1
|
Engin A. Adipose Tissue Hypoxia in Obesity: Clinical Reappraisal of Hypoxia Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:329-356. [PMID: 39287857 DOI: 10.1007/978-3-031-63657-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obese subjects exhibit lower adipose tissue oxygen consumption in accordance with the lower adipose tissue blood flow. Thereby, compared to lean subjects, obese individuals have almost half lower capillary density and more than half lower vascular endothelial growth factor (VEGF). The VEGF expression together with hypoxia-inducible transcription factor-1 alpha (HIF-1α) activity also requires phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR)-mediated signaling. Especially HIF-1α is an important signaling molecule for hypoxia to induce the inflammatory responses. Hypoxia contributes to several biological functions, such as angiogenesis, cell proliferation, apoptosis, inflammation, and insulin resistance (IR). Pathogenesis of obesity-related comorbidities is attributed to intermittent hypoxia (IH), which is mostly observed in visceral obesity. Proinflammatory phenotype of the adipose tissue is a crucial link between IH and the development of IR. Inhibition of adaptive unfolded protein response (UPR) in hypoxia increases β cell death. Moreover, deletion of HIF-1α worsens β cell function. Oxidative stress, as well as the release of proinflammatory cytokines/adipokines in obesity, is proportional to the severity of IH. Reactive oxygen species (ROS) generation at mitochondria is responsible for propagation of the hypoxic signal; however, mitochondrial ROS production is required for hypoxic HIF-1α protein stabilization. Alterations in oxygen availability of adipose tissue directly affect the macrophage polarization and are responsible for the dysregulated adipocytokines production in obesity. Hypoxia both inhibits adipocyte differentiation from preadipocytes and macrophage migration from the hypoxic adipose tissue. Upon reaching a hypertrophic threshold beyond the adipocyte fat loading capacity, excess extracellular matrix (ECM) components are deposited, causing fibrosis. HIF-1α initiates the whole pathological process of fibrosis and inflammation in the obese adipose tissue. In addition to stressed adipocytes, hypoxia contributes to immune cell migration and activation which further aggravates adipose tissue fibrosis. Therefore, targeting HIF-1α might be an efficient way to suppress hypoxia-induced pathological changes in the ECM. The fibrosis score of adipose tissue correlates negatively with the body mass index and metabolic parameters. Inducers of browning/beiging adipocytes and adipokines, as well as modulations of matrix remodeling enzyme inhibitors, and associated gene regulators, are potential pharmacological targets for treating obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Gaston-Breton R, Maïza Letrou A, Hamoudi R, Stonestreet BS, Mabondzo A. Brain organoids for hypoxic-ischemic studies: from bench to bedside. Cell Mol Life Sci 2023; 80:318. [PMID: 37804439 PMCID: PMC10560197 DOI: 10.1007/s00018-023-04951-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Our current knowledge regarding the development of the human brain mostly derives from experimental studies on non-human primates, sheep, and rodents. However, these studies may not completely simulate all the features of human brain development as a result of species differences and variations in pre- and postnatal brain maturation. Therefore, it is important to supplement the in vivo animal models to increase the possibility that preclinical studies have appropriate relevance for potential future human trials. Three-dimensional brain organoid culture technology could complement in vivo animal studies to enhance the translatability of the preclinical animal studies and the understanding of brain-related disorders. In this review, we focus on the development of a model of hypoxic-ischemic (HI) brain injury using human brain organoids to complement the translation from animal experiments to human pathophysiology. We also discuss how the development of these tools provides potential opportunities to study fundamental aspects of the pathophysiology of HI-related brain injury including differences in the responses between males and females.
Collapse
Affiliation(s)
- Romane Gaston-Breton
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Auriane Maïza Letrou
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
| | - Barbara S Stonestreet
- Departments of Molecular Biology, Cell Biology and Biochemistry and Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Aloïse Mabondzo
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
3
|
Xu Y, Lin H, Yan W, Li J, Sun M, Chen J, Xu Z. Full-Length Transcriptome of Red Swamp Crayfish Hepatopancreas Reveals Candidate Genes in Hif-1 and Antioxidant Pathways in Response to Hypoxia-Reoxygenation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:55-67. [PMID: 34997878 DOI: 10.1007/s10126-021-10086-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Red swamp crayfish is particularly prone to exposure to hypoxia-reoxygenation stress on account of the respiration and rhythmic, light-dependent photosynthetic activity of the algae and aquatic grass. Up to now, the regulation mechanisms of the adverse effects of hypoxia-reoxygenation for this species were still unknown, especially the roles of the antioxidant enzymes in reducing oxidative damage during reoxygenation. To screen for vital genes or pathways upon hypoxic-reoxygenation stress, hepatopancreas gene expression profiles were investigated by using a strategy combining second and third generation sequencing. Five groups of samples, including hypoxia for 1 and 6 h with DO of 1.0 mg/L, reoxygenation for 1 and 12 h with DO of 6.8 mg/L, and the samples under normoxia condition, were used for transcriptome sequencing. Twenty Illumina cDNA libraries were prepared to screen for the differentially expressed genes (DEGs) among the 5 groups of samples. Based on the assembled reference full-length transcriptome, 389 and 533 significantly DEGs were identified in the groups under severe hypoxia treatment for 1 and 6 h, respectively. The top three enriched pathways for these DEGs were "protein processing in endoplasmic reticulum," "MAPK signaling pathway," and "endocytosis." Among these DEGs, hypoxia-inducible factor 1α (Hif-1α) and some Hif-1 downstream genes, such as Ugt-1, Egfr, Igfbp-1, Pk, and Hsp70, were significant differentially expressed when exposed to hypoxia stress. A series of antioxidant enzymes, including two types of superoxide dismutase (Cu/ZnSOD and MnSOD), catalase (CAT), and glutathione peroxidase (GPx), were identified to be differentially expressed during hypoxia-reoxygenation treatment, implying their distinct modulation roles on reoxygenation-induced oxidative stress. The full-length transcriptome and the critical genes characterized should contribute to the revelation of intrinsic molecular mechanism being associated with hypoxia/reoxygenation regulation and provide useful foundation for future genetic breeding of the red swamp crayfish.
Collapse
Affiliation(s)
- Yu Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Hai Lin
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Weihui Yan
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Jiajia Li
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China
| | - Jiaping Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing, 210017, China.
| |
Collapse
|
4
|
Kim HS, Kang YH, Lee J, Han SR, Kim DB, Ko H, Park S, Lee MS. Biphasic Regulation of Mitogen-Activated Protein Kinase Phosphatase 3 in Hypoxic Colon Cancer Cells. Mol Cells 2021; 44:710-722. [PMID: 34711689 PMCID: PMC8560588 DOI: 10.14348/molcells.2021.0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
Hypoxia, or low oxygen tension, is a hallmark of the tumor microenvironment. The hypoxia-inducible factor-1α (HIF-1α) subunit plays a critical role in the adaptive cellular response of hypoxic tumor cells to low oxygen tension by activating gene-expression programs that control cancer cell metabolism, angiogenesis, and therapy resistance. Phosphorylation is involved in the stabilization and regulation of HIF-1α transcriptional activity. HIF-1α is activated by several factors, including the mitogen-activated protein kinase (MAPK) superfamily. MAPK phosphatase 3 (MKP-3) is a cytoplasmic dual-specificity phosphatase specific for extracellular signal-regulated kinase 1/2 (Erk1/2). Recent evidence indicates that hypoxia increases the endogenous levels of both MKP-3 mRNA and protein. However, its role in the response of cells to hypoxia is poorly understood. Herein, we demonstrated that small-interfering RNA (siRNA)-mediated knockdown of MKP-3 enhanced HIF-1α (not HIF-2α) levels. Conversely, MKP-3 overexpression suppressed HIF-1α (not HIF-2α) levels, as well as the expression levels of hypoxia-responsive genes (LDHA, CA9, GLUT-1, and VEGF), in hypoxic colon cancer cells. These findings indicated that MKP-3, induced by HIF-1α in hypoxia, negatively regulates HIF-1α protein levels and hypoxia-responsive genes. However, we also found that long-term hypoxia (>12 h) induced proteasomal degradation of MKP-3 in a lactic acid-dependent manner. Taken together, MKP-3 expression is modulated by the hypoxic conditions prevailing in colon cancer, and plays a role in cellular adaptation to tumor hypoxia and tumor progression. Thus, MKP-3 may serve as a potential therapeutic target for colon cancer treatment.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Yun Hee Kang
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon 34824, Korea
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Seung Ro Han
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon 34824, Korea
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Da Bin Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon 22212, Korea
| | - Haeun Ko
- Medical Course, College of Medicine, Inha University, Incheon 22212, Korea
| | - Seyoun Park
- Medical Course, College of Medicine, Inha University, Incheon 22212, Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| |
Collapse
|
5
|
Bao Y, Suvesh M, Li X, Bai X, Li H, Li X, Xu D, Liu L. Ebp1 p48 promotes oncogenic properties in hepatocellular carcinoma through p38 MAPK/HIF1α activation and p53 downregulation. Mol Carcinog 2021; 60:252-264. [PMID: 33634940 DOI: 10.1002/mc.23288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
The ErbB3 binding protein 1 (Ebp1) has been reported in several cancers, in which it can act as either a pro-oncogenic regulator or a tumor suppressor. However, the biological function and molecular mechanism of Ebp1 p48 in hepatocellular carcinoma (HCC) remain unclear. Here, we report that the long isoform of Ebp1, p48, is highly expressed in HCC tissues compared with normal tissues. Ebp1 p48 expression was correlated with the tumor size in HCC patients. Silencing Ebp1 p48 by transduction with lentiviral shEbp1 dramatically reduced the proliferation rate, soft agar colony generation, and tumor formation in vivo. We further demonstrated that Ebp1 p48 knockdown resulted in decreased p38 phosphorylation, which subsequently reduced hypoxia-inducible factor 1α (HIF1α) expression. Moreover, Ebp1 p48 knockdown led to an upregulation of p53 expression through MDM2 downregulation. Taken together, these results suggest that the Ebp1/p38/HIF1α signaling pathway and the Ebp1-mediated downregulation of p53 are involved in hepatocarcinogenesis. Therefore, Ebp1 and its downstream signaling pathways may be promising therapeutic targets of HCC.
