1
|
Geissler CF, Frings C, Domes G. The effects of stress on working-memory-related prefrontal processing: an fNIRS study. Stress 2025; 28:2472067. [PMID: 40034019 DOI: 10.1080/10253890.2025.2472067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Acute stress causes a shift from executive to automated behavior. A key executive function suffering from this shift is working memory. Working memory is mainly negatively affected in the first 10 and more than 25 minutes after acute stress. These phases coincide with increased central levels of noradrenaline and cortisol. Increased levels of both hormones can cause a relative deactivation in prefrontal areas related to working memory processing. However, so far, there is little research that investigates the complete relationship between acute stress and resulting changes in stress hormones, neural activation, and working memory processing, over time. In this study, we used functional near-infrared spectroscopy to measure prefrontal activity during an nback task in a stress (28 subjects, 7 female/21 male) and a control group (28 subjects, 10 female/18 male) once (20 minutes) before and twice (4 and 24 minutes) after a socially evaluated cold pressor test or a warm water control condition. Additionally, we regularly measured changes in salivary cortisol and α-amylase (a correlate of central noradrenaline) during the experiment. While salivary cortisol was increased starting 14 minutes after acute stress, no effect of stress on salivary α-amylase or working memory performance was found. On a neural level, we found a marginally stronger decline in 3-back-related prefrontal activity from the first to the third measurement point in the stress than in the control group. These results present tentative evidence for a negative effect of acute stress on working-memory-related prefrontal processing mediated by central cortisol levels.
Collapse
Affiliation(s)
| | - Christian Frings
- Institute for Cognitive & Affective Neuroscience, Trier University, Trier, Germany
- Department of Cognitive Psychology, Trier University, Trier, Germany
| | - Gregor Domes
- Institute for Cognitive & Affective Neuroscience, Trier University, Trier, Germany
- Department of Biological and Clinical Psychology, Trier University, Trier, Germany
| |
Collapse
|
2
|
Ruiz-Tagle A, Caetano G, Fouto A, Esteves I, Cabaço I, Da Silva N, Vilela P, Alves PN, Martins IP, Gouveia RG, Figueiredo P. Preserved working memory performance along with subcortical modulation during peri-ictal phases in spontaneous migraine attacks. Headache 2025; 65:407-419. [PMID: 39397349 DOI: 10.1111/head.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To analyze cognitive performance and brain activation during a working memory task in patients with migraine during various phases of the migraine cycle and compare to healthy participants. BACKGROUND Cognitive difficulties reported during migraine attacks remain poorly understood, despite evidence that the lateral frontoparietal network undergoes reversible disturbances and decreased activation during attacks. Recent findings in resting state functional magnetic resonance imaging suggest that brain areas involved in this network interact with subcortical regions during spontaneous migraine attacks. METHODS In this prospective, within-subject study, 10 patients with diagnosed menstrual-related episodic migraine without aura underwent 3T functional magnetic resonance imaging assessments while performing a working memory task across four phases of the natural migraine cycle: peri-ictal (preictal, ictal, postictal) phases and interictally (between attacks). Migraine prophylaxis was an exclusion criterion. Fourteen healthy controls were assessed during the corresponding phases of their menstrual cycles. RESULTS The protocol was completed by 24 female participants aged 21 to 47 years: 10 with migraine (four sessions each) and 14 healthy controls (two sessions each) yielding a total of 68 analyzed datasets. Patients and controls showed similar performance on the working memory task and displayed increased brain activity in regions linked to this function, namely the middle frontal gyrus, inferior parietal lobe, and anterior cingulate cortex, during all phases of the migraine/menstrual cycle. Patients with migraine (N = 10) exhibited a significant decrease in hypothalamic activity (p = 0.007) as measured by the percent signal change (PSC) during the postictal phase compared to perimenstrual controls (N = 14), with -2 (16) and 31 (35) PSC, respectively. Comparing across the migraine cycle, the change in hypothalamic activity relative to controls in the postictal phase -0.33 (0.2) ΔPSC was significantly different from the ones in the interictal (0.006 [0.5] ΔPSC; p = 0.002) and preictal (-0.08 [0.4] ΔPSC; p = 0.034) phases. CONCLUSION During a working memory task, cognition-related brain activation was present across all phases of the migraine cycle similarly to healthy control participants. Patients with migraine, however, displayed lower neural activity at the subcortical level in the postictal phase. Nonetheless, the sample size is a limitation for the generalization of our results. More research is needed to fully understand how the brain copes with cognitive demands during spontaneous migraine attacks.
