1
|
Johnson SM, Johnson SM, Watters JJ, Baker TL. Endomorphin-2 (Endo2) and substance P (SubP) co-application attenuates SubP-induced excitation and alters frequency plasticity in neonatal rat in vitro preparations. Respir Physiol Neurobiol 2025; 331:104351. [PMID: 39303801 PMCID: PMC11614698 DOI: 10.1016/j.resp.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Substance P (SubP) and endomorphin-2 (Endo2) are co-localized presynaptically in vesicles of neurons adjacent to inspiratory rhythm-generating pre-Botzinger Complex (preBotC) neurons but the effects of co-released SubP and Endo2 on respiratory motor control are not known. To address this question, SubP alone or a combination of SubP and Endo2 (SubP/Endo2) were bath-applied in a sustained (15-min) or intermittent (5-min application, 5-min washout, x3) pattern at 10-100 nM to neonatal rat brainstem-spinal cord preparations. During neuropeptide application, SubP/Endo2 co-applications generally attenuated SubP-induced increases in burst frequency and decreases in burst amplitude. With respect to frequency plasticity (long-lasting increase in burst frequency 60 min post-neuropeptide application), SubP-induced frequency plasticity was increased with sustained SubP/Endo2 co-applications at 20 and 100 nM. Intermittent SubP/Endo2 co-applications tended to decrease the level of frequency plasticity induced by intermittent SubP alone applications. SubP/Endo2 co-applications revealed potentially new functions for neurokinin-1 (NK1R) and mu-opioid (MOR) receptors on respiratory rhythm-generating medullary neurons.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.
| | - Sarah M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Johnson SM, Gumnit MG, Johnson SM, Baker TL, Watters JJ. Disinhibition does not play a role in endomorphin-2-induced changes in inspiratory motoneuron output produced by in vitro neonatal rat preparations. Respir Physiol Neurobiol 2024; 320:104186. [PMID: 37944625 PMCID: PMC10843717 DOI: 10.1016/j.resp.2023.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Low level activation of mu-opioid receptors (MORs) in neonatal rat brainstem-spinal cord preparations increases inspiratory burst amplitude recorded on cervical spinal roots. We tested whether: (1) MOR activation with an endogenous ligand, such as endomorphin-2, increases inspiratory burst amplitude, (2) disinhibition of GABAergic or glycinergic inhibitory synaptic transmission is involved, and (3) inflammation alters endomorphin-2 effects. Using neonatal rat (P0-P3) brainstem-spinal cord preparations, bath-applied endomorphin-2 (10-200 nM) increased inspiratory burst amplitude and decreased burst frequency. Blockade of GABAA receptors (picrotoxin), glycine receptors (strychnine), or both (picrotoxin and strychnine) did not abolish endomorphin-2-induced effects. In preparations isolated from neonatal rats injected 3 h previously with lipopolysaccharide (LPS, 0.1 mg/kg), endomorphin-2 continued to decrease burst frequency but abolished the burst amplitude increase. Collectively, these data indicate that disinhibition of inhibitory synaptic transmission is unlikely to play a role in endomorphin-2-induced changes in inspiratory motor output, and that different mechanisms underlie the endomorphin-2-induced increases in inspiratory burst amplitude and decreases in burst frequency.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Maia G Gumnit
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Maletz SN, Reid BT, Varga AG, Levitt ES. Nucleus Tractus Solitarius Neurons Activated by Hypercapnia and Hypoxia Lack Mu Opioid Receptor Expression. Front Mol Neurosci 2022; 15:932189. [PMID: 35898697 PMCID: PMC9309891 DOI: 10.3389/fnmol.2022.932189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Impaired chemoreflex responses are a central feature of opioid-induced respiratory depression, however, the mechanism through which mu opioid receptor agonists lead to diminished chemoreflexes is not fully understood. One brainstem structure involved in opioid-induced impairment of chemoreflexes is the nucleus of the solitary tract (NTS), which contains a population of neurons that express mu opioid receptors. Here, we tested whether caudal NTS neurons activated during the chemoreflex challenge express mu opioid receptors and overlap with neurons activated by opioids. Using genetic labeling of mu opioid receptor-expressing neurons and cFos immunohistochemistry as a proxy for neuronal activation, we examined the distribution of activated NTS neurons following hypercapnia, hypoxia, and morphine administration. The main finding was that hypoxia and hypercapnia primarily activated NTS neurons that did not express mu opioid receptors. Furthermore, concurrent administration of morphine with hypercapnia induced cFos expression in non-overlapping populations of neurons. Together these results suggest an indirect effect of opioids within the NTS, which could be mediated through mu opioid receptors on afferents and/or inhibitory interneurons.
Collapse
Affiliation(s)
- Sebastian N. Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Brandon T. Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Adrienn G. Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States
| | - Erica S. Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, United States
- *Correspondence: Erica S. Levitt ; orcid.org/0000-0002-3634-6594
| |
Collapse
|
4
|
Lu YC, Yin JB, Bai Y, Li X, Zhang T, Yang J, Yi XN, Zhang MM, Li YQ. Morphological Features of Endomorphin-2-immunoreactive Ultrastructures in the Dorsal Root Ganglion and Spinal Dorsal Horn of the Rat. J Chem Neuroanat 2022; 125:102142. [DOI: 10.1016/j.jchemneu.2022.102142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/24/2023]
|
5
|
Gillis RA, Dezfuli G, Bellusci L, Vicini S, Sahibzada N. Brainstem Neuronal Circuitries Controlling Gastric Tonic and Phasic Contractions: A Review. Cell Mol Neurobiol 2022; 42:333-360. [PMID: 33813668 PMCID: PMC9595174 DOI: 10.1007/s10571-021-01084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
This review is on how current knowledge of brainstem control of gastric mechanical function unfolded over nearly four decades from the perspective of our research group. It describes data from a multitude of different types of studies involving retrograde neuronal tracing, microinjection of drugs, whole-cell recordings from rodent brain slices, receptive relaxation reflex, accommodation reflex, c-Fos experiments, immunohistochemical methods, electron microscopy, transgenic mice, optogenetics, and GABAergic signaling. Data obtained indicate the following: (1) nucleus tractus solitarius (NTS)-dorsal motor nucleus of the vagus (DMV) noradrenergic connection is required for reflex control of the fundus; (2) second-order nitrergic neurons in the NTS are also required for reflex control of the fundus; (3) a NTS GABAergic connection is required for reflex control of the antrum; (4) a single DMV efferent pathway is involved in brainstem control of gastric mechanical function under most experimental conditions excluding the accommodation reflex. Dual-vagal effectors controlling cholinergic and non-adrenergic and non-cholinergic (NANC) input to the stomach may be part of the circuitry of this reflex. (5) GABAergic signaling within the NTS via Sst-GABA interneurons determine the basal (resting) state of gastric tone and phasic contractions. (6) For the vagal-vagal reflex to become operational, an endogenous opioid in the NTS is released and the activity of Sst-GABA interneurons is suppressed. From the data, we suggest that the CNS has the capacity to provide region-specific control over the proximal (fundus) and distal (antrum) stomach through engaging phenotypically different efferent inputs to the DMV.
Collapse
Affiliation(s)
- Richard A Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Lorenza Bellusci
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA.
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| |
Collapse
|
6
|
Almeida RL, Ogihara CA, de Souza JS, Oliveira KC, Cafarchio EM, Tescaro L, Maciel RMB, Giannocco G, Sato MA. Regularly swimming exercise modifies opioidergic neuromodulation in rostral ventrolateral medulla in hypertensive rats. Brain Res 2022; 1774:147726. [PMID: 34785257 DOI: 10.1016/j.brainres.2021.147726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 11/02/2022]
Abstract
Moderate exercise reduces arterial pressure (AP) and heart rate (HR) in spontaneously hypertensive rats (SHR) and changes neurotransmission in medullary areas involved in cardiovascular regulation. We investigated if regularly swimming exercise (SW) affects the cardiovascular adjustments mediated by opioidergic neuromodulation in the RVLM in SHR and Wistar-Kyoto (WKY) rats. Rats were submitted to 6 wks of SW. The day after the last exercise bout, α-chloralose-anesthetized rats underwent a cannulation of the femoral artery for AP and HR recordings, and Doppler flow probes were placed around the lower abdominal aorta and superior mesenteric artery. Bilateral injection of endomorphin-2 (EM-2, 0.4 mmol/L, 60 nL) into the RVLM increased MAP in SW-SHR (20 ± 4 mmHg, N = 6), which was lower than in sedentary (SED)-SHR (35 ± 4 mmHg, N = 6). The increase in MAP in SW-SHR induced by EM-2 into the RVLM was similar in SED- and SW-WKY. Naloxone (0.5 mmol/L, 60 nL) injected into the RVLM evoked an enhanced hypotension in SW-SHR (-66 ± 8 mmHg, N = 6) compared to SED-SHR (-25 ± 3 mmHg, N = 6), which was similar in SED- and SW-WKY. No significant changes were observed in HR after EM-2 or naloxone injections into the RVLM. Changes in hindquarter and mesenteric conductances evoked by EM-2 or naloxone injections into the RVLM in SW- or SED-SHR were not different. Mu Opioid Receptor expression by Western blotting was reduced in SW-SHR than in SED-SHR and SW-WKY. Therefore, regularly SW alters the opioidergic neuromodulation in the RVLM in SHR and modifies the mu opioid receptor expression in this medullary area.