Collapse
Affiliation(s)
- Yanqiu Bao
- Department of Pathology, Affiliated Hospital of Yanbian University, Jilin, China
| | - Munakarmi Suvesh
- Division of GI and Hepatology, Departments of Internal Medicine, The Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Xiaobo Li
- Department of Pathology, Affiliated Hospital of Yanbian University, Jilin, China
| | - Xin Bai
- Department of Pathology, Affiliated Hospital of Yanbian University, Jilin, China
| | - Hua Li
- Department of Pathology, Affiliated Hospital of Yanbian University, Jilin, China.,Division of GI and Hepatology, Departments of Internal Medicine, The Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Xiangdan Li
- Center of Morphological Experiment, Medical College of Yanbian University, Jilin, China
| | - Dongyuan Xu
- Center of Morphological Experiment, Medical College of Yanbian University, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Jilin, China
| |
Collapse
|
6
|
Shi L, Jiang M, Li M, Shang X, Li X, Huang M, Wu Y, Qiao C, Wang X, Tian X, Shi Y, Wang Z. Regulation of HIF-1α and p53 in stress responses in the subterranean rodents Lasiopodomys mandarinus and Lasiopodomys brandtii (Rodentia: Cricetidae). ZOOLOGIA 2021. [DOI: 10.3897/zoologia.38.e58607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The response mechanism and interaction patterns of HIF-1α and p53 in animals in an hypoxic environment are crucial for their hypoxic tolerance and adaptation. Many studies have shown that underground rodents have better hypoxic adaptation characteristics. However, the mechanism by which HIF-1α and p53 in underground rodents respond to hypoxic environments compared with in ground rodents remains unclear. Further, whether a synergy between HIF-1α and p53 enables animals tolerate extremely hypoxic environments is unclear. We studied HIF-1α and p53 expression in the brain tissue and cell apoptosis in the hippocampal CA1 region during 6 hours of acute hypoxia (5% oxygen) in Lasiopodomys mandarinus (Milne-Edwards, 1871) and Lasiopodomys brandtii (Radde, 1861), two closely related small rodents with different life characteristics (underground and aboveground, respectively), using a comparative biology method to determine the mechanisms underlying their adaptation to this environment. Our results indicate that HIF-1α and p53 expression is more rapid in L. mandarinus than in L. brandtii under acute hypoxic environments, resulting in a significant synergistic effect in L. mandarinus. Correlation analysis revealed that HIF-1α expression and the apoptotic index of the hippocampal CA1 regions of the brain tissues of L. mandarinus and L. brandtii, both under hypoxia, were significantly negatively and positively correlated, respectively. Long-term existence in underground burrow systems could enable better adaptation to hypoxia in L. mandarinus than in L. brandtii. We speculate that L. mandarinus can quickly eliminate resulting damage via the synergistic effect of p53 and HIF-1α in response to acute hypoxic environments, helping the organism quickly return to a normal state after the stress.
Collapse
|
7
|
Lymphocytic microparticles suppress retinal angiogenesis via targeting Müller cells in the ischemic retinopathy mouse model. Exp Cell Res 2021; 399:112470. [PMID: 33434529 DOI: 10.1016/j.yexcr.2021.112470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 11/22/2022]
Abstract
Retinopathy of prematurity (ROP) is the primary cause of visual impairment and vision loss in premature infants, which results from the formation of aberrant retinal neovascularization (NV). An emerging body of evidence has shown that Müller cells are the predominant source of vascular endothelial growth factor (VEGF), which also serves as a chemoattractant for monocyte/macrophage lineage. The recruitment of macrophages is increased during retinal NV, and they exert a pro-angiogenic role in ROP. We have shown that lymphocytic microparticles (microvesicles; LMPs) derived from apoptotic human T lymphocytes possess strong angiogenesis-inhibiting properties. Here, we investigated the effect of LMPs on the chemotactic capacity of Müller cells in vitro using rat Müller cell rMC-1 and mouse macrophage RAW 264.7. In addition, the impact of LMPs was determined in vivo using a mouse model of oxygen-induced ischemic retinopathy (OIR). The results revealed that LMPs were internalized by rMC-1 and reduced their cell proliferation dose-dependently without inducing cell apoptosis. LMPs inhibited the chemotactic capacity of rMC-1 on RAW 264.7 via reducing the expression of VEGF. Moreover, LMPs attenuated pathological retinal NV and the infiltration of macrophages in vivo. LMPs downregulated ERK1/2 and HIF-1α both in vitro and in vivo. These findings expand our understanding of the effects of LMPs, providing evidence of LMPs as a promising therapeutic approach for the treatment of retinal NV diseases.
Collapse
|
8
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
9
|
In Vivo Imaging of Hypoxia and Neoangiogenesis in Experimental Syngeneic Hepatocellular Carcinoma Tumor Model Using Positron Emission Tomography. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4952372. [PMID: 32832549 PMCID: PMC7428931 DOI: 10.1155/2020/4952372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022]
Abstract
Introduction Hypoxia-induced ανβ3 integrin and aminopeptidase N (APN/CD13) receptor expression play an important role in tumor neoangiogenesis. APN/CD13-specific 68Ga-NOTA-c(NGR), ανβ3 integrin-specific 68Ga-NODAGA-[c(RGD)]2, and hypoxia-specific 68Ga-DOTA-nitroimidazole enable the in vivo detection of the neoangiogenic process and the hypoxic regions in the tumor mass using positron emission tomography (PET) imaging. The aim of this study was to evaluate whether 68Ga-NOTA-c(NGR) and 68Ga-DOTA-nitroimidazole allow the in vivo noninvasive detection of the temporal changes of APN/CD13 expression and hypoxia in experimental He/De tumors using positron emission tomography. Materials and Methods 5 × 106 hepatocellular carcinoma (He/De) cells were used for the induction of a subcutaneous tumor model in Fischer-344 rats. He/De tumor-bearing animals were anaesthetized, and 90 min after intravenous injection of 10.2 ± 1.1 MBq 68Ga-NOTA-c(NGR) or 68Ga-NODAGA-[c(RGD)]2 (as angiogenesis tracers) or 68Ga-DOTA-nitroimidazole (for hypoxia imaging), whole-body PET/MRI scans were performed. Results Hypoxic regions and angiogenic markers (αvβ3 integrin and APN/CD13) were determined using 68Ga-NOTA-c(NGR), 68Ga-DOTA-nitroimidazole, and 68Ga-NODAGA-[c(RGD)]2 in subcutaneously growing He/De tumors in rats. 68Ga-NOTA-c(NGR) showed the strong APN/CD13 positivity of He/De tumors in vivo, by which observation was confirmed by western blot analysis. By the qualitative analysis of PET images, heterogenous accumulation was found inside He/De tumors using all radiotracers. Significantly (p ≤ 0.01) higher SUVmean and SUVmax values were found in the radiotracer avid regions of the tumors than those of the nonavid areas using hypoxia and angiogenesis-specific radiopharmaceuticals. Furthermore, a strong correlation was found between the presence of angiogenic markers, the appearance of hypoxic regions, and the tumor volume using noninvasive in vivo PET imaging. Conclusion 68Ga-DOTA-nitroimidazole and 68Ga-NOTA-c(NGR) are suitable diagnostic radiotracers for the detection of the temporal changes of hypoxic areas and neoangiogenic molecule (CD13) expression, which vary during tumor growth in a hepatocellular carcinoma model.
Collapse
|
10
|
Soler L, Stella A, Seva J, Pallarés FJ, Lahjouji T, Burlet-Schiltz O, Oswald IP. Proteome changes induced by a short, non-cytotoxic exposure to the mycoestrogen zearalenone in the pig intestine. J Proteomics 2020; 224:103842. [PMID: 32454255 DOI: 10.1016/j.jprot.2020.103842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/28/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Intestinal epithelial homeostasis is regulated by a complex network of signaling pathways. Among them is estrogen signaling, important for the proliferation and differentiation of epithelial cells, immune signaling and metabolism. The mycotoxin zearalenone (ZEN) is an estrogen disruptor naturally found in food and feed. The exposure of the intestine to ZEN has toxic effects including alteration of the immune status and is possibly implicated in carcinogenesis, but the molecular mechanisms linked with these effects are not clear. Our objective was to explore the proteome changes induced by a short, non-cytotoxic exposure to ZEN in the intestine using pig jejunal explants. Our results indicated that ZEN promotes little proteome changes, but significantly related with an induction of ERα signaling and a consequent disruption of highly interrelated signaling cascades, such as NF-κB, ERK1/2, CDX2 and HIF1α. The toxicity of ZEN leads also to an altered immune status characterized by the activation of the chemokine CXCR4/SDF-1 axis and an accumulation of MHC-I proteins. Our results connect the estrogen disrupting activity of ZEN with its intestinal toxic effect, associating the exposure to ZEN with cell-signaling disorders similar to those involved in the onset and progression of diseases such as cancer and chronic inflammatory disorders. SIGNIFICANCE: The proteomics results presented in our study indicate that the endocrine disruptor activity of ZEN is able to regulate a cascade of highly inter-connected signaling events essential for the small intestinal crypt-villus cycle and immune status. These molecular mechanisms are also implicated in the onset and progress of intestinal immune disorders and cancer indicating that exposure to ZEN could play an important role in intestinal pathogenesis.
Collapse
Affiliation(s)
- Laura Soler
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Alexandre Stella
- Toulouse Proteomics Infrastructure, Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Juan Seva
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Francisco Jose Pallarés
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Tarek Lahjouji
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Toulouse Proteomics Infrastructure, Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
11
|
Wilson KS, Buist H, Suveizdyte K, Liles JT, Budas GR, Hughes C, MacLean MR, Johnson M, Church AC, Peacock AJ, Welsh DJ. Apoptosis signal-regulating kinase 1 inhibition in in vivo and in vitro models of pulmonary hypertension. Pulm Circ 2020; 10:2045894020922810. [PMID: 32523684 PMCID: PMC7235684 DOI: 10.1177/2045894020922810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension, group 1 of the pulmonary hypertension disease family, involves pulmonary vascular remodelling, right ventricular dysfunction and cardiac failure. Oxidative stress, through activation of mitogen-activated protein kinases is implicated in these changes. Inhibition of apoptosis signal-regulating kinase 1, an apical mitogen-activated protein kinase, prevented pulmonary arterial hypertension developing in rodent models. Here, we investigate apoptosis signal-regulating kinase 1 in pulmonary arterial hypertension by examining the impact that its inhibition has on the molecular and cellular signalling in established disease. Apoptosis signal-regulating kinase 1 inhibition was investigated in in vivo pulmonary arterial hypertension and in vitro pulmonary hypertension models. In the in vivo model, male Sprague Dawley rats received a single subcutaneous injection of Sugen SU5416 (20 mg/kg) prior to two weeks of hypobaric hypoxia (380 mmHg) followed by three weeks normoxia (Sugen/hypoxic), then animals were either maintained for three weeks on control chow or one containing apoptosis signal-regulating kinase 1 inhibitor (100 mg/kg/day). Cardiovascular measurements were carried out. In the in vitro model, primary cultures of rat pulmonary artery fibroblasts and rat pulmonary artery smooth muscle cells were maintained in hypoxia (5% O2) and investigated for proliferation, migration and molecular signalling in the presence or absence of apoptosis signal-regulating kinase 1 inhibitor. Sugen/hypoxic animals displayed significant pulmonary arterial hypertension compared to normoxic controls at eight weeks. Apoptosis signal-regulating kinase 1 inhibitor decreased right ventricular systolic pressure to control levels and reduced muscularised vessels in lung tissue. Apoptosis signal-regulating kinase 1 inhibition was found to prevent hypoxia-induced proliferation, migration and cytokine release in rat pulmonary artery fibroblasts and also prevented rat pulmonary artery fibroblast-induced rat pulmonary artery smooth muscle cell migration and proliferation. Apoptosis signal-regulating kinase 1 inhibition reversed pulmonary arterial hypertension in the Sugen/hypoxic rat model. These effects may be a result of intrinsic changes in the signalling of adventitial fibroblast.
