID: PMC7967820 DOI: 10.3892/etm.2021.9870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Peroxiredoxin 3 (PRDX3) is an abundant and effective enzyme, which aids in the removal of H2O2 in the mitochondria, thereby inhibiting cell autophagy. PRDX3 is a target protein of microRNA (miRNA/miR)-383, the overexpression of which has been found to inhibit the growth of glioma cells. We hypothesized that miR-383 serves an antitumor role by inhibiting oxidative stress during tumor growth. In the current study, human glioma U87 cells were transfected with pre-/short hairpin (sh)-PRDX3 vectors and miR-383 mimics/inhibitors. Apoptosis and reactive oxygen species (ROS) production were detected using flow cytometry. Autophagy was examined using acridine orange staining, and the expression of cytoplasmic autophagy-related proteins [autophagy-related protein 9 (ATG9), Ras-related protein Rab-1A (Rab1) and p62] was determined using western blot analysis. The interaction between miR-383 and PRDX3 was assessed using a dual-luciferase assay. The results indicated that both sh-PRDX3 and miR-383 mimics promoted apoptosis and increased the level of mitochondrial ROS, whilst acridine orange staining revealed that sh-PRDX3 promoted autophagy in U87 cells compared with that in the control cells. The detection of autophagic proteins indicated that sh-PRDX3 and miR-383 mimics increased the protein expression level of ATG9 and RAB1, and inhibited that of p62. On the contrary, the effect of miR-383 mimics was opposite to that of pre-PRDX3 in U87 cells. Reverse transcription-quantitative PCR and western blot assays revealed that miR-383 was negatively associated with PRDX3 in U87 cells. miR-383 was indicated to interact with PRDX3, as demonstrated using a dual-luciferase assay. In conclusion, the present study demonstrated that miR-383 induced cell apoptosis and mitochondrial ROS production by downregulating PRDX3 in U87 cells, thereby promoting oxidative stress-induced autophagy.
Collapse
Affiliation(s)
- Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xingruo Zeng
- Department of Nephrology and Rheumatology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
4
|
Yu N, Wang S, Wang P, Li Y, Li S, Wang L, Chen H, Wang Y. The calcium uniporter regulates the permeability transition pore in isolated cortical mitochondria. Neural Regen Res 2015; 7:109-13. [PMID: 25767484 PMCID: PMC4354124 DOI: 10.3969/j.issn.1673-5374.2012.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/20/2011] [Indexed: 01/28/2023] Open
Abstract
To investigate the influence of the mitochondrial calcium uniporter on the mitochondrial permeability transition pore, the present study observed mitochondrial morphology in cortical neurons isolated from adult rats using transmission electron microscopy, and confirmed the morphology and activity of isolated mitochondria by detecting succinic dehydrogenase and monoamine oxidase, two mitochondrial enzymes. Isolated mitochondria were treated with either ruthenium red, an inhibitor of the uniporter, spermine, an activator of the uniporter, or in combination with cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. Results showed that ruthenium red inhibited CaCl2-induced mitochondrial permeability transition pore opening, spermine enhanced opening, and cyclosporin A attenuated the effects of spermine. Results demonstrated that the mitochondrial calcium uniporter plays a role in regulating the mitochondrial permeability transition pore in mitochondria isolated from the rat brain cortex.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Shilei Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Peng Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Shuhong Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Li Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Hongbing Chen
- Cerebrovascular Disease Institute, Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| | - Yanting Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, Shandong Province, China
| |
Collapse
|
5
|
Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:791795. [PMID: 23766861 PMCID: PMC3674721 DOI: 10.1155/2013/791795] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/16/2013] [Indexed: 01/06/2023]
Abstract
Scope. To elucidate the morphological and biochemical in vitro effects exerted by caffeine, taurine, and guarana, alone or in combination, since they are major components in energy drinks (EDs). Methods and Results. On human neuronal SH-SY5Y cells, caffeine (0.125–2 mg/mL), taurine (1–16 mg/mL), and guarana (3.125–50 mg/mL) showed concentration-dependent nonenzymatic antioxidant potential, decreased the basal levels of free radical generation, and reduced both superoxide dismutase (SOD) and catalase (CAT) activities, especially when combined together. However, guarana-treated cells developed signs of neurite degeneration in the form of swellings at various segments in a beaded or pearl chain-like appearance and fragmentation of such neurites at concentrations ranging from 12.5 to 50 mg/mL. Swellings, but not neuritic fragmentation, were detected when cells were treated with 0.5 mg/mL (or higher doses) of caffeine, concentrations that are present in EDs. Cells treated with guarana also showed qualitative signs of apoptosis, including membrane blebbing, cell shrinkage, and cleaved caspase-3 positivity. Flow cytometric analysis confirmed that cells treated with 12.5–50 mg/mL of guarana and its combinations with caffeine and/or taurine underwent apoptosis. Conclusion. Excessive removal of intracellular reactive oxygen species, to nonphysiological levels (or “antioxidative stress”), could be a cause of in vitro toxicity induced by these drugs.