Collapse
Affiliation(s)
- Roberto L Almeida
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo Andre, SP, Brazil
| | - Cristiana A Ogihara
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo Andre, SP, Brazil
| | | | - Kelen C Oliveira
- Dept. Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Eduardo M Cafarchio
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo Andre, SP, Brazil.
| | - Larissa Tescaro
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo Andre, SP, Brazil
| | - Rui M B Maciel
- Dept. Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gisele Giannocco
- Dept. Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Monica A Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo Andre, SP, Brazil
| |
Collapse
|
7
|
Sex differences in the rodent hippocampal opioid system following stress and oxycodone associated learning processes. Pharmacol Biochem Behav 2022; 212:173294. [PMID: 34752798 PMCID: PMC8748406 DOI: 10.1016/j.pbb.2021.173294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Over the past two decades, opioid abuse has risen especially among women. In both sexes hippocampal neural circuits involved in associative memory formation and encoding of motivational incentives are critically important in the transition from initial drug use to drug abuse/dependence. Opioid circuits, particularly the mossy fiber pathway, are crucial for associative memory processes important for addiction. Our anatomical studies, especially those utilizing electron microscopic immunocytochemistry, have provided unique insight into sex differences in the distribution of opioid peptides and receptors in specific hippocampal circuits and how these distributions are altered following stress and oxycodone-associative learning processes. Here we review the hippocampal opioid system in rodents with respect to ovarian hormones effects and baseline sex differences then sex differences following acute and chronic stress. Next, we review sex differences in the hippocampal opioid system in unstressed and chronically stressed rats following oxycodone conditioned place preference. We show that opioid peptides and receptors are distributed within hippocampal circuits in females with elevated estrogen states in a manner that would enhance sensitivity to endogenous and exogenous opioids. Moreover, chronic stress primes the opioid system in females in a manner that would promote opioid-associative learning processes. In contrast, chronic stress has limited effects on the opioid system in males and reduces its capacity to support opioid-mediated learning processes. Interestingly, acute stress appears to prime males for opioid associative learning. On a broader scale the findings highlighted in this review have important implications in understanding sex differences in opioid drug use and abuse.
Collapse
|
8
|
Addiction and the cerebellum with a focus on actions of opioid receptors. Neurosci Biobehav Rev 2021; 131:229-247. [PMID: 34555385 DOI: 10.1016/j.neubiorev.2021.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 01/19/2023]
Abstract
Increasing evidence suggests that the cerebellum could play a role in the higher cognitive processes involved in addiction as the cerebellum contains anatomical and functional pathways to circuitry controlling motivation and saliency. In addition, the cerebellum exhibits a widespread presence of receptors, including opioid receptors which are known to play a prominent role in synaptic and circuit mechanisms of plasticity associated with drug use and development of addiction to opioids and other drugs of abuse. Further, the presence of perineural nets (PNNs) in the cerebellum which contain proteins known to alter synaptic plasticity could contribute to addiction. The role the cerebellum plays in processes of addiction is likely complex, and could depend on the particular drug of abuse, the pattern of use, and the stage of the user within the addiction cycle. In this review, we discuss functional and structural modifications shown to be produced in the cerebellum by opioids that exhibit dependency-inducing properties which provide support for the conclusion that the cerebellum plays a role in addiction.
Collapse
|
9
|
Regular physical activity reduces the percentage of spinally projecting neurons that express mu-opioid receptors from the rostral ventromedial medulla in mice. Pain Rep 2020; 5:e857. [PMID: 33294758 PMCID: PMC7717783 DOI: 10.1097/pr9.0000000000000857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction Regular physical activity/exercise is an effective nonpharmacological treatment for individuals with chronic pain. Central inhibitory mechanisms, involving serotonin and opioids, are critical to analgesia produced by regular physical activity. The rostral ventromedial medulla (RVM) sends projections to the spinal cord to inhibit or facilitate nociceptive neurons and plays a key role in exercise-induced analgesia. Objective The goal of these studies was to examine if regular physical activity modifies RVM-spinal cord circuitry. Methods Male and female mice received Fluoro-Gold placed on the spinal cord to identify spinally projecting neurons from the RVM and the nucleus raphe obscurus/nucleus raphe pallidus, dermorphin-488 into caudal medulla to identify mu-opioid receptors, and were immunohistochemically stained for either phosphorylated-N-methyl-d-aspartate subunit NR1 (p-NR1) to identify excitatory neurons or tryptophan hydroxylase (TPH) to identify serotonin neurons. The percentage of dermorphin-488-positive cells that stained for p-NR1 (or TPH), and the percentage of dermorphin-488-positive cells that stained for p-NR1 (or TPH) and Fluoro-Gold was calculated. Physically active animals were provided running wheels in their cages for 8 weeks and compared to sedentary animals without running wheels. Animals with chronic muscle pain, induced by 2 intramuscular injections of pH 4.0, were compared to sham controls (pH 7.2). Results Physically active animals had less mu-opioid-expressing neurons projecting to the spinal cord when compared to sedentary animals in the RVM, but not the nucleus raphe obscurus/nucleus raphe pallidus. No changes were observed for TPH. Conclusions These data suggest that regular exercise alters central facilitation so that there is less descending facilitation to result in a net increase in inhibition.
Collapse
|
10
|
Ganesh CB. Influence of endomorphins along the pituitary-ovary axis in the Mozambique Tilapia Oreochromis mossambicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:429-438. [PMID: 31776826 DOI: 10.1007/s10695-019-00731-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Endomorphins (EM-1 and EM-2) are the tetrapeptides involved in pain and neuroendocrine responses with a high affinity for μ-opioid receptors in vertebrates. However, their role in fish reproduction is not clear. The aim of this study was to investigate the influence of EM-1 and EM-2 on the pituitary-ovary axis in the Mozambique tilapia Oreochromis mossambicus. The experimental set-up consisted of four groups, namely, initial controls, controls, EM-1- and EM-2-treated groups (n = 10 in each group consisting of two replicates). Although the number of stage IV (vitellogenic) follicles was significantly lower (P < 0.05) in controls compared to initial controls, the stage V (preovulatory) follicles were present in controls in contrast to their absence in initial controls. Treatment of 40 μg EM-1/0.1 ml saline/fish/day for 22 days resulted in significant increase (P < 0.05) in the number of stage I follicles compared to controls. While similar treatment of EM-2 did not significantly alter the number of stage I follicles compared to controls, the number of stage II follicles was significantly lower (P < 0.05) in this group compared to those of controls and EM-1 treated fish. The number of stage III and IV follicles did not significantly differ among controls, EM-1- and EM-2-treated groups. However, a significant reduction (P < 0.05) in the mean number of stage V follicles was observed in EM-1- and EM-2-treated fish compared to controls. These changes were concomitant with significant reduction (P < 0.05) in the intensity and the percent area of immunoreactivity of luteinizing hormone (LH) secreting cells in the proximal pars distalis (PPD) of the pituitary gland and significantly higher (P < 0.05) percent occurrence of follicular atresia in EM-1- and EM-2-treated fish compared to those of controls. Taken together, these results suggest an inhibitory effect for endomorphins along the pituitary-ovary axis, for the first time in fish.
Collapse
Affiliation(s)
- C B Ganesh
- Neuroendocrinology Research Lab, Department of Studies in Zoology, Karnatak University, Dharwad, 580003, India.
| |
Collapse
|
11
|
Estrogens synthesized and acting within a spinal oligomer suppress spinal endomorphin 2 antinociception: ebb and flow over the rat reproductive cycle. Pain 2018; 158:1903-1914. [PMID: 28902684 DOI: 10.1097/j.pain.0000000000000991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The magnitude of antinociception elicited by intrathecal endomorphin 2 (EM2), an endogenous mu-opioid receptor (MOR) ligand, varies across the rat estrous cycle. We now report that phasic changes in analgesic responsiveness to spinal EM2 result from plastic interactions within a novel membrane-bound oligomer containing estrogen receptors (mERs), aromatase (aka estrogen synthase), metabotropic glutamate receptor 1 (mGluR1), and MOR. During diestrus, spinal mERs, activated by locally synthesized estrogens, act with mGluR1 to suppress spinal EM2/MOR antinociception. The emergence of robust spinal EM2 antinociception during proestrus results from the loss of mER-mGluR1 suppression, a consequence of altered interactions within the oligomer. The chemical pairing of aromatase with mERs within the oligomer containing MOR and mGluR1 allows estrogens to function as intracellular messengers whose synthesis and actions are confined to the same signaling oligomer. This form of estrogenic signaling, which we term "oligocrine," enables discrete, highly compartmentalized estrogen/mER-mGluR1 signaling to regulate MOR-mediated antinociception induced by EM2. Finally, spinal neurons were observed not only to coexpress MOR, mERα, aromatase, and mGluR1 but also be apposed by EM2 varicosities. This suggests that modulation of spinal analgesic responsiveness to exogenous EM2 likely reflects changes in its endogenous analgesic activity. Analogous suppression of spinal EM2 antinociception in women (eg, around menses, comparable with diestrus in rats) as well as the (pathological) inability to transition out of that suppressed state at other menstrual cycle stages could underlie, at least in part, the much greater prevalence and severity of chronic pain in women than men.