Collapse
Affiliation(s)
- Kathryn S Wilson
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Hanna Buist
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kornelija Suveizdyte
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Colin Hughes
- Central Research Facility, University of Glasgow, Glasgow, UK
| | - Margaret R MacLean
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Martin Johnson
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Clydebank, UK
| | - Alistair C Church
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Clydebank, UK
| | - Andrew J Peacock
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Clydebank, UK
| | - David J Welsh
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Department of Biological and Biomedical Science, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
12
|
Nishigaki A, Kido T, Kida N, Kakita‐Kobayashi M, Tsubokura H, Hisamatsu Y, Okada H. Resveratrol protects mitochondrial quantity by activating SIRT1/PGC-1α expression during ovarian hypoxia. Reprod Med Biol 2020; 19:189-197. [PMID: 32273826 PMCID: PMC7138948 DOI: 10.1002/rmb2.12323] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Resveratrol is a well-known potent activator of sirtuin-1 (SIRT1). We investigated the direct effects of hypoxia and resveratrol on SIRT1/ peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) pathways, vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF)-1α, and mitochondrial quantity in a steroidogenic human ovarian granulosa-like tumor cell line (KGN) cells. METHODS KGN cells were cultured with cobalt chloride (CoCl2; a hypoxia-mimicking agent) and/or resveratrol. The mRNA and protein levels, protein secretion, and intracellular localization were assessed by real-time PCR, Western blot analysis, ELISA, and immunofluorescence staining, respectively. Mitochondrial quantity was measured based on the mitochondrial DNA (mtDNA) copy number. RESULTS CoCl2 simultaneously attenuated the levels of SIRT1 and mtDNA expression, and induced the levels of VEGF protein production. In contrast, resveratrol significantly increased the levels of SIRT1 and mtDNA copy number, but reduced VEGF production in normoxia. Resveratrol could recover CoCl2-suppressed SIRT1 and mtDNA expression and antagonize CoCl2-induced VEGF production. CoCl2 treatment resulted in a downregulation of PGC-1α expression, and this effect was recovered by resveratrol. Resveratrol significantly suppressed the production of the CoCl2-induced HIF-1α and VEGF proteins. CONCLUSION These results suggest that resveratrol improves mitochondrial quantity by activating the SIRT1/PGC-1α pathway and inhibits VEGF induction through HIF-1α under hypoxic conditions.
Collapse
Affiliation(s)
- Akemi Nishigaki
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Takeharu Kido
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Naoko Kida
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | | | - Hiroaki Tsubokura
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Yoji Hisamatsu
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Hidetaka Okada
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| |
Collapse
|
13
|
Dengler F. Activation of AMPK under Hypoxia: Many Roads Leading to Rome. Int J Mol Sci 2020; 21:ijms21072428. [PMID: 32244507 PMCID: PMC7177550 DOI: 10.3390/ijms21072428] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is known as a pivotal cellular energy sensor, mediating the adaptation to low energy levels by deactivating anabolic processes and activating catabolic processes in order to restore the cellular ATP supply when the cellular AMP/ATP ratio is increased. Besides this well-known role, it has also been shown to exert protective effects under hypoxia. While an insufficient supply with oxygen might easily deplete cellular energy levels, i.e., ATP concentration, manifold other mechanisms have been suggested and are heavily disputed regarding the activation of AMPK under hypoxia independently from cellular AMP concentrations. However, an activation of AMPK preceding energy depletion could induce a timely adaptation reaction preventing more serious damage. A connection between AMPK and the master regulator of hypoxic adaptation via gene transcription, hypoxia-inducible factor (HIF), has also been taken into account, orchestrating their concerted protective action. This review will summarize the current knowledge on mechanisms of AMPK activation under hypoxia and its interrelationship with HIF.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Veterinary Physiology, University of Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
14
|
Effects of Environmental pH on the Growth of Gastric Cancer Cells. Gastroenterol Res Pract 2020; 2020:3245359. [PMID: 32211041 PMCID: PMC7085403 DOI: 10.1155/2020/3245359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background Proton pump inhibitor (PPI) and other acid-suppressing drugs are widely used in the treatment of gastrointestinal ulcer, upper gastrointestinal bleeding, gastritis, and gastric cancer (GC). About 80% of GC patients receive acid suppression treatment. PPI suppresses the production of gastric acid by inhibiting the function of H+/K+-ATPase in gastric parietal cells and raises the pH value to achieve therapeutic purposes. Some studies have found that PPI had a certain antitumor effect in the proliferation and apoptosis of tumor cells. But the effects of environmental pH on the growth of GC cells and its mechanism are unknown. Therefore, we hoped to find the effects of culture medium pH on the biological behavior of GC cells by in vitro experiments and provide guidance for the use of acid-suppressing drugs in GC patients. Aims We aimed to observe the effects of pH changes in GC cell culture medium on the cell biological behavior of cancer cells and to analyze the potential mechanisms. We hoped to find out the effect of acid suppression on the growth of GC cells. Methods The GC cell lines (SGC-7901 and MKN45) were used as the research object. We adjusted the pH value in the cell culture medium to observe the changes in cell viability (MTT), apoptosis (flow cytometry), and invasion (Transwell) at pH 6, pH 7, and pH 8. qRT-PCR and western blot (WB) assays were used to determine the expression changes of genes and proteins (mTOR, AKT, Wnt, Glut, and HIF-1α) at pH 6, pH 7, and pH 8. Results The results of MTT showed that the viability of SGC-7901 and MKN45 in the pH 8.0 group was significantly weaker than that in the pH 6.0 or pH 7.0 group (P < 0.001). Flow cytometry results showed that the apoptosis of SGC-7901 and MKN45 in the pH 8.0 group was more obvious than that in the pH 6.0 or pH 7.0 group (P < 0.001). Flow cytometry results showed that the apoptosis of SGC-7901 and MKN45 in the pH 8.0 group was more obvious than that in the pH 6.0 or pH 7.0 group (P < 0.001). Flow cytometry results showed that the apoptosis of SGC-7901 and MKN45 in the pH 8.0 group was more obvious than that in the pH 6.0 or pH 7.0 group (α) at pH 6, pH 7, and pH 8. P < 0.001). Flow cytometry results showed that the apoptosis of SGC-7901 and MKN45 in the pH 8.0 group was more obvious than that in the pH 6.0 or pH 7.0 group ( Conclusions Compared with the microacid environment, the microalkaline environment inhibited the viability, invasion, and expression of genes and proteins (mTOR, AKT, Wnt, Glut, and HIF-1α) but promoted the apoptosis of GC cells and thus inhibited the growth of GC.α) at pH 6, pH 7, and pH 8.
Collapse
|
15
|
Vallée A, Lecarpentier Y, Vallée R, Guillevin R, Vallée JN. Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21030820. [PMID: 32012797 PMCID: PMC7037737 DOI: 10.3390/ijms21030820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is considered as the main worldwide cause of blindness in elderly adults. Exudative AMD type represents 10 to 15% of macular degeneration cases, but is the main cause of vision loss and blindness. Circadian rhythm changes are associated with aging and could further accelerate it. However, the link between circadian rhythms and exudative AMD is not fully understood. Some evidence suggests that dysregulation of circadian functions could be manifestations of diseases or could be risk factors for the development of disease in elderly adults. Biological rhythms are complex systems interacting with the environment and control several physiological pathways. Recent findings have shown that the dysregulation of circadian rhythms is correlated with exudative AMD. One of the main pathways involved in exudative AMD is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving the circadian expression of genes involved in physiological and metabolic functions. In exudative AMD, the increase of the canonical WNT/β-catenin pathway is enhanced by the dysregulation of circadian rhythms. Exudative AMD progression is associated with major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, of aerobic glycolysis. This review focuses on the interest of circadian rhythm dysregulation in exudative AMD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France
| | - Rodolphe Vallée
- University Hospital Group of Paris-Seine-Saint-Denis, APHP, University of Paris-13 Sorbonne Paris-Cité, 93000 Paris, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, 86021 Poitiers, France
| |
Collapse
|
16
|
MicroRNA-574-5p in gastric cancer cells promotes angiogenesis by targeting protein tyrosine phosphatase non-receptor type 3 (PTPN3). Gene 2020; 733:144383. [PMID: 31972307 DOI: 10.1016/j.gene.2020.144383] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
Abstract
We elucidate in this study that up-regulation of miR-574-5p in gastric cancer cells under hypoxic conditions contributed to angiogenesis. We found that miR-574-5p and HIF-1α were up-regulated in gastric cancer cells cultured under 2% O2 or in medium containing CoCl2, and in muscle tissues of mice injected with NaNO2, indicating up-regulation of miR-574-5p in vitro or in vivo in response to hypoxic conditions. We hypothesized that up-regulation of miR-574-5p could promote angiogenesis. Transfection of gastric cancer cells with miR-574-5p mimics or inhibitor resulted in increase or decrease in the expression of VEGFA. Viability, migration, invasion and tube formation of HUVECs cultured with conditioned medium from SGC/574 cells transfected with miR-574-5p inhibitor were reduced. Tube formation of HUVECs cultured with conditioned medium from SGC-7901 cells transfected with miR-574-5p mimics was increased. An in vivo study demonstrated that inhibition of miR-574-5p in the tumor xenografts of mice reduced the expression of CD31 one of the endothelial cell markers. We identified PTPN3 a tyrosine phosphatase as a target of miR-574-5p that bound to the 3'UTR of PTPN3 mRNA to inhibit the expression of PTPN3. Furthermore, the data in this study demonstrated that inhibition of PTPN3 in gastric cancer cells enhanced phosphorylation of p44/42 MAPKs and promoted angiogenesis. We conclude that miR-574-5p in gastric cancer cells promoted angiogenesis via enhancing phosphorylation of p44/42 MAPKs by miR-574-5p inhibition of PTPN3 expression.