Collapse
|
6
|
Chen L, Feng XC, Lu F, Xu XL, Zhou GH, Li QY, Guo XY. Effects of camptothecin, etoposide and Ca2+ on caspase-3 activity and myofibrillar disruption of chicken during postmortem ageing. Meat Sci 2011; 87:165-74. [DOI: 10.1016/j.meatsci.2010.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/26/2010] [Accepted: 10/04/2010] [Indexed: 02/02/2023]
|
7
|
Redistribution of intracellular calcium and its effect on apoptosis in macrophages: Induction by oxidized LDL. Biomed Pharmacother 2009; 63:267-74. [DOI: 10.1016/j.biopha.2008.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 04/30/2008] [Indexed: 10/21/2022] Open
|
8
|
Abstract
Tumour necrosis factor-alpha (TNF alpha) is a multifunctional cytokine belonging to a family of ligands with an associated family of receptor proteins. The pleiotropic actions of TNF range from proliferative responses such as cell growth and differentiation, to inflammatory effects and the mediation of immune responses, to destructive cellular outcomes such as apoptotic and necrotic cell death mechanisms. Activated TNF receptors mediate the association of distinct adaptor proteins that regulate a variety of signalling processes including kinase or phosphatase activation, lipase stimulation, and protease induction. Moreover, the cytokine regulates the activities of transcription factors, heterotrimeric or monomeric G-proteins and calcium ion homeostasis in order to orchestrate its cellular functions. This review addresses the structural basis of TNF signalling, the pathways employed with their cellular consequences, and focuses on the specific role played by each of the two TNF receptor isotypes, TNFR1 and TNFR2.
Collapse
Affiliation(s)
- David J MacEwan
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
9
|
MacEwan DJ. TNF ligands and receptors--a matter of life and death. Br J Pharmacol 2002; 135:855-75. [PMID: 11861313 PMCID: PMC1573213 DOI: 10.1038/sj.bjp.0704549] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 12/06/2001] [Accepted: 12/07/2001] [Indexed: 12/24/2022] Open
Affiliation(s)
- David J MacEwan
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD.
| |
Collapse
|
10
|
Menon J, Wahrman MZ. Ultrastructural observations on effects of different concentrations of calcium and thyroxine in vitro on larval epidermal cells of Rana catesbeiana tadpoles. In Vitro Cell Dev Biol Anim 2001; 37:283-92. [PMID: 11513083 DOI: 10.1007/bf02577544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
During anuran metamorphosis dramatic changes in morphogenesis and differentiation of epidermis occur under the influence of thyroid hormones. Modification of ionic calcium concentration also markedly alters the pattern of proliferation and differentiation in amphibian epidermal cells in vitro. The present study was designed to determine the direct effect of low (0.05 mM) and high (0.5 mM) calcium (Ca2+) in the absence or presence of thyroxine (10(-7) M) on epidermal cells of the body and tail tissue in vitro. When tail fin and body skin explants were maintained in low (0.05 mM) calcium for 48 h, normal ultrastructural morphology and integrity of the cells was observed in both the tissue types. When tissues were exposed to high levels of calcium (0.5 mM) in culture medium, tail epidermis showed stratification, and skein cells exhibited apoptosis, both in the presence or absence of thyroid hormones. Under high calcium conditions, the body epidermis showed keratinization of apical cells, apoptosis of skein cells, and increased desmosome formation. These results suggest that (1) optimal Ca2+ concentration for larval epidermal cells is quite low (0.05 mM), (2) high Ca2+ leads to keratinization only in body epidermis, and (3) apoptosis occurred in skein cells of both the tissues at high Ca2+ concentrations (0.5 mM). The present study therefore suggests that the extracellular calcium concentration regulates the process of cell death and differentiation in Rana catesbeiana larval epidermis, and this effect may be similar to the effect of calcium on mammalian epidermal cells.