Collapse
|
12
|
De Oliveira LB, Andrade CA, De Luca LA, Colombari DS, Menani JV. Opioid and α2 adrenergic mechanisms are activated by GABA agonists in the lateral parabrachial nucleus to induce sodium intake. Brain Res Bull 2018; 139:174-181. [DOI: 10.1016/j.brainresbull.2018.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/24/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
|
13
|
Regular physical activity prevents development of chronic muscle pain through modulation of supraspinal opioid and serotonergic mechanisms. Pain Rep 2017; 2:e618. [PMID: 29392233 PMCID: PMC5777681 DOI: 10.1097/pr9.0000000000000618] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/26/2022] Open
Abstract
The current study shows that blockade of opioid receptors systemically in the periaqueductal gray and the rostral ventromedial medulla prevents analgesia by 8 weeks of wheel running in a chronic muscle pain model. We further show increases in serotonin transporter expression and reversal of hyperalgesia with a selective reuptake inhibitor in the rostral ventromedial medulla in the chronic muscle pain model, and exercise normalizes serotonin transporter expression. Introduction: It is generally believed that exercise produces its effects by activating central opioid receptors; there are little data that support this claim. The periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) are key nuclei in opioid-induced analgesia, and opioids interact with serotonin to produce analgesia. Objectives: The purpose was to examine central inhibitory mechanisms involved in analgesia produced by wheel running. Methods: C57/Black6 mice were given access to running wheels in their home cages before induction of chronic muscle hyperalgesia and compared with those without running wheels. Systemic, intra-PAG, and intra-RVM naloxone tested the role of central opioid receptors in the antinociceptive effects of wheel running in animals with muscle insult. Immunohistochemistry for the serotonin transporter (SERT) in the spinal cord and RVM, and pharmacological blockade of SERT, tested whether the serotonin system was modulated by muscle insult and wheel running. Results: Wheel running prevented the development of muscle hyperalgesia. Systemic naloxone, intra-PAG naloxone, and intra-RVM naloxone reversed the antinociceptive effect of wheel running in animals that had received muscle insult. Induction of chronic muscle hyperalgesia increased SERT in the RVM, and blockade of SERT reversed the hyperalgesia in sedentary animals. Wheel running reduced SERT expression in animals with muscle insult. The serotonin transporter in the superficial dorsal horn of the spinal cord was unchanged after muscle insult, but increased after wheel running. Conclusion: These data support the hypothesis that wheel running produced analgesia through central inhibitory mechanisms involving opioidergic and serotonergic systems.
Collapse
|
14
|
Wu ZY, Lu YC, Feng B, Chen YB, Bai Y, Zhang T, Zhang H, Chen T, Dong YL, Li H, Li YQ. Endomorphin-2 Decreases Excitatory Synaptic Transmission in the Spinal Ventral Horn of the Rat. Front Neural Circuits 2017; 11:55. [PMID: 28848403 PMCID: PMC5550698 DOI: 10.3389/fncir.2017.00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/26/2017] [Indexed: 01/20/2023] Open
Abstract
Motor impairment is one of the serious side-effects of morphine, which is an exogenous agonist of the μ-opioid receptor (MOR) as well as a widely used analgesic drug in clinical practice for chronic pain treatment. Endomorphins (EMs, including EM-1 and EM-2), the most effective and specific endogenous agonists of the MOR, exert more potent analgesia in acute and neuropathic pain than other opiates, such as morphine. Although EMs had fewer side-effects comparing to other opiates, motor impairment was still one unwanted reaction which limited its clinical application. In order to prevent and treat the motor impairment, it is critical to reveal the neural mechanisms underlying such locomotion disorder. The purpose of the present study was to reveal the neural mechanisms underlying the effects of EM-2 on the activity of motoneurons in the spinal ventral horn. First, we examine the distribution of EM-2-immunoreactive (IR) primary afferent fibers and their synaptic connections with the motoneurons innervating the skeletal muscles of the lower limb revealed by sciatic nerve retrograde tracing. The results showed that EM-2-IR fibers and terminals were sparsely observed in lamina IX and they formed symmetric synaptic connections with the motoneurons within lamina IX of the spinal ventral horn. Then, whole-cell patch-clamp technique was used to observe the effects of EM-2 on the spontaneous excitatory postsynaptic current (sEPSC) of motoneurons in lamina IX. The results showed that EM-2 could decrease both the frequency and amplitude of the sEPSC of the motoneurons in lamina IX, which was reversed by the MOR antagonist CTOP. These results indicate that EM-2-IR fibers originated from primary afferent fibers form symmetric synaptic connections with motoneurons innervating skeletal muscles of the lower limbs in lamina IX of the spinal ventral horn and EM-2 might exert inhibitory effects on the activities of these motoneurons through both presynaptic and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Zhen-Yu Wu
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ban Feng
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ying-Biao Chen
- Department of Anatomy, Fujian Health CollegeMinhou, China
| | - Yang Bai
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Ting Zhang
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Hua Zhang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Tao Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Yu-Ling Dong
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Hui Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China.,Collaborative Innovation Center for Brain Science, Fudan UniversityShanghai, China
| |
Collapse
|
15
|
Matus-Ortega ME, Leff Gelman P, Calva-Nieves JC, Flores-Zamora A, Salazar-Juárez A, Torner-Aguilar CA, Gamba G, De Los Heros P, Peng B, Pintar JE, Gompf HS, Allen CN, Antón-Palma B. Mexneurin is a novel precursor of peptides in the central nervous system of rodents. FEBS Lett 2017; 591:1627-1636. [PMID: 28504339 DOI: 10.1002/1873-3468.12679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/29/2022]
Abstract
Endomorphins (EMs) have been proposed as the endogenous ligand agonists of the μ-opioid receptor; however, no propeptide precursor protein for EMs has been identified. Here, to identify the presumed precursor of EMs, we designed an immunoscreening assay using specific affinity-purified rabbit antisera raised against synthetic EMs in a whole-mouse brain cDNA library. Following this approach, we identify a DNA sequence encoding a protein precursor, which we name proMexneurin, that contains three different peptide sequences: Mexneurin-1 (an EM-like peptide), Mexneurin-2, and Mexneurin-3, a peptide which appears to be unrelated to EMs. RT-PCR analysis and in situ hybridization reveal a widespread distribution of proMexneurin mRNA throughout the mouse brain. Both Mexneurin-1 and Mexneurin-3 peptides display biological activities in the mouse CNS.
Collapse
Affiliation(s)
- Maura E Matus-Ortega
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | | | - Juan C Calva-Nieves
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Anabel Flores-Zamora
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | | | | | - Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Paola De Los Heros
- Dirección de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Bonnie Peng
- Department of Neuroscience and Cell Biology, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - John E Pintar
- Department of Neuroscience and Cell Biology, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Heinrich S Gompf
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Benito Antón-Palma
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| |
Collapse
|
16
|
Ganesh CB. Distribution of endomorphin-like-immunoreactive neurones in the brain of the cichlid fish Oreochromis mossambicus. J Neuroendocrinol 2017; 29. [PMID: 28178768 DOI: 10.1111/jne.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 12/01/2022]
Abstract
Endomorphins (EMs) are tetrapeptides involved in pain and neuroendocrine responses with a high affinity for μ-opioid receptors in mammals. In the present study, we investigated the distribution of EM-like-immunoreactive (EM-L-IR) neurones in the brain of the cichlid fish Oreochromis mossambicus. Application of antisera against EM-1 and 2 (EM-1-2) revealed the presence of EM-L-IR somata and fibres throughout the different subdivisions of the olfactory bulb, such as the olfactory nerve layer and the granule cell layer. Although the extensions of EM-L-IR fibres were seen along the medial olfactory tract, intensely labelled EM-L-IR somata were found in different subdivisions of the telencephalon. In the diencephalon, intensely stained EM-L-IR neurones were noted in the preoptic area, the nucleus preopticus pars magnocellularis, the suprachiasmatic nucleus, the nucleus lateralis tuberis pars lateralis and the nucleus lateralis tuberis pars medialis regions, whereas projections of EM-L-IR fibres were also seen along the hypothalamic-hypophyseal tract, suggesting a possible hypophysiotrophic role for these neurones. Intense to moderately stained EM-L-IR neurones were noted in different subdivisions of thalamic nucleus, such as the dorsal posterior thalamic nucleus, commissura posterior, ventromedial thalamic nucleus, nucleus posterior tuberis, ventrolateral thalamic nucleus and medial preglomerular nucleus. Numerous intensely stained perikarya and axonal fibres were also noted throughout the inferior lobe, along the periventricular margin of the reccessus lateralis and in the nucleus recesus lateralis regions. In addition, numerous moderately labelled EM-like neuronal populations were found in the secondary gustatory nucleus and rostral spinal cord. The widespread distribution of EM-L-IR neurones throughout the brain and spinal cord indicates the diverse roles for these cells in neuroendocrine and neuromodulatory responses for the first time in fish. The present study provides further insights into the possible existence of EM-like peptides in early vertebrate lines and suggests that these peptides might have been well-conserved during the course of evolution.
Collapse
Affiliation(s)
- C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, India
| |
Collapse
|
17
|
Kou ZZ, Wan FP, Bai Y, Li CY, Hu JC, Zhang GT, Zhang T, Chen T, Wang YY, Li H, Li YQ. Decreased Endomorphin-2 and μ-Opioid Receptor in the Spinal Cord Are Associated with Painful Diabetic Neuropathy. Front Mol Neurosci 2016; 9:80. [PMID: 27656127 PMCID: PMC5013037 DOI: 10.3389/fnmol.2016.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 12/17/2022] Open
Abstract
Painful diabetic neuropathy (PDN) is one of the most common complications in the early stage of diabetes mellitus (DM). Endomorphin-2 (EM2) selectively activates the μ-opioid receptor (MOR) and subsequently induces antinociceptive effects in the spinal dorsal horn. However, the effects of EM2-MOR in PDN have not yet been clarified in the spinal dorsal horn. Therefore, we aimed to explore the role of EM2-MOR in the pathogenesis of PDN. The main findings were the following: (1) streptozotocin (STZ)-induced diabetic rats exhibited hyperglycemia, body weight loss and mechanical allodynia; (2) in the spinal dorsal horn, the expression levels of EM2 and MOR decreased in diabetic rats; (3) EM2 protein concentrations decreased in the brain, lumbar spinal cord and cerebrospinal fluid (CSF) in diabetic rats but were unchanged in the plasma; (4) the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) was significantly higher in diabetic rats than in control rats; and (5) intrathecal injection of EM2 for 14 days in the early stage of PDN partially alleviated mechanical allodynia and reduced MOR expression in diabetic rats. Our results demonstrate that the EM2-MOR signal may be involved in the early stage of PDN.