Collapse
|
17
|
Tian Y, Wen H, Qi X, Zhang X, Li Y. Identification of mapk gene family in Lateolabrax maculatus and their expression profiles in response to hypoxia and salinity challenges. Gene 2019; 684:20-29. [DOI: 10.1016/j.gene.2018.10.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
|
18
|
BRCA1-IRIS promotes human tumor progression through PTEN blockade and HIF-1α activation. Proc Natl Acad Sci U S A 2018; 115:E9600-E9609. [PMID: 30254159 PMCID: PMC6187201 DOI: 10.1073/pnas.1807112115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spontaneous overexpression of endogenous IRIS, an alternatively spliced product of the tumor suppressor gene BRCA1, allows it to function as an oncoprotein that stimulates a potentially lethal outcome, i.e. metastasis of human cancer cells to tissues served, in part, by the arterial circulation. It does so by suppressing phosphatase and tensin homolog (PTEN) mRNA synthesis, thereby stabilizing and activating HIF-1α in normoxic cells. Thus, this study provides a strong rationale for exploring the therapeutic value of interfering with spontaneously overexpressed IRIS function in multiple types of tumors that can naturally overexpress it. BRCA1 is an established breast and ovarian tumor suppressor gene that encodes multiple protein products whose individual contributions to human cancer suppression are poorly understood. BRCA1-IRIS (also known as “IRIS”), an alternatively spliced BRCA1 product and a chromatin-bound replication and transcription regulator, is overexpressed in various primary human cancers, including breast cancer, lung cancer, acute myeloid leukemia, and certain other carcinomas. Its naturally occurring overexpression can promote the metastasis of patient-derived xenograft (PDX) cells and other human cancer cells in mouse models. The IRIS-driven metastatic mechanism results from IRIS-dependent suppression of phosphatase and tensin homolog (PTEN) transcription, which in turn perturbs the PI3K/AKT/GSK-3β pathway leading to prolyl hydroxylase-independent HIF-1α stabilization and activation in a normoxic environment. Thus, despite the tumor-suppressing genetic origin of IRIS, its properties more closely resemble those of an oncoprotein that, when spontaneously overexpressed, can, paradoxically, drive human tumor progression.
Collapse
|
19
|
André-Lévigne D, Modarressi A, Pepper MS, Pittet-Cuénod B. Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair. Int J Mol Sci 2017; 18:ijms18102149. [PMID: 29036938 PMCID: PMC5666831 DOI: 10.3390/ijms18102149] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
Our understanding of the role of oxygen in cell physiology has evolved from its long-recognized importance as an essential factor in oxidative metabolism to its recognition as an important player in cell signaling. With regard to the latter, oxygen is needed for the generation of reactive oxygen species (ROS), which regulate a number of different cellular functions including differentiation, proliferation, apoptosis, migration, and contraction. Data specifically concerning the role of ROS-dependent signaling in cutaneous wound repair are very limited, especially regarding wound contraction. In this review we provide an overview of the current literature on the role of molecular and reactive oxygen in the physiology of wound repair as well as in the pathophysiology and therapy of chronic wounds, especially under ischemic and hyperglycemic conditions.
Collapse
Affiliation(s)
- Dominik André-Lévigne
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland.
| | - Ali Modarressi
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland.
| | - Michael S Pepper
- Department of Human Genetics and Development, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
- SAMRC Extramural Unit for Stem Cell Research and Therapy, and Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Brigitte Pittet-Cuénod
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland.
| |
Collapse
|
20
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. PPARγ agonists: Potential treatments for exudative age-related macular degeneration. Life Sci 2017; 188:123-130. [PMID: 28887057 DOI: 10.1016/j.lfs.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
Abstract
Choroidal neovascularization (CNV) characterizes the progression of exudative age-related macular degeneration (AMD) with the deterioration in the central vision. Vascular inflammation, and overproduction of inflammatory cytokines, growth factors and aberrant endothelial cell migration, initiate defective blood vessel proliferation in exudative AMD. CNV formation is initiated by the interplay between inflammation, the hallmark of exudative AMD, and the activation of WNT/β-catenin pathway. Upregulation of WNT/β-catenin pathway involves activation of PI3K/Akt pathway and then the Warburg effect to produce lactate. Lactate production generates VEGF expression and then participates to the initiation of CNV in exudative AMD. WNT/β-catenin pathway and PPARγ act in an opposite manner in several diseases. We focus this review on the interplay between PPARγ and canonical WNT/β-catenin pathway and the anti-inflammatory role of PPARγ in exudative AMD. In exudative AMD, PPARγ agonists downregulate inflammation and the WNT/β-catenin pathway. PPARγ agonists can appear as promising treatment against the initiation and the progression of CNV in exudative AMD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- Université de Poitiers et CHU de Poitiers, DACTIM, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, Futuroscope, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, France; CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
21
|
Khakshour S, Labrecque MP, Esmaeilsabzali H, Lee FJS, Cox ME, Park EJ, Beischlag TV. Retinoblastoma protein (Rb) links hypoxia to altered mechanical properties in cancer cells as measured by an optical tweezer. Sci Rep 2017; 7:7833. [PMID: 28798482 PMCID: PMC5552853 DOI: 10.1038/s41598-017-07947-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxia modulates actin organization via multiple pathways. Analyzing the effect of hypoxia on the biophysical properties of cancer cells is beneficial for studying modulatory signalling pathways by quantifying cytoskeleton rearrangements. We have characterized the biophysical properties of human LNCaP prostate cancer cells that occur in response to loss of the retinoblastoma protein (Rb) under hypoxic stress using an oscillating optical tweezer. Hypoxia and Rb-loss increased cell stiffness in a fashion that was dependent on activation of the extracellular signal-regulated kinase (ERK) and the protein kinase B (AKT)- mammalian target of rapamycin (MTOR) pathways. Pharmacological inhibition of MEK1/2, AKT or MTOR impeded hypoxia-inducible changes in the actin cytoskeleton and inhibited cell migration in Rb-deficient cells conditioned with hypoxia. These results suggest that loss of Rb in transformed hypoxic cancer cells affects MEK1/2-ERK/AKT-MTOR signalling and promotes motility. Thus, the mechanical characterization of cancer cells using an optical tweezer provides an additional technique for cancer diagnosis/prognosis and evaluating therapeutic performance.
Collapse
Affiliation(s)
- S Khakshour
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada
| | - M P Labrecque
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - H Esmaeilsabzali
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada
| | - F J S Lee
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - M E Cox
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - E J Park
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada. .,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - T V Beischlag
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
22
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic Glycolysis Hypothesis Through WNT/Beta-Catenin Pathway in Exudative Age-Related Macular Degeneration. J Mol Neurosci 2017; 62:368-379. [PMID: 28689265 DOI: 10.1007/s12031-017-0947-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
Exudative age-related macular degeneration (AMD) is characterized by molecular mechanisms responsible for the initiation of choroidal neovascularization (CNV). Inflammatory processes are associated with upregulation of the canonical WNT/beta-catenin pathway in exudative AMD. We focus this review on the link between WNT/beta-catenin pathway activation and neovascular progression in exudative AMD through activation of aerobic glycolysis for production of angiogenic factors. Increased WNT/beta-catenin pathway involves hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). WNT/beta-catenin pathway stimulates PI3K/Akt pathway and then HIF-1alpha which activates glycolytic enzymes: glucose transporter (Glut), pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDH-A), and monocarboxylate lactate transporter (MCT-1). This phenomenon is called aerobic glycolysis or the Warburg effect. Consequently, phosphorylation of PDK-1 inhibits the pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-CoA in mitochondria and only a part of acetyl-CoA can enter the tricarboxylic acid cycle. Cytosolic pyruvate is converted into lactate through the action of LDH-A. In exudative AMD, high level of cytosolic lactate is correlated with increase of VEGF expression, the angiogenic factor of CNV. Photoreceptors in retina cells can metabolize glucose through aerobic glycolysis to protect them against oxidative damage, as cancer cells do.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.
| | | | - Rémy Guillevin
- DACTIM, Laboratoire de Mathématiques et Applications, Université de Poitiers et CHU de Poitiers, UMR CNRS 7348, SP2MI Futuroscope, Chasseneuil-du-Poitou, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
23
|
Abstract
Adipose tissue is an endocrine organ which is responsible for postprandial uptake of glucose and fatty acids, consequently producing a broad range of adipokines controlling several physiological functions like appetite, insulin sensitivity and secretion, immunity, coagulation, and vascular tone, among others. Many aspects of adipose tissue pathophysiology in metabolic diseases have been described in the last years. Recent data suggest two main factors for adipose tissue dysfunction: accumulation of nonesterified fatty acids and their secondary products and hypoxia. Both of these factors are thought to be on the basis of low-grade inflammatory activation, further increasing metabolic dysregulation in adipose tissue. In turn, inflammation is involved in the inhibition of substrate uptake, alteration of the secretory profile, stimulation of angiogenesis, and recruitment of further inflammatory cells, which creates an inflammatory feedback in the tissue and is responsible for long-term establishment of insulin resistance.
Collapse
Affiliation(s)
- Paulo Matafome
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, Coimbra, Portugal.
| | - Raquel Seiça
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
Adipose Tissue Hypoxia in Obesity and Its Impact on Preadipocytes and Macrophages: Hypoxia Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:305-326. [PMID: 28585205 DOI: 10.1007/978-3-319-48382-5_13] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obese subjects exhibit lower adipose tissue oxygen consumption in accordance with the lower adipose tissue blood flow. Thus, compared with lean subjects, obese subjects have 44% lower capillary density and 58% lower vascular endothelial growth factor (VEGF). The VEGF expression together with hypoxia-inducible transcription factor-1 (HIF-1) activity also requires phosphatidylinositol 3-kinase (PI3K)- and target of rapamycin (TOR)-mediated signaling. HIF-1alpha is an important signaling molecule for hypoxia to induce the inflammatory responses. Hypoxia affects a number of biological functions, such as angiogenesis, cell proliferation, apoptosis, inflammation and insulin resistance. Additionally, reactive oxygen radical (ROS) generation at mitochondria is responsible for propagation of the hypoxic signal. Actually mitochondrial ROS (mtROS) production, but not oxygen consumption is required for hypoxic HIF-1alpha protein stabilization. Adipocyte mitochondrial oxidative capacity is reduced in obese compared with non-obese adults. In this respect, mitochondrial dysfunction of adipocyte is associated with the overall adiposity. Furthermore, hypoxia also inhibits macrophage migration from the hypoxic adipose tissue. Alterations in oxygen availability of adipose tissue directly affect the macrophage polarization and are responsible from dysregulated adipocytokines production in obesity. Hypoxia also inhibits adipocyte differentiation from preadipocytes. In addition to stressed adipocytes, hypoxia contributes to immune cell immigration and activation which further aggravates adipose tissue fibrosis. Fibrosis is initiated in response to adipocyte hypertrophy in obesity.