Collapse
Affiliation(s)
- J Menon
- Department of Biology, William Paterson University of New Jersey, Wayne 07470, USA.
| | | |
Collapse
|
11
|
Abstract
The results of in vitro toxicity experiments are not easily extrapolated to 'toxicological risk' for an intact organism. One of the most obvious differences between the situation in vitro and in vivo is the absence of the processes of absorption, distribution, metabolism and excretion that govern the exposure of the target tissues of the organism in vivo. The development of biokinetic models is aimed at estimating the relevant target tissue concentration of a compound. In our study, biokinetic models were constructed, where possible, solely on the basis of in vitro derived parameters for biotransformation as well as on partition coefficients determined or calculated from physicochemical structures. Another requirement is the existence of appropriate in vitro biological systems for the measurement of relevant effects. This requires a thorough knowledge of the possible mechanisms of toxic action, and of the physiology of the target organs. When these prerequisites are met (i.e. when the appropriate parameters can be quantified in a non-animal system), then an estimate of the dynamics in vitro can be made (e.g. as a critical active concentration). This will then result in a model describing a compound's dynamics. Eventually, the result of biokinetic and toxicodynamic models will need to be integrated in a compound's hazard and/or risk evaluation. A study carried out in the ECITTS programme showed promising results for the estimation of the acute and chronic systemic toxicity of a number of neurotoxic compounds.
Collapse
Affiliation(s)
- B J Blaauboer
- Institute for Risk Assessment Sciences, Division of Toxicology (RITOX) Utrecht University, PO Box 80.176, 3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
12
|
McFarlane SM, Anderson HM, Tucker SJ, Jupp OJ, MacEwan DJ. Unmodified calcium concentrations in tumour necrosis factor receptor subtype-mediated apoptotic cell death. Mol Cell Biochem 2000; 211:19-26. [PMID: 11055543 DOI: 10.1023/a:1007189911897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tumour necrosis factor-alpha (TNF) receptors mediate a variety of effects dependent on cell type. A role for Ca2+ in TNF-induced death remains uncertain. Here we investigated restricting intracellular/extracellular Ca2+ in HeLa epithelial carcinoma cells expressing low and high levels of p75TNFR receptor subtype and KYM-1 rhabdomyosarcoma cells, models of rapid TNF-induced apoptosis. Ca2+ -chelators EGTA and BAPTA-AM as well as microsomal Ca2+ -ATPase inhibitor thapsigargin, did not alter TNF-induced death. TNF was also unable to alter resting [Ca2+]i levels which remained < 200 nM even during times when these cells were undergoing apoptotic cell death. These findings indicate no role for modulated Ca2+ concentrations in TNF-induced apoptotic cell death.
Collapse
Affiliation(s)
- S M McFarlane
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, UK
| | | | | | | | | |
Collapse
|
13
|
Abstract
The effects of external Ca(++) on metamorphosis of Rana catesbeiana tadpoles were assessed. Treatment of tadpoles with Ca(++) (0.05 mM) during early prometamorphic stages induced precocious metamorphic events such as tail regression, shortening of the intestine, forelimb emergence, and keratinization of body epidermis within 23 days of treatment compared to control tadpoles still in mid-prometamorphic stages. These effects of Ca(++) are probably mediated by the thyroid gland, as indicated by histological features of the gland at the light and electron microscopic levels. Calcium levels of tail and body skin were measured at various stages of development by atomic absorption spectrophotometry. In control and experimental groups, body skin had significantly higher Ca(++) concentrations than tail skin. There were no statistically significant effects of developmental stage on Ca(++) levels of tail or body skin. Experimental Ca(++) treatment significantly increased Ca(++) concentration in tail but not body skin. Ultrastructure studies and gel electrophoresis indicated that calcium induced keratinization of body skin, but not tail epidermis. Ca(++)-treated tail epidermis showed various autolysing figures in apoptotic cells. In summary, calcium treatment accelerated metamorphosis and induced the following region-dependent cellular events: keratinization of body skin-a characteristic of adult epidermis-and programmed cell death in the tail. Whatever signal elicited by calcium in this experimentally induced accelerated metamorphosis is probably mediated via the thyroid gland.