Collapse
Affiliation(s)
- Zhen-Zhen Kou
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Fa-Ping Wan
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yang Bai
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Chun-Yu Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jia-Chen Hu
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Guo-Tao Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Tao Chen
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Ya-Yun Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Hui Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi'an, China; Collaborative Innovation Center for Brain Science, Fudan UniversityShanghai, China
| |
Collapse
|
18
|
Saidi M, Beaudry F. Liquid chromatography-electrospray linear ion trap mass spectrometry analysis of targeted neuropeptides in Tac1(-/-) mouse spinal cords reveals significant lower concentration of opioid peptides. Neuropeptides 2015; 52:79-87. [PMID: 26072188 DOI: 10.1016/j.npep.2015.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/26/2022]
Abstract
Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1(-/-) spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop an HPLC-MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1(-/-) mouse endogenous opioid system is hampered and therefore affects significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1(-/-) spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p<0.0001). No significant concentration differences were observed in mouse Tac1(-/-) spinal cords for Met-Enk and CGRP. The analysis of Tac1(-/-) mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.
Collapse
Affiliation(s)
- Mouna Saidi
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
19
|
Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci Biobehav Rev 2015; 54:3-17. [DOI: 10.1016/j.neubiorev.2014.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
20
|
Chen YB, Huang FS, Fen B, Yin JB, Wang W, Li YQ. Inhibitory effects of endomorphin-2 on excitatory synaptic transmission and the neuronal excitability of sacral parasympathetic preganglionic neurons in young rats. Front Cell Neurosci 2015; 9:206. [PMID: 26074773 PMCID: PMC4446531 DOI: 10.3389/fncel.2015.00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 01/23/2023] Open
Abstract
The function of the urinary bladder is partly controlled by parasympathetic preganglionic neurons (PPNs) of the sacral parasympathetic nucleus (SPN). Our recent work demonstrated that endomorphin-2 (EM-2)-immunoreactive (IR) terminals form synapses with μ-opioid receptor (MOR)-expressing PPNs in the rat SPN. Here, we examined the effects of EM-2 on excitatory synaptic transmission and the neuronal excitability of the PPNs in young rats (24–30 days old) using a whole-cell patch-clamp approach. PPNs were identified by retrograde labeling with the fluorescent tracer tetramethylrhodamine-dextran (TMR). EM-2 (3 μM) markedly decreased both the amplitude and the frequency of the spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) of PPNs. EM-2 not only decreased the resting membrane potentials (RMPs) in 61.1% of the examined PPNs with half-maximal response at the concentration of 0.282 μM, but also increased the rheobase current and reduced the repetitive action potential firing of PPNs. Analysis of the current–voltage relationship revealed that the EM-2-induced current was reversed at −95 ± 2.5 mV and was suppressed by perfusion of the potassium channel blockers 4-aminopyridine (4-AP) or BaCl2 or by the addition of guanosine 5′-[β-thio]diphosphate trilithium salt (GDP-β-S) to the pipette solution, suggesting the involvement of the G-protein-coupled inwardly rectifying potassium (GIRK) channel. The above EM-2-invoked inhibitory effects were abolished by the MOR selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), indicating that the effects of EM-2 on PPNs were mediated by MOR via pre- and/or post-synaptic mechanisms. EM-2 activated pre- and post-synaptic MORs, inhibiting excitatory neurotransmitter release from the presynaptic terminals and decreasing the excitability of PPNs due to hyperpolarization of their membrane potentials, respectively. These inhibitory effects of EM-2 on PPNs at the spinal cord level may explain the mechanism of action of morphine treatment and morphine-induced bladder dysfunction in the clinic.
Collapse
Affiliation(s)
- Ying-Biao Chen
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Fen-Sheng Huang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Division of Medical Biophysics, Institute of Neuroscience and Physiology, Göteborg University Göteborg, Sweden
| | - Ban Fen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Wei Wang
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Fujian Medical University Fuzhou, China ; Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China ; Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
21
|
Chen T, Li J, Feng B, Hui R, Dong YL, Huo FQ, Zhang T, Yin JB, Du JQ, Li YQ. Mechanism Underlying the Analgesic Effect Exerted by Endomorphin-1 in the rat Ventrolateral Periaqueductal Gray. Mol Neurobiol 2015; 53:2036-2053. [DOI: 10.1007/s12035-015-9159-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
|
22
|
Li JP, Wang XY, Gao CJ, Liao YH, Qu J, He ZY, Zhang T, Wang GD, Li YQ. Neurochemical phenotype and function of endomorphin 2-immunopositive neurons in the myenteric plexus of the rat colon. Front Neuroanat 2014; 8:149. [PMID: 25565974 PMCID: PMC4267282 DOI: 10.3389/fnana.2014.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/22/2014] [Indexed: 12/20/2022] Open
Abstract
The distribution and activity of endomorphins (EMs), which are endogenous μ-opioid receptor (MOR) ligands in the gastrointestinal tract (GI), are yet to be elucidated. The current study aimed to shed light on this topic. EM2 was expressed in the enteric neurons in the myenteric plexus of the mid-colon. Of the EM2-immunoreactive (EM2-IR) neurons, 53 ± 4.6%, 26 ± 4.5%, 26 ± 2.8% and 49 ± 4.2% displayed immunopositive staining for choline acetyl transferase (ChAT), substance P (SP), vasoactive intestinal peptide (VIP) and nitric oxide synthetase (NOS), respectively. A bath application of EM2 (2 μM) enhanced spontaneous contractile amplitude and tension, which were reversed by β-FNA (an antagonist of MOR) but not NG-nitro-L-arginine methyl ether (L-NAME, a non-selective inhibitor of NOS) or VIP6-28 (an antagonist of the VIP receptor) in the colonic strips. EM2 significantly suppressed inhibitory junction potentials (IJPs) in 14 of the 17 examined circular muscle cells, and this effect was not antagonized by preincubation in L-NAME. EM2 was widely expressed in interneurons and motor neurons in the myenteric plexus and presynaptically inhibited fast IJPs, thereby enhancing spontaneous contraction and tension in the colonic smooth muscle.
Collapse
Affiliation(s)
- Jun-Ping Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
- Department of Anatomy, Histology and Embryology, Ningxia Medical UniversityYinchuan, China
| | - Xi-Yu Wang
- Department of Physiology and Cell Biology, Medical Center, Ohio State UniversityColumbus, OH, USA
| | - Chang-Jun Gao
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
| | - Yong-Hui Liao
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
| | - Juan Qu
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
| | - Zhong-Yi He
- Department of Anatomy, Histology and Embryology, Ningxia Medical UniversityYinchuan, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
| | - Guo-Du Wang
- Department of Physiology and Cell Biology, Medical Center, Ohio State UniversityColumbus, OH, USA
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical UniversityXi’an, China
| |
Collapse
|
23
|
Chen L, Wang K, Yang T, Wang W, Mei XP, Zhu C, Wang W, Zhang FX, Li YQ. Downregulation of spinal endomorphin-2 correlates with mechanical allodynia in a rat model of tibia cancer. Neuroscience 2014; 286:151-61. [PMID: 25457129 DOI: 10.1016/j.neuroscience.2014.11.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 01/13/2023]
Abstract
The endogenous tetrapeptide endomorphin-2 (EM2) participates in pain modulation by binding to pre- and/or post-synaptic μ opioid receptor (MOR). In the present study, pathological expression and antinociceptive effects of EM2 at the spinal level were investigated in a rat model of bone cancer pain. The model was established by introducing Walker 256 mammary gland carcinoma cells into the tibia medullary cavity. Immunohistochemical staining for EM2 showed a markedly reduced EM2-immunoreactivity in the ipsilateral spinal dorsal horn on days 6, 12 and 18 post Walker 256 inoculation (p < 0.05). Intrathecal injection (i.t.) of EM2 significantly attenuated cancer-induced mechanical allodynia (p < 0.05) which could be blocked by β-funaltrexamine (β-FNA), the μ receptor antagonist (p < 0.05). Furthermore, topical application of EM2 dose-dependently inhibited the electrically evoked C-fiber responses and postdischarge of wide dynamic range (WDR) neurons within the spinal cord (p < 0.05), and pretreatment with β-FNA abolished the hyperactivity of these neurons. Compared with the antinociception of morphine which took effect from 40 min to 100 min post application, the analgesic action of EM2 was characterized by quick onset and short-lived efficacy (p < 0.05), being most potent at 10 min and lasting about 20 min. These findings indicate that the down-regulated spinal EM2 is an important contributor to the neuropathological process of bone cancer pain and enhancing activation of EM2/μ receptor signaling might provide a therapeutic alternative to optimizing the treatment of cancer-induced bone pain.