Collapse
|
25
|
Pavan AR, Silva GDBD, Jornada DH, Chiba DE, Fernandes GFDS, Man Chin C, Dos Santos JL. Unraveling the Anticancer Effect of Curcumin and Resveratrol. Nutrients 2016; 8:nu8110628. [PMID: 27834913 PMCID: PMC5133053 DOI: 10.3390/nu8110628] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022] Open
Abstract
Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | | | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | - Chung Man Chin
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| |
Collapse
|
26
|
Stabilization of Hypoxia-inducible Factor by DMOG Inhibits Development of Chronic Hypoxia-Induced Right Ventricular Remodeling. J Cardiovasc Pharmacol 2016; 67:68-75. [PMID: 26485211 DOI: 10.1097/fjc.0000000000000315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND One important determinant of longevity in congenital heart disease is right ventricular (RV) function, and this is especially true in cyanotic congenital heart disease. However, there is a paucity of data concerning right ventricular remodeling (RVR) in the setting of chronic hypoxia. Dimethyloxalylglycine (DMOG) is a competitive inhibitor of hypoxia-inducible factor (HIF)-hydroxylated prolyl hydroxylase and has been shown to play an important role against ischemia-reperfusion myocardial injury. METHODS We tested the hypothesis that DMOG prevents the development RVR after chronic hypoxia exposure. Rats were injected with saline or DMOG and exposed to room air or continued hypoxia for 4 weeks. In addition, we explored the response of myocardial erythropoietin and its receptor to hypoxic exposure. RESULTS Treatment with DMOG attenuated myocardial fibrosis, apoptosis, and oxidative stress, which lead to enhanced RV contractile function. As an endpoint of HIF-dependent cardioprotection, a novel pathway in which nuclear factor kappa B links HIF-1 transcription was defined. CONCLUSIONS This study supports a role for HIF-1 stabilizers in the treatment of RVR and brings into question the commonly held concept that RVR follows a linear relationship with increased RV afterload.
Collapse
|
27
|
Lévigne D, Modarressi A, Krause KH, Pittet-Cuénod B. NADPH oxidase 4 deficiency leads to impaired wound repair and reduced dityrosine-crosslinking, but does not affect myofibroblast formation. Free Radic Biol Med 2016; 96:374-84. [PMID: 27140231 DOI: 10.1016/j.freeradbiomed.2016.04.194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/22/2022]
Abstract
NADPH oxidases (NOX) mediate redox signaling by generating superoxide and/or hydrogen peroxide, which are involved in biosynthetic pathways, e.g. thyroid hormone generation, dityrosine crosslinking, as well as bacterial killing. Data investigating the role of NOX enzymes in cutaneous wound repair is limited and specifically their function in skin myofibroblast expression is unknown. The isoform NOX4 was recently shown to be a pre-requisite for the differentiation of cardiac and pulmonary myofibroblasts. In this study we investigate the role of NOX4 in wound repair using a wound model in NOX4 knockout mice (n=16) and wildtype mice (n=16). Wounds were photographed daily until complete wound closure. Mice were sacrificed at day 3, 7, 14; wound tissue was harvested. NOX4-deficient mice healed significantly slower (22 days, SD=1.9) than wild-type mice (17 days, SD=1.4, p<0.005). However, there was no difference in myofibroblast expression. Strong dityrosine formation was observed, but was significantly weaker in NOX4-/- mice (p<0.05). NOX2, HIF1α and CD31 expression was significantly weaker in NOX4-/- mice (p<0.05). In this study we show for the first time that NOX4 plays a role in cutaneous wound repair. Our data suggests that NOX4 mediates HIF1α expression and neoangiogenesis during wound repair. NOX4 deletion led to a decreased expression of NOX2, implying a role of NOX4 in phagocytic cell recruitment. NOX4 was required for effective wound contraction but not myofibroblast expression. We suggest that myofibroblast contraction in NOX4-deficient mice is less effective in contracting the wound because of insufficient dityrosine-crosslinking of the ECM, providing the first indication for a physiological function of dityrosine crosslinking in higher animals.
Collapse
Affiliation(s)
- Dominik Lévigne
- Division of Plastic, Reconstructive & Aesthetic Surgery, Geneva University Hospitals, Geneva, Switzerland.
| | - Ali Modarressi
- Division of Plastic, Reconstructive & Aesthetic Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brigitte Pittet-Cuénod
- Division of Plastic, Reconstructive & Aesthetic Surgery, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
28
|
Hicks KC, Patel TB. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes. J Biol Chem 2016; 291:16787-801. [PMID: 27281823 DOI: 10.1074/jbc.m116.714139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
The α-subunits of hypoxia-inducible factors (HIF1α and HIF2α) promote transcription of genes that regulate glycolysis and cell survival and growth. Sprouty2 (Spry2) is a modulator of receptor tyrosine kinase signaling and inhibits cell proliferation by a number of different mechanisms. Because of the seemingly opposite actions of HIFα subunits and Spry2 on cellular processes, we investigated whether Spry2 regulates the levels of HIF1α and HIF2α proteins. In cell lines from different types of tumors in which the decreased protein levels of Spry2 have been associated with poor prognosis, silencing of Spry2 elevated HIF1α protein levels. Increases in HIF1α and HIF2α protein levels due to silencing of Spry2 also up-regulated HIFα target genes. Using HIF1α as a prototype, we show that Spry2 decreases HIF1α stability and enhances the ubiquitylation of HIF1α by a von Hippel-Lindau protein (pVHL)-dependent mechanism. Spry2 also exists in a complex with HIF1α. Because Spry2 can also associate with pVHL, using a mutant form of Spry2 (3P/3A-Spry2) that binds HIF1α, but not pVHL, we show that WT-Spry2, but not the 3P/3A-Spry2 decreases HIF1α protein levels. In accordance, expression of WT-Spry2, but not 3P/3A-Spry2 results in a decrease in HIF1α-sensitive glucose uptake. Together our data suggest that Spry2 acts as a scaffold to bring more pVHL/associated E3 ligase in proximity of HIF1α and increase its ubiquitylation and degradation. This represents a novel action for Spry2 in modulating biological processes regulated by HIFα subunits.
Collapse
Affiliation(s)
- Kristin C Hicks
- From the Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois 60153, and
| | - Tarun B Patel
- the Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| |
Collapse
|
29
|
Park EC, Rongo C. The p38 MAP kinase pathway modulates the hypoxia response and glutamate receptor trafficking in aging neurons. eLife 2016; 5. [PMID: 26731517 PMCID: PMC4775213 DOI: 10.7554/elife.12010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023] Open
Abstract
Neurons are sensitive to low oxygen (hypoxia) and employ a conserved pathway to combat its effects. Here, we show that p38 MAP Kinase (MAPK) modulates this hypoxia response pathway in C. elegans. Mutants lacking p38 MAPK components pmk-1 or sek-1 resemble mutants lacking the hypoxia response component and prolyl hydroxylase egl-9, with impaired subcellular localization of Mint orthologue LIN-10, internalization of glutamate receptor GLR-1, and depression of GLR-1-mediated behaviors. Loss of p38 MAPK impairs EGL-9 protein localization in neurons and activates the hypoxia-inducible transcription factor HIF-1, suggesting that p38 MAPK inhibits the hypoxia response pathway through EGL-9. As animals age, p38 MAPK levels decrease, resulting in GLR-1 internalization; this age-dependent downregulation can be prevented through either p38 MAPK overexpression or removal of CDK-5, an antagonizing kinase. Our findings demonstrate that p38 MAPK inhibits the hypoxia response pathway and determines how aging neurons respond to hypoxia through a novel mechanism. DOI:http://dx.doi.org/10.7554/eLife.12010.001 The brain accounts for 2% of our body weight, but consumes about 20% of our oxygen intake. This oxygen gluttony is due to the tremendous appetite of brain cells for energy, which neurons satisfy through oxygen-dependent (aerobic) metabolism. As a result, the loss of oxygen to the brain during a stroke, heart attack, or due to another medical condition can be very damaging to cells in the brain. Human and other animal cells use a communication system called the hypoxia response pathway to sense oxygen and trigger a protective response when oxygen is low. This pathway includes an enzyme called prolyl hydroxylase, which senses oxygen and modifies another protein in the pathway that regulates the production of enzymes involved in metabolism. This alters the balance of enzymes involved in aerobic and oxygen-independent (anaerobic) metabolism in the cell. However, it is not clear how the activity of the prolyl hydroxylase is regulated. Much of our knowledge about the hypoxia response pathway has been gained from studies using a small worm called C. elegans. This worm uses the pathway to cope with hypoxia in the harsh environment of the soil. Mutant worms that lack the prolyl hydroxylase have several abnormalities including higher levels of anaerobic metabolism even in the presence of oxygen, and defects in the connections between neurons. Park and Rongo used C. elegans to study the pathway in more detail. The experiments show that another enzyme called p38 MAPK activates the prolyl hydroxylase. Mutant worms that lack this enzyme have similar abnormalities in the hypoxia response pathway as animals that lack the prolyl hydroxylase. In normal worms, decreasing levels of p38 MAPK as the animals grow older contribute to the decline in the nervous system. The p38 MAPK enzyme appears to work by regulating the activity of the prolyl hydroxylase and its location inside neurons. These findings provide a new target for the development of drugs that may help to protect us from tissue damage caused by hypoxia. Future challenges are to find out what activates p38 MAPK, and how it influences the location of prolyl hydroxylase in neurons. DOI:http://dx.doi.org/10.7554/eLife.12010.002
Collapse
Affiliation(s)
- Eun Chan Park
- The Waksman Institute, Rutgers The State University of New Jersey, New Jersey, United States.,Department of Genetics, Rutgers The State University of New Jersey, New Jersey, United States
| | - Christopher Rongo
- The Waksman Institute, Rutgers The State University of New Jersey, New Jersey, United States.,Department of Genetics, Rutgers The State University of New Jersey, New Jersey, United States
| |
Collapse
|
30
|
Lee CS, Choi EY, Lee SC, Koh HJ, Lee JH, Chung JH. Resveratrol Inhibits Hypoxia-Induced Vascular Endothelial Growth Factor Expression and Pathological Neovascularization. Yonsei Med J 2015; 56:1678-85. [PMID: 26446654 PMCID: PMC4630060 DOI: 10.3349/ymj.2015.56.6.1678] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/03/2015] [Accepted: 01/19/2015] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To investigate the effects of resveratrol on the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in human adult retinal pigment epithelial (ARPE-19) cells, and on experimental choroidal neovascularization (CNV) in mice. MATERIALS AND METHODS ARPE-19 cells were treated with different concentrations of resveratrol and then incubated under hypoxic conditions with subsequent evaluation of cell viability, expression of HIF-1α, and expression of VEGF. The effects of resveratrol on the synthesis and degradation of hypoxia-induced HIF-1α were evaluated using inhibitors of the PI3K/Akt/mTOR and the ubiquitin proteasome pathways. In animal studies, CNV lesions were induced in C57BL/6 mice by laser photocoagulation. After 7 days of oral administration of resveratrol or vehicle, which began one day after CNV induction, image analysis was used to measure CNV areas on choroidal flat mounts stained with isolectin IB4. RESULTS In ARPE-19 cells, resveratrol significantly inhibited HIF-1α and VEGF in a dose-dependent manner, by blocking the PI3K/Akt/mTOR signaling pathway and by promoting proteasomal HIF-1α degradation. In mice experiments, orally administered resveratrol significantly inhibited CNV growth in a dose-dependent manner. CONCLUSION Resveratrol may have therapeutic value in the management of diseases involving pathological neovascularization.