Collapse
Affiliation(s)
- J Menon
- Department of Biology, William Paterson University of New Jersey, Wayne, NJ 07470, USA.
| | | | | |
Collapse
|
14
|
Pollock VP, Lofthouse EJ, Jupp OJ, Gauld SB, Anderson HM, MacEwan DJ. Selective down-regulation of the G(q)alpha/G11alpha G-protein family in tumour necrosis factor-alpha induced cell death. Mol Cell Biochem 2000; 206:67-74. [PMID: 10839196 DOI: 10.1023/a:1007066409645] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Investigations into the regulation of heterotrimeric GTP-binding protein alpha-subunits in models of tumour necrosis factor-alpha (TNF)-induced cell death, revealed the selective down-regulation of the G(q)alpha/G11alpha family of G-proteins. The human HeLa and murine L929 cells treated with recombinant human TNF for up to 24 h displayed down-regulated G(q)alpha/G11alpha family protein levels, but not G(s)alpha, G(i)alpha and G(o)alpha protein levels as determined by Western analyses. This effect of TNF was observed in a concentration--and time-dependent manner, consistent with the profiles of TNF-induced cell death observed. Moreover, the functioning of G(q)alpha/G11alpha family proteins were found to be impaired in TNF-treated cells, as measured by agonist-induced [Ca2+]i release. In contrast, G(s)alpha activity was unaltered by TNF-treatment, determined by measurement of agonist-induced intracellular cyclic AMP generation. These findings in TNF-induced cytotoxic models, indicate a novel 'cross-talk' mechanism by which TNF alters Ca2+-signalling mechanisms, which may contribute towards the apoptotic and necrotic cell death.
Collapse
Affiliation(s)
- V P Pollock
- Department of Biomedical Sciences, Foresterhill, University of Aberdeen, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
DeJongh J, Nordin-Andersson M, Ploeger BA, Forsby A. Estimation of systemic toxicity of acrylamide by integration of in vitro toxicity data with kinetic simulations. Toxicol Appl Pharmacol 1999; 158:261-8. [PMID: 10438659 DOI: 10.1006/taap.1999.8670] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurodegenerative properties of acrylamide were studied in vitro by exposure of differentiated SH-SY5Y human neuroblastoma cells for 72 h. The number of neurites per cell and the total cellular protein content were determined every 24 h throughout the exposure and the subsequent 96-h recovery period. Using kinetic data on the metabolism of acrylamide in rat, a biokinetic model was constructed in which the in vitro toxicity data were integrated. Using this model, we estimated the acute and subchronic toxicity of acrylamide for the rat in vivo. These estimations were compared to experimentally derived lowest observed effect doses (LOEDs) for daily intraperitoneal exposure (1, 10, 30, and 90 days) to acrylamide. The estimated LOEDs differed maximally twofold from the experimental LOEDs, and the nonlinear response to acrylamide exposure over time was simulated correctly. It is concluded that the integration of the present in vitro toxicity data with kinetic data gives adequate estimates of acute and subchronic neurotoxicity resulting from acrylamide exposure.
Collapse
Affiliation(s)
- J DeJongh
- Research Institute of Toxicology, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
16
|
Abstract
Viruses can induce apoptosis of infected cells either directly, to assist virus dissemination, or by inadvertently triggering cellular sensors that initiate cell death. Cellular checkpoints that can function as 'alarm bells' to transmit pro-apoptotic signals in response to virus infections include death receptors, protein kinase R, mitochondrial membrane potential, p53 and the endoplasmic reticulum.
Collapse
Affiliation(s)
- H Everett
- Dept of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
17
|
|