Collapse
Affiliation(s)
- L Chen
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, China; Department of Ultrasound, Armed Police Tianjin Corps Hospital, Tianjin 300252,China
| | - K Wang
- Department of Pain Relief, Tianjin Key Laboratory of Cancer Prevention and Treatment, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - T Yang
- Department of Ultrasound, Armed Police Tianjin Corps Hospital, Tianjin 300252,China
| | - W Wang
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - X-P Mei
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - C Zhu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, China
| | - W Wang
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, China
| | - F-X Zhang
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, China.
| | - Y-Q Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
24
|
Kawabe T, Ueyama T, Hano T, Sapru HN. Cardiovascular responses to microinjections of endomorphin-2 into the nucleus of the solitary tract are attenuated in the spontaneously hypertensive rat. Clin Exp Hypertens 2014; 37:197-206. [DOI: 10.3109/10641963.2014.933969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Tetsuya Kawabe
- Center for Educational Research and Development, Wakayama Medical University, Wakayama, Japan,
| | - Takashi Ueyama
- Department of Anatomy and Cell Biology, Wakayama Medical University, Wakayama, Japan, and
| | - Takuzo Hano
- Center for Educational Research and Development, Wakayama Medical University, Wakayama, Japan,
| | - Hreday N. Sapru
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
25
|
Spinal changes of a newly isolated neuropeptide endomorphin-2 concomitant with vincristine-induced allodynia. PLoS One 2014; 9:e89583. [PMID: 24586889 PMCID: PMC3933549 DOI: 10.1371/journal.pone.0089583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/21/2014] [Indexed: 12/01/2022] Open
Abstract
Chemotherapy-induced neuropathic pain (CNP) is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain unclear. There is increasing evidence implicating the involvement of spinal endomorphin-2 (EM2) in neuropathic pain. In this study, we used a vincristine-evoked rat CNP model displaying mechanical allodynia and central sensitization, and observed a significant decrease in the expression of spinal EM2 in CNP. Also, while intrathecal administration of exogenous EM2 attenuated allodynia and central sensitization, the mu-opioid receptor antagonist β-funaltrexamine facilitated these events. We found that the reduction in spinal EM2 was mediated by increased activity of dipeptidylpeptidase IV, possibly as a consequence of chemotherapy-induced oxidative stress. Taken together, our findings suggest that a decrease in spinal EM2 expression causes the loss of endogenous analgesia and leads to enhanced pain sensation in CNP.
Collapse
|
26
|
Stuth EAE, Stucke AG, Zuperku EJ. Effects of anesthetics, sedatives, and opioids on ventilatory control. Compr Physiol 2013; 2:2281-367. [PMID: 23720250 DOI: 10.1002/cphy.c100061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This article provides a comprehensive, up to date summary of the effects of volatile, gaseous, and intravenous anesthetics and opioid agonists on ventilatory control. Emphasis is placed on data from human studies. Further mechanistic insights are provided by in vivo and in vitro data from other mammalian species. The focus is on the effects of clinically relevant agonist concentrations and studies using pharmacological, that is, supraclinical agonist concentrations are de-emphasized or excluded.
Collapse
Affiliation(s)
- Eckehard A E Stuth
- Medical College of Wisconsin, Anesthesia Research Service, Zablocki VA Medical Center, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
27
|
Spinal endomorphin 2 antinociception and the mechanisms that produce it are both sex- and stage of estrus cycle-dependent in rats. THE JOURNAL OF PAIN 2013; 14:1522-30. [PMID: 24084000 DOI: 10.1016/j.jpain.2013.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/23/2022]
Abstract
UNLABELLED Endomorphin 2 (EM2) is the predominant endogenous mu-opioid receptor (MOR) ligand in the spinal cord. Given its endogenous presence, antinociceptive responsiveness to the intrathecal application of EM2 most likely reflects its ability to modulate nociception when released in situ. In order to explore the physiological pliability of sex-dependent differences in spinal MOR-mediated antinociception, we investigated the antinociception produced by intrathecal EM2 in male, proestrus female, and diestrus female rats. Antinociception was reflected by changes in tail flick latency to radiant heat. In females, the spinal EM2 antinociceptive system oscillated between analgesically active and inactive states. During diestrus, when circulating estrogens are low, spinal EM2 antinociceptive responsiveness was minimal. In contrast, during proestrus, when circulating estrogens are high, spinal EM2 antinociception was robust and comparable in magnitude to that manifest by males. Furthermore, in proestrus females, spinal EM2 antinociception required spinal dynorphin and kappa-opioid receptor activation, concomitant with MOR activation. This is required for neither spinal EM2 antinociception in males nor the antinociception elicited in proestrus females by spinal sufentanil or [d-Ala(2),N-methyl-Phe(4),Gly-ol(5)]-enkephalin, which are prototypic MOR-selective nonpeptide and peptide agonists, respectively. These results reveal that spinal EM2 antinociception and the signaling mechanisms used to produce it fundamentally differ in males and females. PERSPECTIVE The inability to mount spinal EM2 antinociception during defined stages of the estrus (and presumably menstrual) cycle and impaired transition from spinal EM2 analgesically nonresponsive to responsive physiological states could be causally associated with the well-documented greater severity and frequency of chronic intractable pain syndromes in women vs men.
Collapse
|
28
|
Boxwell AJ, Yanagawa Y, Travers SP, Travers JB. The μ-opioid receptor agonist DAMGO presynaptically suppresses solitary tract-evoked input to neurons in the rostral solitary nucleus. J Neurophysiol 2013; 109:2815-26. [PMID: 23486207 PMCID: PMC3680801 DOI: 10.1152/jn.00711.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/11/2013] [Indexed: 01/24/2023] Open
Abstract
Taste processing in the rostral nucleus of the solitary tract (rNST) is subject to modulatory influences including opioid peptides. Behavioral pharmacological studies suggest an influence of μ-opioid receptors in rNST, but the underlying mechanism is unknown. To determine the cellular site of action, we tested the effects of the μ-opioid receptor agonist DAMGO in vitro. Whole cell patch-clamp recordings were made in brain stem slices from GAD67-GFP knockin mice expressing enhanced green fluorescent protein (EGFP) under the control of the endogenous promoter for GAD67, a synthetic enzyme for GABA. Neuron counts showed that ∼36% of rNST neurons express GABA. We recorded monosynaptic solitary tract (ST)-evoked currents (jitter ≤ 300 μs) in both GAD67-EGFP-positive (GAD67+) and GAD67-EGFP-negative (GAD67-) neurons with equal frequency (25/31; 22/28), but the inputs to the GAD67+ neurons had significantly smaller paired-pulse ratios compared with GAD67- neurons. DAMGO (0.3 μM) significantly suppressed ST-evoked currents in both cell types (mean suppression = 46 ± 3.3% SE), significantly increased the paired-pulse ratio of these currents, and reduced the frequency of spontaneous miniature excitatory postsynaptic currents but did not diminish their amplitude, indicating a presynaptic site of action. Under inhibitory amino acid receptor blockade, DAMGO was significantly more suppressive in GAD67+ neurons (59% reduction) compared with GAD67- neurons (35% reduction), while the reverse was true in normal artificial cerebrospinal fluid (GAD67+: 35% reduction; GAD67-: 57% reduction). These findings suggest that DAMGO suppresses activity in rNST neurons predominantly via a presynaptic mechanism, and that this effect may interact significantly with tonic or evoked inhibitory activity.
Collapse
Affiliation(s)
- Alison J Boxwell
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
29
|
Cui RJ, Roberts BL, Zhao H, Andresen MC, Appleyard SM. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus. Neuroscience 2012; 222:181-90. [PMID: 22796075 DOI: 10.1016/j.neuroscience.2012.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 12/12/2022]
Abstract
Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract-evoked excitatory postsynaptic currents (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor-specific antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP). Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP-positive neurons than EGFP-negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of glutamate release and elucidate one potential mechanism by which opioids could control autonomic functions and modulate reward and opioid withdrawal symptoms at the level of the NTS.
Collapse
Affiliation(s)
- R J Cui
- Department of Veterinary Comparative Anatomy, Physiology and Pharmacology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
30
|
Laux A, Delalande F, Mouheiche J, Stuber D, Van Dorsselaer A, Bianchi E, Bezard E, Poisbeau P, Goumon Y. Localization of endogenous morphine-like compounds in the mouse spinal cord. J Comp Neurol 2012; 520:1547-61. [DOI: 10.1002/cne.22811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Laux A, Muller AH, Miehe M, Dirrig-Grosch S, Deloulme JC, Delalande F, Stuber D, Sage D, Van Dorsselaer A, Poisbeau P, Aunis D, Goumon Y. Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells. J Comp Neurol 2011; 519:2390-416. [PMID: 21456021 DOI: 10.1002/cne.22633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endogenous morphine, morphine-6-glucuronide, and codeine, which are structurally identical to vegetal alkaloids, can be synthesized by mammalian cells from dopamine. However, the role of brain endogenous morphine and its derivative compounds is a matter of debate, and knowledge about its distribution is lacking. In this study, by using a validated antibody, we describe a precise mapping of endogenous morphine-like compounds (morphine and/or its glucuronides and/or codeine) in the mouse brain. First, a mass spectrometry approach confirmed the presence of morphine and codeine in mouse brain, but also, of morphine-6-glucuronide and morphine-3-glucuronide representing two metabolites of morphine. Second, light microscopy allowed us to observe immunopositive cell somas and cytoplasmic processes throughout the mouse brain. Morphine-like immunoreactivity was present in various structures including the hippocampus, olfactory bulb, band of Broca, basal ganglia, and cerebellum. Third, by using confocal microscopy and immunofluroscence co-localization, we characterized cell types containing endogenous opiates. Interestingly, we observed that morphine-like immunoreactivity throughout the encephalon is mainly present in γ-aminobutyric acid (GABA)ergic neurons. Astrocytes were also labeled throughout the entire brain, in the cell body, in the cytoplasmic processes, and in astrocytic feet surrounding blood vessels. Finally, ultrastructural localization of morphine-like immunoreactivity was determined by electron microscopy and showed the presence of morphine-like label in presynaptic terminals in the cerebellum and postsynaptic terminals in the rest of the mouse brain. In conclusion, the presence of endogenous morphine-like compounds in brain regions not usually involved in pain modulation opens the exciting opportunity to extend the role and function of endogenous alkaloids far beyond their analgesic functions.