Collapse
Affiliation(s)
- Christopher Seungkyu Lee
- The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Eun Young Choi
- Department of Biotechnology, College of Life Science, CHA University, Seongnam, Korea
| | - Sung Chul Lee
- The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Hyoung Jun Koh
- The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Joon Haeng Lee
- Myung-gok Eye Research Institute, Konyang University College of Medicine, Kim's Eye Hospital, Seoul, Korea
| | - Ji Hyung Chung
- Department of Biotechnology, College of Life Science, CHA University, Seongnam, Korea.
| |
Collapse
|
31
|
Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 2015; 5:378-89. [PMID: 26579469 PMCID: PMC4629436 DOI: 10.1016/j.apsb.2015.05.007] [Citation(s) in RCA: 1374] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) has been recognized as an important cancer drug target. Many recent studies have provided convincing evidences of strong correlation between elevated levels of HIF-1 and tumor metastasis, angiogenesis, poor patient prognosis as well as tumor resistance therapy. It was found that hypoxia (low O2 levels) is a common character in many types of solid tumors. As an adaptive response to hypoxic stress, hypoxic tumor cells activate several survival pathways to carry out their essential biological processes in different ways compared with normal cells. Recent advances in cancer biology at the cellular and molecular levels highlighted the HIF-1α pathway as a crucial survival pathway for which novel strategies of cancer therapy could be developed. However, targeting the HIF-1α pathway has been a challenging but promising progresses have been made in the past twenty years. This review summarizes the role and regulation of the HIF-1α in cancer, and recent therapeutic approaches targeting this important pathway.
Collapse
Key Words
- 4E-BP1, eukaryotic translation initiation factor 4E (eIF-4E) binding protein p70 S6 kinase (S6K)
- ADM, adrenomedullin
- AKt, protein kinase B
- ARD-1, arrest-defective-1
- ARNT, aryl hydrocarbon nuclear translocator
- AhR, aryl hydrocarbon receptor
- C-MYC, myelocytomatosis virus oncogene cellular homolog
- C-TAD, COOH-terminal TAD
- CAC, circulating angiogenic cells
- CPTs, camptothecins
- Cancer drug discovery and development
- ChIP, chromatin immunoprecipitation
- CoCl2, cobalt chloride
- DFO, deferoxamine
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- EMSA, electrophoretic mobility shift assay
- EPO, erythropoietin
- ERK, extracellular signal-regulated kinase
- FIH-1, factor inhibiting HIF-1
- GA, geldanamycin
- GAs, geldanamycins
- GLUT1, glucose transporter 1
- GLUT3, glucose transporter 3
- GLUTs, glucose transporters
- HDAC, histone deacetylase
- HIF-1α
- HIF-1α inhibitors
- HIF-1α, hypoxia-inducible factor-1α
- HK1, hexokinase 1
- HK2, hexokinase 2
- HPH, HIF-1 prolyl hydroxylases
- HRE, hypoxia response elements
- HTS, high throughput screens
- Hsp90, heat shock protein 90
- ID2, DNA-binding protein inhibitor
- IGF-BP2, IGF-factor-binding protein 2
- IGF-BP3, IGF-factor-binding protein 3
- IGF2, insulin-like growth factor 2
- IPAS, inhibitory PAS
- K, lysine residue
- LDHA, lactate dehydrogenase
- LEP, leptin
- LRP1, LDL-receptor-related protein 1
- Luc, luciferase
- MAPK, mitogen-activated protein kinases
- MEK, MAPK/ERK kinase
- MNK, MAP kinase interacting kinase
- MTs, microtubules
- Mdm2, mouse double minute 2 homolog
- N, asparagine residue
- N-TAD, NH2-terminal TAD
- NOS, nitric oxide synthase
- ODDD, oxygen dependent degradation domain
- P, proline residue
- PAS, Per and Sim
- PCAF, p300/CBP associated factor
- PHDs, prolyl-4-hydroxylases
- PI3K, phosphatidyl inositol-4,5-bisphosphate-3-kinase
- PKM, pyruvate kinase M
- RCC, renal cell carcinoma
- RT-PCR, reverse transcription polymerase chain reaction
- Raf, rapidly accelerated fibrosarcoma
- Ras, rat sarcoma
- SIRT 1, Sirtuin 1
- TAD, transactivation domains
- TGF-α, transforming growth factor α
- TGF-β3, transforming growth factor beta3
- TPT, topotecan
- Top I, topoisomerase I
- VEGF, vascular endothelial growth factor
- bHLH, basic-helix-loop-helix
- eIF-4E, eukaryotic translation initiation factor 4E
- mTOR, mammalian target of rapamycin
- pVHL, von Hippel-Lindau protein
Collapse
Affiliation(s)
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
32
|
LIU HONGLAN, LIU DANG, DING GUANGRONG, LIAO PENGFEI, ZHANG JUNWEN. Hypoxia-inducible factor-1α and Wnt/β-catenin signaling pathways promote the invasion of hypoxic gastric cancer cells. Mol Med Rep 2015; 12:3365-3373. [PMID: 25997455 PMCID: PMC4526080 DOI: 10.3892/mmr.2015.3812] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 02/13/2015] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to examine the association between hypoxia-inducible factor (HIF)-1α and the Wnt/β-catenin signaling pathway in a hypoxic environment. The study also aimed to explore the possible mechanisms underlying the invasion of hypoxic gastric cancer cells in vitro and in vivo. The pcDNA™ 6.2‑GW/EmGFP‑miR‑β‑catenin plasmid was transfected into SGC‑7901 gastric cancer cells, resulting in cells with stable suppression of β‑catenin expression. The biological characteristics of the control, liposome, negative control, β‑catenin knockdown, hypoxia and hypoxia β‑catenin knockdown groups were tested using an invasion assay. The differences in the invasive capacity of the control, negative control and liposome groups were not statistically significant. However, the hypoxia group demonstrated a significantly enhanced invasive capacity, as compared with that in the control group (P<0.05). In the hypoxia β‑catenin knockdown group, reduced cell penetration and diminished invasive behavior was observed (P<0.05). In the hypoxia and double (chemical + physical) hypoxia groups, HIF‑1α, β‑catenin, urokinase‑type plasminogen activator (uPA) and matrix metalloproteinase (MMP‑7) protein and mRNA expression levels were elevated. In response to knockdown of β‑catenin expression, HIF‑1α, β‑catenin, uPA and MMP‑7 protein as well as mRNA expression levels were significantly reduced in the hypoxia β‑catenin knockdown and the double hypoxia β‑catenin knockdown groups. In an in vivo experiment, the growth rate of xenograft tumors of hypoxic and control cells was high alongside increased HIF‑1α, β‑catenin, uPA and MMP‑7 levels according to western blot and immunohistochemical analyses, while growth and protein levels of tumors from hypoxic β‑catenin knockdown cells were significantly lower and those of β‑catenin knockdown cells were lowest. In conclusion, these results suggested that HIF‑1α activation was able to regulate the Wnt/β‑catenin pathway, and that HIF‑1α may be controlled by the Wnt/β‑catenin pathway. A potential mechanism underlying SGC‑7901 tumorigenicity is the activation of the Wnt/β‑catenin signaling pathway, which activates uPA and MMP‑7 expression and contributes to the enhanced invasion of hypoxic cancer cells.
Collapse
Affiliation(s)
- HONG-LAN LIU
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - DANG LIU
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - GUANG-RONG DING
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - PENG-FEI LIAO
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - JUN-WEN ZHANG
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
33
|
KIM JUYEON, SONG JAEJUN, KWON BYOUNGMOG, LEE JONGDAE. Tanshinone IIA exerts antitumor activity against vestibular schwannoma cells by inhibiting the expression of hypoxia-inducible factor-1α. Mol Med Rep 2015; 12:4604-4609. [DOI: 10.3892/mmr.2015.3932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/27/2015] [Indexed: 11/06/2022] Open
|
34
|
Paeng SH, Jung WK, Park WS, Lee DS, Kim GY, Choi YH, Seo SK, Jang WH, Choi JS, Lee YM, Park S, Choi IW. Caffeic acid phenethyl ester reduces the secretion of vascular endothelial growth factor through the inhibition of the ROS, PI3K and HIF-1α signaling pathways in human retinal pigment epithelial cells under hypoxic conditions. Int J Mol Med 2015; 35:1419-26. [PMID: 25738890 DOI: 10.3892/ijmm.2015.2116] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
Choroidal neovascularization (CNV) can lead to progressive and severe visual loss. Vascular endothelial growth factor (VEGF) promotes the development of CNV. Caffeic acid phenethyl ester (CAPE), a biologically active component of the honeybee (Apis mellifera) propolis, has been demonstrated to have several interesting biological regulatory properties. The objective of this study was to determine whether treatment with CAPE results in the inhibition of the production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial cells (RPE cells) under hypoxic conditions and to explore the possible underlying mechanisms. An in vitro experimental model of hypoxia was used to mimic an ischemic microenvironment for the RPE cells. Human RPE cells (ARPE-19) were exposed to hypoxia with or without CAPE pre-treatment. ARPE-19 cells were used to investigate the pathway involved in the regulation of VEGF production under hypoxic conditions, based on western blot analysis, enzyme-linked immunosorbent assay (ELISA) and electrophoretic mobility shift assay (EMSA). The amount of VEGF released from the hypoxia-exposed cells was significantly higher than that of the normoxic controls. Pre-treatment with CAPE suppressed the hypoxia-induced production of VEGF in the ARPE-19 cells, and this effect was inhibited through the attenuation of reactive oxygen species (ROS) production, and the inhibition of phosphoinositide 3-kinase (PI3K)/AKT and hypoxia-inducible factor-1α (HIF-1α) expression. These in vitro findings suggest that CAPE may prove to be a novel anti-angiogenic agent for the treatment of diseases associated with CNV.