Collapse
Affiliation(s)
- Alexis Laux
- Nociception and Pain Department, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, F-67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bajo M, Roberto M, Madamba SG, Siggins GR. Neuroadaptation of GABAergic transmission in the central amygdala during chronic morphine treatment. Addict Biol 2011; 16:551-64. [PMID: 21182569 PMCID: PMC3117063 DOI: 10.1111/j.1369-1600.2010.00269.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigated possible alterations of pharmacologically-isolated, evoked GABA(A) inhibitory postsynaptic potentials (eIPSPs) and miniature GABA(A) inhibitory postsynaptic currents (mIPSCs) in the rat central amygdala (CeA) elicited by acute application of µ-opioid receptor (MOR) agonists (DAMGO and morphine; 1 µM) and by chronic morphine treatment with morphine pellets. The acute activation of MORs decreased the amplitudes of eIPSPs, increased paired-pulse facilitation (PPF) of eIPSPs and decreased the frequency (but not the amplitude) of mIPSCs in a majority of CeA neurons, suggesting that acute MOR-dependent modulation of this GABAergic transmission is mediated predominantly via presynaptic inhibition of GABA release. We observed no significant changes in the membrane properties, eIPSPs, PPF or mIPSCs of CeA neurons during chronic morphine treatment compared to CeA of naïve or sham rats. Superfusion of the MOR antagonist CTOP (1 µM) increased the mean amplitude of eIPSPs in a majority of CeA neurons to the same degree in both naïve/sham and morphine-treated rats, suggesting a tonic activation of MORs in both conditions. Superfusion of DAMGO decreased eIPSP amplitudes and the frequency of mIPSCs equally in both naïve/sham and morphine-treated rats but decreased the amplitude of mIPSCs only in morphine treated rats, an apparent postsynaptic action. Our combined findings suggest the development of tolerance of the CeA GABAergic system to inhibitory effects of acute activation of MORs on presynaptic GABA release and possible alteration of MOR-dependent postsynaptic mechanisms that may represent important neuroadaptations of the GABAergic and MOR systems during chronic morphine treatment.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/physiology
- Analgesics, Opioid/pharmacology
- Animals
- Drug Tolerance
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Inhibitory Postsynaptic Potentials/drug effects
- Inhibitory Postsynaptic Potentials/physiology
- Male
- Miniature Postsynaptic Potentials/drug effects
- Miniature Postsynaptic Potentials/physiology
- Morphine/pharmacology
- Narcotics/pharmacology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Michal Bajo
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Samuel G. Madamba
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| | - George Robert Siggins
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
33
|
Zhu C, Hui R, Chen T, Zuo ZF, Wang W, Gao CJ, Zhang T, Wang YY, Li H, Wu SX, Li YQ. Origins of endomorphin-2 immunopositive fibers and terminals in the rat medullary dorsal horn. Brain Res 2011; 1410:38-47. [DOI: 10.1016/j.brainres.2011.06.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/21/2011] [Accepted: 06/30/2011] [Indexed: 01/20/2023]
|
34
|
Kinzeler NR, Travers SP. μ-Opioid modulation in the rostral solitary nucleus and reticular formation alters taste reactivity: evidence for a suppressive effect on consummatory behavior. Am J Physiol Regul Integr Comp Physiol 2011; 301:R690-700. [PMID: 21697523 DOI: 10.1152/ajpregu.00142.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neural control of feeding involves many neuromodulators, including the endogenous opioids that bind μ-opioid receptors (MORs). Injections of the MOR agonist, Damgo, into limbic and hypothalamic forebrain sites increase intake, particularly of palatable foods. Indeed, forebrain Damgo injections increase sucrose-elicited licking but reduce aversive responding (gaping) to quinine, suggesting that MOR activation may enhance taste palatability. A μ-opioid influence on taste reactivity has not been assessed in the brain stem. However, MORs are present in the first-order taste relay, the rostral nucleus of the solitary tract (rNST), and in the immediately subjacent reticular formation (RF), a region known to be essential for consummatory responses. Thus, to evaluate the consequences of rNST/dorsal RF Damgo in this region, we implanted rats with intraoral cannulas, electromyographic electrodes, and brain cannulas aimed at the ventral border of the rNST. Licking and gaping elicited with sucrose, water, and quinine were assessed before and after intramedullary Damgo and saline infusions. Damgo slowed the rate, increased the amplitude, and decreased the size of fluid-induced lick and gape bouts. In addition, the neutral stimulus water, which typically elicits licks, began to evoke gapes. Thus, the current results demonstrate that μ-opioid activation in the rNST/dorsal RF exerts complex effects on oromotor responding that contrast with forebrain effects and are more indicative of a suppressive, rather than a facilitatory effect on ingestion.
Collapse
Affiliation(s)
- Nicole R Kinzeler
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
35
|
Bedini A, Baiula M, Gentilucci L, Tolomelli A, De Marco R, Spampinato S. Peripheral antinociceptive effects of the cyclic endomorphin-1 analog c[YpwFG] in a mouse visceral pain model. Peptides 2010; 31:2135-40. [PMID: 20713109 DOI: 10.1016/j.peptides.2010.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 11/29/2022]
Abstract
We previously described a novel cyclic endomorphin-1 analog c[Tyr-D-Pro-D-Trp-Phe-Gly] (c[YpwFG]), acting as a mu-opioid receptor (MOR) agonist. This study reports that c[YpwFG] is more lipophilic and resistant to enzymatic hydrolysis than endomorphin-1 and produces preemptive antinociception in a mouse visceral pain model when injected intraperitoneally (i.p.) or subcutaneously (s.c.) before 0.6% acetic acid, employed to evoke abdominal writhing (i.p. ED(50)=1.24 mg/kg; s.c. ED(50)=2.13 mg/kg). This effect is reversed by the selective MOR antagonist β-funaltrexamine and by a high dose of the mu(1)-opioid receptor-selective antagonist naloxonazine. Conversely, the kappa-opioid receptor antagonist nor-binaltorphimine and the delta-opioid receptor antagonist naltrindole are ineffective. c[YpwFG] produces antinociception when injected i.p. after acetic acid (ED(50)=4.80 mg/kg), and only at a dose of 20mg/kg did it elicit a moderate antinociceptive response in the mouse, evaluated by the tail flick assay. Administration of a lower dose of c[YpwFG] (10mg/kg i.p.) apparently produces a considerable part of antinociception on acetic acid-induced writhes through peripheral opioid receptors as this action is fully prevented by i.p. naloxone methiodide, which does not readily cross the blood-brain barrier; whereas this opioid antagonist injected intracerebroventricularly (i.c.v.) is not effective. Antinociception produced by a higher dose of c[YpwFG] (20mg/kg i.p.) is partially reversed by naloxone methiodide i.c.v. administered. Thus, only at the dose of 20mg/kg c[YpwFG] can produce antinociception through both peripheral and central opioid receptors. In conclusion, c[YpwFG] displays sufficient metabolic stability to be effective after peripheral administration and demonstrates the therapeutic potential of endomorphin derivatives as novel analgesic agents to control visceral pain.