Collapse
Affiliation(s)
- Sung Hwa Paeng
- Department of Neurosurgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon, Chungcheongnam-do, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won Hee Jang
- Department of Biochemistry, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jung Sik Choi
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Min Lee
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Saegwang Park
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
35
|
Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Yang Y, Li J. Hypoxia-inducible factor-1alpha in hepatic fibrosis: A promising therapeutic target. Biochimie 2014; 108:1-7. [PMID: 25447141 DOI: 10.1016/j.biochi.2014.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1α) is a regulated subunit of the hypoxia-inducible factor 1 (HIF1), which functions as a key transcription factor in response to hypoxic stress by regulating genes involved in maintaining oxygen homeostasis. In recent years, a growing body of studies showed that HIF-1α was significantly increased in hepatic fibrotic tissues and activated hepatic stellate cells (HSCs). Furthermore, knockdown of HIF-1α expression inhibited the proliferation and activation of HSCs. In addition, HIF-1α-dependent genes and the extensive network of signaling cascades focus on HIF-1α have been reported to associate with the development of hepatic fibrosis, suggesting that HIF-1α might play a crucial role in hepatic fibrosis. However, the mechanisms by which HIF-1α regulates hepatic fibrosis are still undefined. In this review, we concentrate on multiple signaling pathways and genes related with HIF-1α which may be involved in the development of hepatic fibrosis, further discussing its potential as a novel therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Lei Zhan
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Yang Song
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Xiao Qin Wu
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Meishan Road, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University (AMU), China.
| |
Collapse
|
36
|
The actin-sequestering protein thymosin beta-4 is a novel target of hypoxia-inducible nitric oxide and HIF-1α regulation. PLoS One 2014; 9:e106532. [PMID: 25271630 PMCID: PMC4182666 DOI: 10.1371/journal.pone.0106532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022] Open
Abstract
The actin-sequestering protein thymosin beta-4 (Tβ4) is involved in various cellular and physiological processes such as proliferation, motility, growth and metastasis. Nitric oxide (NO) promotes tumor invasiveness and metastasis by activating various enzymes. Herein, we investigated whether hypoxia-inducible NO regulates Tβ4 expression and cancer cell migration using HeLa cervical cancer cells. NO production and Tβ4 expression were increased in a hypoxic condition. The treatment with N-(β-D-Glucopyranosyl)-N2-acetyl-S-nitroso-D, L-penicillaminamide (SNAP-1), to generate NO, enhanced the transcription of Tβ4 and cancer cell migration. SNAP-1-induced cell migration was decreased by the inhibition of Tβ4 with small interference (si) RNA. In a hypoxic condition, treatment with NG-monomethyl-L-arginine (L-NMMA), nitric oxide synthase (NOS) inhibitor, reduced Tβ4 transcriptional activity, and hypoxia-inducible factor (HIF)-1α. Hypoxia-induced cancer cell migration was also decreased by L-NMMA treatment. In a normoxic condition, Tβ4 transcriptional activity was decreased in the cells incubated in the presence of L-NMMA after co-transfection with Tβ4 promoter and GST-conjugated HIF-1α. Collectively, these results suggest that NO could regulate the expression of Tβ4 by direct or indirect effect of HIF-1α on Tβ4 promoter.
Collapse
|
37
|
Grossi V, Peserico A, Tezil T, Simone C. p38α MAPK pathway: a key factor in colorectal cancer therapy and chemoresistance. World J Gastroenterol 2014; 20:9744-9758. [PMID: 25110412 PMCID: PMC4123363 DOI: 10.3748/wjg.v20.i29.9744] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/13/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional therapies is frequently observed in advanced stages, where treatments become ineffective. Resistance to cisplatin, irinotecan and 5-fluorouracil chemotherapy has been shown to involve mitogen-activated protein kinase (MAPK) signaling and recent studies identified p38α MAPK as a mediator of resistance to various agents in CRC patients. Studies published in the last decade showed a dual role for the p38α pathway in mammals. Its role as a negative regulator of proliferation has been reported in both normal (including cardiomyocytes, hepatocytes, fibroblasts, hematopoietic and lung cells) and cancer cells (colon, prostate, breast, lung tumor cells). This function is mediated by the negative regulation of cell cycle progression and the transduction of some apoptotic stimuli. However, despite its anti-proliferative and tumor suppressor activity in some tissues, the p38α pathway may also acquire an oncogenic role involving cancer related-processes such as cell metabolism, invasion, inflammation and angiogenesis. In this review, we summarize current knowledge about the predominant role of the p38α MAPK pathway in CRC development and chemoresistance. In our view, this might help establish the therapeutic potential of the targeted manipulation of this pathway in clinical settings.
Collapse
|
38
|
Peitzsch C, Perrin R, Hill RP, Dubrovska A, Kurth I. Hypoxia as a biomarker for radioresistant cancer stem cells. Int J Radiat Biol 2014; 90:636-52. [DOI: 10.3109/09553002.2014.916841] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Zuo RJ, Zhao YC, Lei W, Wang TS, Wang BC, Yang ZM. Crystallin αB acts as a molecular guard in mouse decidualization: regulation and function during early pregnancy. FEBS Lett 2014; 588:2944-51. [PMID: 24951838 DOI: 10.1016/j.febslet.2014.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 02/06/2023]
Abstract
Although decidualization is crucial for the establishment of successful pregnancy, the molecular mechanism underlying decidualization remains poorly understood. Crystallin αB (CryAB), a small heat shock protein (sHSP), is up-regulated and phosphorylated in mouse decidua. In mouse primary endometrial stromal cells, CryAB is induced upon progesterone treatment via HIF1α. In addition, CryAB is strongly phosphorylated through the p38-MAPK pathway under stress or during in vitro decidualization. Knockdown of CryAB results in the increase of apoptosis of stromal cells and inhibits decidualization under oxidative or inflammatory stress. Our data indicate that CryAB protects decidualization against stress conditions.
Collapse
Affiliation(s)
- Ru-Juan Zuo
- School of Life Science, Xiamen University, Xiamen 361005, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yue-Chao Zhao
- School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Lei
- School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tong-Song Wang
- School of Science, Shantou University, Shantou 515063, China
| | - Bao-Cheng Wang
- School of Science, Shantou University, Shantou 515063, China
| | - Zeng-Ming Yang
- School of Life Science, Xiamen University, Xiamen 361005, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
40
|
Jalouli M, Déry MAC, Lafleur VN, Lamalice L, Zhou XZ, Lu KP, Richard DE. The prolyl isomerase Pin1 regulates hypoxia-inducible transcription factor (HIF) activity. Cell Signal 2014; 26:1649-56. [PMID: 24726894 DOI: 10.1016/j.cellsig.2014.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/17/2022]
Abstract
Hypoxia-inducible transcription factor-1 (HIF-1) plays a decisive role in cell survival and adaptation to hypoxic stress by controlling the expression of genes involved in oxygen homeostasis. HIF-1 activity is fine-tuned through specific post-translational modifications of its essential HIF-1α subunit. Among these modifications, phosphorylation is important for HIF-1 transcriptional activity. Studies have shown that the mitogen-activated protein kinases, p42/p44 MAPKs, directly phosphorylate HIF-1α and increase HIF-1-mediated transcription. Pin1, a peptidyl-prolyl cis/trans isomerase, targets a number of proteins containing a phosphorylated Ser/Thr-Pro motif. Pin1 isomerization causes a change in target protein conformation which can modify their activity. Here, we identify Pin1 as an important HIF-1α partner. Immunoprecipitation and pull-down studies show that Pin1 interacts with HIF-1α. We demonstrate that the interaction between Pin1 and HIF-1α is regulated through p42/p44 MAPK pathway activation. By performing proteolysis studies, our results indicate that Pin1 catalytic activity generates a conformational change in HIF-1α. Finally, our work shows that Pin1 is required for gene-specific HIF-1 transcriptional activity. Our results indicate that the prolyl isomerase Pin1 regulates HIF-1 transcriptional activity by interacting with HIF-1α and promoting conformational changes in a p42/p44 MAPK phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Maroua Jalouli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1R 3S3, Canada
| | - Marc-André C Déry
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1R 3S3, Canada
| | - Véronique N Lafleur
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1R 3S3, Canada
| | - Laurent Lamalice
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1R 3S3, Canada
| | - Xiao Zhen Zhou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Kun Ping Lu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Darren E Richard
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1R 3S3, Canada.
| |
Collapse
|
41
|
Kazi AA, Gilani RA, Schech AJ, Chumsri S, Sabnis G, Shah P, Goloubeva O, Kronsberg S, Brodie AH. Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase inhibitor resistant breast cancer. Breast Cancer Res 2014; 16:R15. [PMID: 24472707 PMCID: PMC3978891 DOI: 10.1186/bcr3609] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/02/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Although aromatase inhibitors (AIs; for example, letrozole) are highly effective in treating estrogen receptor positive (ER+) breast cancer, a significant percentage of patients either do not respond to AIs or become resistant to them. Previous studies suggest that acquired resistance to AIs involves a switch from dependence on ER signaling to dependence on growth factor-mediated pathways, such as human epidermal growth factor receptor-2 (HER2). However, the role of HER2, and the identity of other relevant factors that may be used as biomarkers or therapeutic targets remain unknown. This study investigated the potential role of transcription factor hypoxia inducible factor 1 (HIF-1) in acquired AI resistance, and its regulation by HER2. Methods In vitro studies using AI (letrozole or exemestane)-resistant and AI-sensitive cells were conducted to investigate the regulation and role of HIF-1 in AI resistance. Western blot and RT-PCR analyses were conducted to compare protein and mRNA expression, respectively, of ERα, HER2, and HIF-1α (inducible HIF-1 subunit) in AI-resistant versus AI-sensitive cells. Similar expression analyses were also done, along with chromatin immunoprecipitation (ChIP), to identify previously known HIF-1 target genes, such as breast cancer resistance protein (BCRP), that may also play a role in AI resistance. Letrozole-resistant cells were treated with inhibitors to HER2, kinase pathways, and ERα to elucidate the regulation of HIF-1 and BCRP. Lastly, cells were treated with inhibitors or inducers of HIF-1α to determine its importance. Results Basal HIF-1α protein and BCRP mRNA and protein are higher in AI-resistant and HER2-transfected cells than in AI-sensitive, HER2- parental cells under nonhypoxic conditions. HIF-1α expression in AI-resistant cells is likely regulated by HER2 activated-phosphatidylinositide-3-kinase/Akt-protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, as its expression was inhibited by HER2 inhibitors and kinase pathway inhibitors. Inhibition or upregulation of HIF-1α affects breast cancer cell expression of BCRP; AI responsiveness; and expression of cancer stem cell characteristics, partially through BCRP. Conclusions One of the mechanisms of AI resistance may be through regulation of nonhypoxic HIF-1 target genes, such as BCRP, implicated in chemoresistance. Thus, HIF-1 should be explored further for its potential as a biomarker of and therapeutic target.
Collapse
|
42
|
Abstract
Obesity has increased in prevalence worldwide, attributed in part to the influences of an obesity-promoting environment and genetic factors. While obesity and overweight increasingly seem to be the norm, there remain individuals who resist obesity. We present here an overview of data supporting the idea that hypothalamic neuropeptide orexin A (OXA; hypocretin 1) may be a key component of brain mechanisms underlying obesity resistance. Prior work with models of obesity and obesity resistance in rodents has shown that increased orexin and/or orexin sensitivity is correlated with elevated spontaneous physical activity (SPA), and that orexin-induced SPA contributes to obesity resistance via increased non-exercise activity thermogenesis (NEAT). However, central hypothalamic orexin signaling mechanisms that regulate SPA remain undefined. Our ongoing studies and work of others support the hypothesis that one such mechanism may be upregulation of a hypoxia-inducible factor 1 alpha (HIF-1α)-dependent pathway, suggesting that orexin may promote obesity resistance both by increasing SPA and by influencing the metabolic state of orexin-responsive hypothalamic neurons. We discuss potential mechanisms based on both animal and in vitro pharmacological studies, in the context of elucidating potential molecular targets for obesity prevention and therapy.