Collapse
Affiliation(s)
- Andrea Bedini
- Department of Pharmacology, University of Bologna, Irnerio 48, 4126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Herman MA, Alayan A, Sahibzada N, Bayer B, Verbalis J, Dretchen KL, Gillis RA. micro-Opioid receptor stimulation in the medial subnucleus of the tractus solitarius inhibits gastric tone and motility by reducing local GABA activity. Am J Physiol Gastrointest Liver Physiol 2010; 299:G494-506. [PMID: 20489046 PMCID: PMC2928531 DOI: 10.1152/ajpgi.00038.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We examined the effects of altering mu-opioid receptor (MOR) activity in the medial subnucleus of the tractus solitarius (mNTS) on several gastric end points including intragastric pressure (IGP), fundus tone, and the receptive relaxation reflex (RRR). Microinjection of the MOR agonist [d-Ala(2),MePhe(4),Gly(ol)(5)]enkephalin (DAMGO; 1-10 fmol) into the mNTS produced dose-dependent decreases in IGP. Microinjection of the endogenous MOR agonists endomorphin-1 and endomorphin-2 (20 fmol) into the mNTS mimicked the effects of 10 fmol DAMGO. Microinjection of 1 and 100 pmol DAMGO into the mNTS produced a triphasic response consisting of an initial decrease, a transient increase, and a persistent decrease in IGP. The increase in IGP appeared to be due to diffusion to the dorsal motor nucleus of the vagus. The effects of 10 fmol DAMGO in the mNTS were blocked by vagotomy and by blockade of MORs, GABA(A) receptors, and ionotropic glutamate receptors in the mNTS. The RRR response was abolished by bilateral microinjection of the opioid receptor antagonist naltrexone into the mNTS and reduced by intravenous administration of naltrexone. Our data demonstrate that 1) activation of MORs in the mNTS with femtomole doses of agonist inhibits gastric motility, 2) the mechanism of MOR effects in the mNTS is through suppression of local GABA activity, and 3) blockade of MORs in the mNTS prevents the RRR response. These data suggest that opioids play an important role in mediating a vagovagal reflex through release of an endogenous opioid in the mNTS, which, in turn, inhibits ongoing local GABA activity and allows vagal sensory input to excite second-order mNTS neurons.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Verbalis
- 4Department of Medicine, Georgetown University, Washington, DC
| | | | | |
Collapse
|
37
|
Hui R, Wang W, Chen T, Lü BC, Li H, Zhang T, Wu SX, Li YQ. Origins of endomorphin-2 immunopositive fibers and terminals in the spinal dorsal horn of the rat. Neuroscience 2010; 169:422-30. [PMID: 20457220 DOI: 10.1016/j.neuroscience.2010.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/02/2010] [Accepted: 05/03/2010] [Indexed: 01/06/2023]
Abstract
Endomorphin 2 (EM2) plays essential roles in regulating nociceptive transmission within the spinal dorsal horn, where EM2-immunopositive (EM2-IP) fibers and terminals are densely encountered. However, the origins of these EM2-IP structures are still obscure. Unilateral primary sensory afferents disruption (lumbar 3-6 dorsal roots rhizotomy) significantly decreased the density of EM2-IP fibers and terminals in the superficial laminae (laminae I and II) on the ipsilateral but not contralateral lumbar dorsal horn (LDH). Spinal hemisection at the 7th thoracic (T7) segment down-regulated bilateral EM2 expression, with a higher influence on the ipsilateral side of the LDH. Unilateral L3-6 dorsal roots rhizotomy combined with spinal transection but not with hemisection at T7 level completely obliterated EM2-IP fibers and terminals on the rhizotomized-side of the LDH. Disruption of bilateral (exposure to the primary afferent neurotoxin, capsaicin) primary sensory afferents combined with spinal hemisection at T7 decreased the EM2-IP density bilaterally but could obliterate it on neither side of the LDH. While in capsaicin plus transection rats, EM2 was depleted symmetrically and completely. In the colchicine treated rats, no EM2-IP neuronal cell bodies could be detected in the spinal gray matter. After injecting tetramethyl rhodamine dextran-amine (TMR) into the LDH, some of the TMR retrogradely labeled neurons in the nucleus tractus solitarii (NTS) showed EM2-immunoreactivities. The present results indicate that EM2-IP fibers and terminals in the spinal dorsal horn originate from the ipsilateral primary afferents and bilateral descending fibers from NTS.
Collapse
Affiliation(s)
- R Hui
- Department of Anatomy, Histology & Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Topographical distributions of endomorphinergic pathways from nucleus tractus solitarii to periaqueductal gray in the rat. J Chem Neuroanat 2010; 39:166-74. [DOI: 10.1016/j.jchemneu.2009.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 10/20/2009] [Accepted: 11/11/2009] [Indexed: 01/09/2023]
|
39
|
Király K, Szalay B, Szalai J, Barna I, Gyires K, Verbeken M, Rónai AZ. Intrathecally injected Ile-Pro-Ile, an inhibitor of membrane ectoenzyme dipeptidyl peptidase IV, is antihyperalgesic in rats by switching the enzyme from hydrolase to synthase functional mode to generate endomorphin 2. Eur J Pharmacol 2009; 620:21-6. [PMID: 19695241 DOI: 10.1016/j.ejphar.2009.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/29/2009] [Accepted: 08/03/2009] [Indexed: 12/15/2022]
Abstract
We have found recently that membrane-bound dipeptidyl peptidase IV (DPP-IV) generated extracellularly immunoreactive endomorphin-2 from Tyr-Pro precursor in a depolarisation-sensitive manner in rat isolated L4,5 dorsal root ganglia when the enzyme was switched to synthase mode by the hydrolase inhibitor Ile-Pro-Ile. Presently, we induced hyperalgesia in rats by injecting carrageenan into the right hindpaw and measured the reduction in nociceptive threshold (hyperalgesia) to pressure (Randall-Selitto test). The hyperalgesia, peaking at 180 min after injection, was fully reversed by intrathecal administration of 30 nmol/rat Ile-Pro-Ile. The antihyperalgesic action was antagonized by s.c. naloxone (1 mg/kg) and intrathecally injected specific antiserum to endomorphin-2 indicating that the opioid receptor-mediated effect was produced by an endogenously generated endomorphin-2-like immunoreactive substance. Intrathecal Ile-Pro-Ile was ineffective as an analgesic in the acute nociceptive test such as the rat tail-flick, whereas endomorphin-2 (EC(50)=13.3 nmol/rat), endomorphin-1 (6.8 nmol/rat), morphine (0.11 nmol/rat) and DAMGO (0.0059 nmol/rat) exerted opioid receptor-mediated analgesia given by the same route. We concluded that carrageenan-induced C-fiber barrage (wind-up) may create ideal conditions for the de novo synthesis of endomorphin-2 in rat spinal cord dorsal horns if the DPP-IV enzyme is switched to the synthase functional mode by Ile-Pro-Ile.
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
40
|
Rónai AZ, Király K, Szebeni A, Szemenyei E, Prohászka Z, Darula Z, Tóth G, Till I, Szalay B, Kató E, Barna I. Immunoreactive endomorphin 2 is generated extracellularly in rat isolated L4,5 dorsal root ganglia by DPP-IV. ACTA ACUST UNITED AC 2009; 157:1-2. [PMID: 19540879 DOI: 10.1016/j.regpep.2009.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/12/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS The gene(s) encoding for endomorphin precursor(s) is/are still unknown. We have raised the possibility of and did find some evidence for a potential de novo biosynthetic route starting from Tyr-Pro precursor. To pursue further this possibility we measured the generation of immunoreactive endomorphin-2 (E2-IR) in adult rat isolated L4,5 dorsal root ganglia. RESULTS AND CONCLUSIONS In rat isolated dorsal root ganglia the combination of presumed biosynthetic precursor of endomorphin 2 (E2), Tyr-Pro with the dipeptidyl peptidase IV (DPP-IV) inhibitor Ile-Pro-Ile generated 1.60+/-0.37 pg/mg Wet Tissue Weight_30 min E2-IR in the bathing fluid (n=4) with an 8-fold increase upon depolarization whereas the tissue content was low (0.50+/-0.08 pg/mg_WTW). Substance P, as determined by ELISA in the pilot experiments, was found almost exclusively within the tissues. It is concluded that E2-IR was generated extracellularly by a membrane-bound DPP-IV, which was switched to "synthase" mode by the hydrolase inhibitor Ile-Pro-Ile. DPP-IV was depolarization-sensitive in "synthase" functional mode.
Collapse
Affiliation(s)
- András Z Rónai
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, P.O.B. 370, H-1445, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Niu L, Chen T, Wang YY, Li YQ. Neurochemical phenotypes of endomorphin-2-containing neurons in vagal nodose neurons of the adult rat. Neurochem Int 2009; 55:542-51. [PMID: 19463881 DOI: 10.1016/j.neuint.2009.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/23/2009] [Accepted: 05/11/2009] [Indexed: 12/12/2022]
Abstract
It has been shown that endomorphin-2-like immunoreactive (EM2-LI) neurons in dorsal root ganglion play important roles in regulating somatic information transmission. Although EM2-ergic neurons have been found in nodose ganglion (NG) which is mainly involved in transmitting visceral information into the nucleus tractus solitarii (NTS), the neurochemical phenotypes of EM2-ergic neurons have not yet been investigated. In the present study, immunofluorescent histochemical staining showed that 43.5% of the NG neurons contained EM2 and these neurons were small to medium in size. 15.2%, 27.8%, 74.4% and 25.2% of the EM2-LI NG neurons expressed substance P (SP), calcitonin gene-related peptide (CGRP), nitric oxide synthase (NOS) and vasoactive intestinal peptide (VIP), respectively. In addition, about 90.8% of EM2-LI NG neurons also contained mu-opioid receptor (MOR). EM2/MOR and EM2/SP double-labeled peripheral axons were observed in the vagal trunk. Anterograde tracing combined with immunofluorescent staining showed EM2/MOR and EM2/SP double-labeled vagal afferents in the NTS. EM2/MOR/SP and EM2/MOR/CGRP triple-labeled neurons and axons were observed in the NG. Importantly, at the ultrastructrual level, post-embedding electron microscopy revealed that EM2-LI and SP-LI gold particles coexisted in the same large dense-cored synaptic vesicles in the pre-synaptic button, while MOR-LI gold particles existed on both pre- and post-synaptic membranes in the NTS. These results suggest that EM2 in axon terminals of NG neurons might be involved in visceral information transmission and homeostatic control through modulating the release of other neurotransmitters (such as SP, CGRP, NO, VIP) via pre-synaptic MOR and through post-synaptic mechanisms in the NTS.