Collapse
Affiliation(s)
- Tammy A. Butterick
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Drive, Minneapolis, MN USA 55417
| | - Charles J. Billington
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Drive, Minneapolis, MN USA 55417
- Department of Food Science and Nutrition, University of Minnesota, 225 Food Science and Nutrition, 1334 Eckles Avenue, St. Paul, MN USA 55108
- Department of Medicine, University of Minnesota Medical School, Suite 14-110 Phillips-Wangensteen Bldg, 420 Delaware Street SE, MMC 194, Minneapolis, MN USA 55455
| | - Catherine M. Kotz
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Drive, Minneapolis, MN USA 55417
- Department of Food Science and Nutrition, University of Minnesota, 225 Food Science and Nutrition, 1334 Eckles Avenue, St. Paul, MN USA 55108
| | - Joshua P. Nixon
- Minneapolis Veterans Affairs Health Care System, Research 151, One Veterans Drive, Minneapolis, MN USA 55417
- Department of Food Science and Nutrition, University of Minnesota, 225 Food Science and Nutrition, 1334 Eckles Avenue, St. Paul, MN USA 55108
| |
Collapse
|
43
|
Lirdprapamongkol K, Sakurai H, Abdelhamed S, Yokoyama S, Maruyama T, Athikomkulchai S, Viriyaroj A, Awale S, Yagita H, Ruchirawat S, Svasti J, Saiki I. A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells. Oncol Rep 2013; 30:2357-64. [PMID: 23969634 DOI: 10.3892/or.2013.2667] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/15/2013] [Indexed: 11/06/2022] Open
Abstract
Tumor hypoxia commonly occurs in solid tumors, and correlates with metastasis. Current cancer therapies are inefficient in curing metastatic disease. Herein, we examined effect of Thai propolis extract and its major constituent, chrysin, on hypoxic survival of 4T1 mouse breast cancer cells in vitro, and investigated its underlying mechanism. In vivo effect of chrysin on metastatic progression of cancer cells was studied, both as a single agent and in combination with another antimetastatic agent, agonistic monoclonal antibody targeting the DR5 TRAIL receptor (DR5 mAb). Thai propolis extract and chrysin decreased survival of 4T1 cells after exposure to hypoxia (1% O2), for 2 days. Immunoblot analysis revealed that chrysin inhibited hypoxia-induced STAT3 phosphorylation without affecting HIF-1α protein level. Chrysin also abrogated hypoxia-induced VEGF gene expression as determined by qRT-PCR. The in vivo effect of chrysin was determined in a spontaneous metastasis mouse model of breast cancer, either alone or in combination with DR5 mAb. Daily oral administration of chrysin in Balb/c mice implanted with 4T1 cells significantly suppressed growth of lung metastatic colonies. Moreover, antimetastatic activity of DR5 mAb was enhanced when given in combination with chrysin. We demonstrate that chrysin has potential in controlling metastatic progression.
Collapse
|
44
|
Vadlapatla RK, Vadlapudi AD, Mitra AK. Hypoxia-inducible factor-1 (HIF-1): a potential target for intervention in ocular neovascular diseases. Curr Drug Targets 2013; 14:919-35. [PMID: 23701276 DOI: 10.2174/13894501113149990015] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/20/2013] [Indexed: 12/29/2022]
Abstract
Constant oxygen supply is essential for proper tissue development, homeostasis and function of all eukaryotic organisms. Cellular response to reduced oxygen levels is mediated by the transcriptional regulator hypoxia-inducible factor-1 (HIF-1). It is a heterodimeric complex protein consisting of an oxygen dependent subunit (HIF-1α) and a constitutively expressed nuclear subunit (HIF-1β). In normoxic conditions, de novo synthesized cytoplasmic HIF-1α is degraded by 26S proteasome. Under hypoxic conditions, HIF-1α is stabilized, binds with HIF-1β and activates transcription of various target genes. These genes play a key role in regulating angiogenesis, cell survival, proliferation, chemotherapy, radiation resistance, invasion, metastasis, genetic instability, immortalization, immune evasion, metabolism and stem cell maintenance. This review highlights the importance of hypoxia signaling in development and progression of various vision threatening pathologies such as diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration and glaucoma. Further, various inhibitors of HIF-1 pathway that may have a viable potential in the treatment of oxygen-dependent ocular diseases are also discussed.
Collapse
Affiliation(s)
- Ramya Krishna Vadlapatla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA
| | | | | |
Collapse
|
45
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
46
|
Kawedia JD, Yang F, Sartor MA, Gozal D, Czyzyk-Krzeska M, Menon AG. Hypoxia and hypoxia mimetics decrease aquaporin 5 (AQP5) expression through both hypoxia inducible factor-1α and proteasome-mediated pathways. PLoS One 2013; 8:e57541. [PMID: 23469202 PMCID: PMC3586073 DOI: 10.1371/journal.pone.0057541] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/24/2013] [Indexed: 12/18/2022] Open
Abstract
The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels.
Collapse
Affiliation(s)
- Jitesh D Kawedia
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America.
| | | | | | | | | | | |
Collapse
|
47
|
Kim YS, Jo DH, Lee H, Kim JH, Kim KW, Kim JH. Nerve growth factor-mediated vascular endothelial growth factor expression of astrocyte in retinal vascular development. Biochem Biophys Res Commun 2013; 431:740-5. [PMID: 23337506 DOI: 10.1016/j.bbrc.2013.01.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/10/2013] [Indexed: 01/19/2023]
Abstract
The angiogenic aspect of neurotrophins and their receptors rather than the neuroscientific aspect has been focused. However, their role in retinal vascular development is underdiscovered. The purpose of this study is to understand the role of neurotrophin receptors in retinal vascular development and the mechanisms of their action. To identify the expression of tropomyosin receptor kinase receptor (Trk) in developing retina, tissues of 4, 8, 12, 16 and 26 day-old mice were prepared for experiments. Immunohistochemistry and immunofluorescence double staining against glial fibrillary acidic protein and type IV collagen were performed. TrkA was expressed mainly along the vessel structure in inner part of retina, especially in retinal astrocyte. In cultured primary astrocyte, recombinant nerve growth factor (NGF) was used to activate TrkA. NGF induced the phosphorylation of TrkA, and it also enhanced the level of activated Akt and vascular endothelial growth factor (VEGF) mRNA. Inhibition of phosphoinositide 3-kinase (PI3K) reversed the NGF-induced activation of these two molecules. This study demonstrated that TrkA activation on NGF leads to VEGF elevation by PI3K-Akt pathway and therefore suggested that TrkA could be a stimulator of retinal vascular development.
Collapse
Affiliation(s)
- You Sun Kim
- Fight against Angiogenesis-Related Blindness Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | | | | | | | | | | |
Collapse
|
48
|
Safronova OS. Post-translational modifications of proteins in gene regulation under hypoxic conditions. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
Abstract
The vascular network delivers oxygen (O(2)) and nutrients to all cells within the body. It is therefore not surprising that O(2) availability serves as a primary regulator of this complex organ. Most transcriptional responses to low O(2) are mediated by hypoxia-inducible factors (HIFs), highly conserved transcription factors that control the expression of numerous angiogenic, metabolic, and cell cycle genes. Accordingly, the HIF pathway is currently viewed as a master regulator of angiogenesis. HIF modulation could provide therapeutic benefit for a wide array of pathologies, including cancer, ischemic heart disease, peripheral artery disease, wound healing, and neovascular eye diseases. Hypoxia promotes vessel growth by upregulating multiple pro-angiogenic pathways that mediate key aspects of endothelial, stromal, and vascular support cell biology. Interestingly, recent studies show that hypoxia influences additional aspects of angiogenesis, including vessel patterning, maturation, and function. Through extensive research, the integral role of hypoxia and HIF signaling in human disease is becoming increasingly clear. Consequently, a thorough understanding of how hypoxia regulates angiogenesis through an ever-expanding number of pathways in multiple cell types will be essential for the identification of new therapeutic targets and modalities.
Collapse
Affiliation(s)
- Bryan L Krock
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
50
|
Takaku M, Tomita S, Kurobe H, Kihira Y, Morimoto A, Higashida M, Ikeda Y, Ushiyama A, Hashimoto I, Nakanishi H, Tamaki T. Systemic preconditioning by a prolyl hydroxylase inhibitor promotes prevention of skin flap necrosis via HIF-1-induced bone marrow-derived cells. PLoS One 2012; 7:e42964. [PMID: 22880134 PMCID: PMC3413653 DOI: 10.1371/journal.pone.0042964] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/16/2012] [Indexed: 01/07/2023] Open
Abstract
Background Local skin flaps often present with flap necrosis caused by critical disruption of the blood supply. Although animal studies demonstrate enhanced angiogenesis in ischemic tissue, no strategy for clinical application of this phenomenon has yet been defined. Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in ischemic vascular responses, and its expression is induced by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). We assessed whether preoperative stabilization of HIF-1 by systemic introduction of DMOG improves skin flap survival. Methods and Results Mice with ischemic skin flaps on the dorsum were treated intraperitoneally with DMOG 48 hr prior to surgery. The surviving area with neovascularization of the ischemic flaps was significantly greater in the DMOG-treated mice. Significantly fewer apoptotic cells were present in the ischemic flaps of DMOG-treated mice. Interestingly, marked increases in circulating endothelial progenitor cells (EPCs) and bone marrow proliferative progenitor cells were observed within 48 hr after DMOG treatment. Furthermore, heterozygous HIF-1α-deficient mice exhibited smaller surviving flap areas, fewer circulating EPCs, and larger numbers of apoptotic cells than did wild-type mice, while DMOG pretreatment of the mutant mice completely restored these parameters. Finally, reconstitution of wild-type mice with the heterozygous deficient bone marrow cells significantly decreased skin flap survival. Conclusion We demonstrated that transient activation of the HIF signaling pathway by a single systemic DMOG treatment upregulates not only anti-apoptotic pathways but also enhances neovascularization with concomitant increase in the numbers of bone marrow-derived progenitor cells.
Collapse
Affiliation(s)
- Mitsuru Takaku
- Department of Plastic and Reconstructive Surgery, The University of Tokushima Graduate School, Tokushima, Japan
| | - Shuhei Tomita
- Department of Pharmacology, The University of Tokushima Graduate School, Tokushima, Japan
- * E-mail:
| | - Hirotsugu Kurobe
- Department of Cardiovascular Surgery, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yoshitaka Kihira
- Department of Pharmacology, The University of Tokushima Graduate School, Tokushima, Japan
| | - Atsushi Morimoto
- Department of Plastic and Reconstructive Surgery, The University of Tokushima Graduate School, Tokushima, Japan
| | - Mayuko Higashida
- Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, The University of Tokushima Graduate School, Tokushima, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | - Ichiro Hashimoto
- Department of Plastic and Reconstructive Surgery, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hideki Nakanishi
- Department of Plastic and Reconstructive Surgery, The University of Tokushima Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|