Collapse
Affiliation(s)
- Le Niu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, P.R. China
| | | | | | | |
Collapse
|
42
|
Lü BC, Li H, Chen T, Huo FQ, Zhang T, Li YQ. Endomorphin 1- and Endomorphin 2-Containing Neurons in Nucleus Tractus Solitarii Send Axons to the Parabrachial Nuclei in the Rat. Anat Rec (Hoboken) 2009; 292:488-97. [DOI: 10.1002/ar.20847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Hsu DT, Price JL. Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys. J Comp Neurol 2009; 512:825-48. [PMID: 19085970 DOI: 10.1002/cne.21934] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study examines subcortical connections of paraventricular thalamic nucleus (Pa) following small anterograde and retrograde tracer injections in cynomolgus monkeys (Macaca fascicularis). An anterograde tracer injection into the dorsal midline thalamus revealed strong projections to the accumbens nucleus, basal amygdala, lateral septum, and hypothalamus. Retrograde tracer injections into these areas labeled neurons specifically in Pa. Following a retrograde tracer injection into Pa, labeled neurons were found in the hypothalamus, dorsal raphe, and periaqueductal gray. Pa contained a remarkably high density of axons and axonal varicosities immunoreactive for serotonin (5-HT) and orexin/hypocretin (ORX), as well as a moderate density of fibers immunoreactive for corticotropin-releasing hormone (CRH). A retrograde tracer injection into Pa combined with immunohistochemistry demonstrated that ORX and 5-HT axons originate from neurons in the hypothalamus and midbrain. Pa-projecting neurons were localized in the same nuclei of the hypothalamus, amygdala, and midbrain as CRH neurons, although no double labeling was found. The connections of Pa and its innervation by 5-HT, ORX, and CRH suggest that it may relay stress signals between the midbrain and hypothalamus with the accumbens nucleus, basal amygdala, and subgenual cortex as part of a circuit that manages stress and possibly stress-related psychopathologies.
Collapse
Affiliation(s)
- David T Hsu
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
44
|
Lalley PM. Opioidergic and dopaminergic modulation of respiration. Respir Physiol Neurobiol 2008; 164:160-7. [PMID: 18394974 PMCID: PMC2642894 DOI: 10.1016/j.resp.2008.02.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/15/2008] [Accepted: 02/18/2008] [Indexed: 11/24/2022]
Abstract
Opioids, dopamine and their receptors are present in many regions of the bulbar respiratory network. The physiological importance of endogenous opioids to respiratory control has not been explicitly demonstrated. Nonetheless, studies of opioidergic respiratory mechanisms are important because synthetic opiate drugs have respiratory side effects that in some situations pose health risks and limit their therapeutic usefulness. They can depress breathing depth and rate, blunt respiratory responsiveness to CO2 and hypoxia, increase upper airway resistance and reduce pulmonary compliance. The opiate respiratory disturbances are mainly due to agonist activation of mu- and delta-subtypes of receptor and involve specific types of respiratory-related neurons in the ventrolateral medulla and the dorsolateral pons. Endogenous dopaminergic modulation in the CNS and carotid bodies enhances CO2-dependent respiratory drive and depresses hypoxic drive. In the CNS, synthetic agonists with selectivity for D1-and D4-types of receptor slow respiratory rhythm, whereas D2-selective agonists modulate acute and chronic responses to hypoxia. D1-receptor agonists also act centrally to increase respiratory responsiveness to CO2, and counteract opiate blunting of CO2-dependent respiratory drive and depression of breathing. Cellular targets and intracellular mechanisms responsible for opioidergic and dopaminergic respiratory effects for the most part remain to be determined.
Collapse
Affiliation(s)
- Peter M Lalley
- Department of Physiology, The University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
45
|
Botros M, Johansson T, Zhou Q, Lindeberg G, Tömböly C, Tóth G, Le Grevès P, Nyberg F, Hallberg M. Endomorphins interact with the substance P (SP) aminoterminal SP(1-7) binding in the ventral tegmental area of the rat brain. Peptides 2008; 29:1820-4. [PMID: 18597894 DOI: 10.1016/j.peptides.2008.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 05/15/2008] [Accepted: 05/17/2008] [Indexed: 10/22/2022]
Abstract
We have recently identified a specific binding site for the tachykinin peptide substance P (SP) fragment SP(1-7) in the rat spinal cord. This site appeared very specific for SP(1-7) as the binding affinity of this compound highly exceeded those of other SP fragments. We also observed that endomorphin-2 (EM-2) exhibited high potency in displacing SP(1-7) from this site. In the present work using a [(3)H]-labeled derivative of the heptapeptide we have identified and characterized [(3)H]-SP(1-7) binding in the rat ventral tegmental area (VTA). Similarly to the [(3)H]-SP(1-7) binding in the spinal cord the affinity of unlabeled SP(1-7) to the specific site in VTA was significantly higher than those of other SP fragments. Further, the tachykinin receptor NK-1, NK-2 and NK-3 ligands showed no or negligible binding to the identified site. However, the mu-opioid peptide (MOP) receptor agonists DAMGO, EM-1 and EM-2 did, and significant difference was observed in the binding affinity between the two endomorphins. As recorded from displacement curves the affinity of EM-2 for the SP(1-7) site was 4-5 times weaker than that for SP(1-7) but about 5 times higher than that of EM-1. The opioid receptor antagonists naloxone and naloxonazine showed weak or negligible binding. It was concluded that the specific site identified for SP(1-7) binding in the rat VTA is distinct from the MOP receptor although it exhibits high affinity for EM-2.
Collapse
Affiliation(s)
- Milad Botros
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sapru HN. Cardiovascular Actions of Endomorphin-2 in the Nucleus Tractus Solitarius. Tzu Chi Med J 2008. [DOI: 10.1016/s1016-3190(08)60015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Szemenyei E, Barna I, Mergl Z, Keresztes A, Darula Z, Kató E, Tóth G, Rónai AZ. Detection of a novel immunoreactive endomorphin 2-like peptide in rat brain extracts. ACTA ACUST UNITED AC 2008; 148:54-61. [DOI: 10.1016/j.regpep.2008.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 02/11/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
|
48
|
Britt JP, McGehee DS. Presynaptic opioid and nicotinic receptor modulation of dopamine overflow in the nucleus accumbens. J Neurosci 2008; 28:1672-81. [PMID: 18272687 PMCID: PMC6671549 DOI: 10.1523/jneurosci.4275-07.2008] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 01/08/2008] [Accepted: 01/08/2008] [Indexed: 11/21/2022] Open
Abstract
Behaviorally relevant stimuli prompt midbrain dopamine (DA) neurons to switch from tonic to burst firing patterns. Similar shifts to burst activity are thought to contribute to the addictive effects of opiates and nicotine. The nucleus accumbens DA overflow produced by these drugs is a key element in their pathological effects. Using electrochemical techniques in brain slices, we explored the effects of opioids on single-spike and burst stimuli-evoked DA overflow in the dorsal and ventral striatum. In specific subregions of the nucleus accumbens, mu-opioids inhibit DA overflow elicited with single-spike stimuli while leaving that produced by burst stimuli unaffected. This is similar to published effects of nicotinic receptor blockade or desensitization, and is mediated by opioid receptor-induced inhibition of cholinergic interneurons. Whereas delta-opioids have similar effects, kappa-opioids inhibit evoked DA overflow throughout the striatum in a manner that is not overcome with high-frequency stimuli. These observations reveal remarkable mechanistic overlap between the effects of nicotine and opiates within the dopamine reward pathway.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Action Potentials/drug effects
- Analgesics, Opioid/pharmacology
- Animals
- Dopamine/metabolism
- In Vitro Techniques
- Nucleus Accumbens/metabolism
- Patch-Clamp Techniques
- Piperidines/pharmacology
- Pyrrolidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Nicotinic/physiology
- Receptors, Opioid/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Receptors, Presynaptic/physiology
- Receptors, sigma/drug effects
- Receptors, sigma/metabolism
Collapse
Affiliation(s)
| | - Daniel S. McGehee
- Committee on Neurobiology and
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
49
|
Chen T, Hui R, Wang XL, Zhang T, Dong YX, Li YQ. Origins of endomorphin-immunoreactive fibers and terminals in different columns of the periaqueductal gray in the rat. J Comp Neurol 2008; 509:72-87. [DOI: 10.1002/cne.21728] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Pan W, Kastin AJ. From MIF-1 to endomorphin: the Tyr-MIF-1 family of peptides. Peptides 2007; 28:2411-34. [PMID: 17988762 DOI: 10.1016/j.peptides.2007.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 11/22/2022]
Abstract
The Tyr-MIF-1 family of small peptides has served a prototypic role in the introduction of several novel concepts into the peptide field of research. MIF-1 (Pro-Leu-Gly-NH(2)) was the first hypothalamic peptide shown to act "up" on the brain, not just "down" on the pituitary. In several situations, including clinical depression, MIF-1 exhibits an inverted U-shaped dose-response relationship in which increasing doses can result in decreasing effects. This tripeptide also can antagonize opiate actions, and the first report of such activity also correctly predicted the discovery of other endogenous antiopiate peptides. The tetrapeptide Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH(2)) not only shows antiopiate activity, but also considerable selectivity for the mu-opiate binding site. Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH(2)) is an even more selective ligand for the mu receptor, leading to the discovery of two more Tyr-Pro tetrapeptides that have the highest specificity and affinity for this site. These are the endomorphins: endomorphin-1 is Tyr-Pro-Trp-Phe-NH(2) and endomorphin-2 is Tyr-Pro-Phe-Phe-NH(2). Tyr-MIF-1 proved, contrary to the then prevailing dogma, that peptides can be saturably transported across the blood-brain barrier by a quantifiable transport system. Unexpectedly, the Tyr-MIF-1 transporter is shared with Met-enkephalin. In the era in which it was doubtful whether a peripheral peptide could exert CNS effects, the Tyr-MIF-1 family of peptides also explicitly showed that they can exert more than one central action that persists longer than their half-lives in blood. These peptides clearly illustrate that the name of a peptide restricts neither its actions nor its conceptual implications.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|