Collapse
Affiliation(s)
- Amparo Ruiz-Tagle
- ISR-Lisboa/LARSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gina Caetano
- ISR-Lisboa/LARSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Fouto
- ISR-Lisboa/LARSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Esteves
- ISR-Lisboa/LARSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Cabaço
- Faculty of Health Sciences and Nursing, Catholic University of Portugal, Lisbon, Portugal
| | | | - Pedro Vilela
- Serviço de Neurradiologia, Hospital da Luz, Lisbon, Portugal
| | - Pedro Nascimento Alves
- Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa and Hospital de Santa Maria, CHULN, Lisbon, Portugal
| | - Isabel Pavão Martins
- Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa and Hospital de Santa Maria, CHULN, Lisbon, Portugal
| | - Raquel Gil Gouveia
- Headache Center, Serviço de Neurologia, Hospital da Luz, Lisbon, Portugal
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Tubiolo PN, Williams JC, Van Snellenberg JX. Tale of Two n-Backs: Diverging Associations of Dorsolateral Prefrontal Cortex Activation With n-Back Task Performance. J Neurosci Res 2025; 103:e70021. [PMID: 39902779 PMCID: PMC11913012 DOI: 10.1002/jnr.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
In studying the neural correlates of working memory (WM) ability via functional magnetic resonance imaging (fMRI) in health and disease, it is relatively uncommon for investigators to report associations between brain activation and measures of task performance. Additionally, how the choice of WM task impacts observed activation-performance relationships is poorly understood. We sought to illustrate the impact of WM task on brain-behavior correlations using two large, publicly available datasets. We conducted between-participants analyses of task-based fMRI data from two publicly available datasets: The Human Connectome Project (HCP; n = 866) and the Queensland Twin Imaging (QTIM) Study (n = 459). Participants performed two distinct variations of the n-back WM task with different stimuli, timings, and response paradigms. Associations between brain activation ([2-back - 0-back] contrast) and task performance (2-back % correct) were investigated separately in each dataset, as well as across datasets, within the dorsolateral prefrontal cortex (dlPFC), medial prefrontal cortex, and whole cortex. Global patterns of activation to task were similar in both datasets. However, opposite associations between activation and task performance were observed in bilateral pre-supplementary motor area and left middle frontal gyrus. Within the dlPFC, HCP participants exhibited a significantly greater activation-performance relationship in bilateral middle frontal gyrus relative to QTIM Study participants. The observation of diverging activation-performance relationships between two large datasets performing variations of the n-back task serves as a critical reminder for investigators to exercise caution when selecting WM tasks and interpreting neural activation in response to a WM task.
Collapse
Affiliation(s)
- Philip N Tubiolo
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
- Scholars in BioMedical Sciences Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - John C Williams
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Jared X Van Snellenberg
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
- Department of Psychology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
4
|
Chatterjee I, Baumgärtner L. Unveiling Functional Biomarkers in Schizophrenia: Insights from Region of Interest Analysis Using Machine Learning. J Integr Neurosci 2024; 23:179. [PMID: 39344241 DOI: 10.31083/j.jin2309179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Schizophrenia is a complex and disabling mental disorder that represents one of the most important challenges for neuroimaging research. There were many attempts to understand these basic mechanisms behind the disorder, yet we know very little. By employing machine learning techniques with age-matched samples from the auditory oddball task using multi-site functional magnetic resonance imaging (fMRI) data, this study aims to address these challenges. METHODS The study employed a three-stage model to gain a better understanding of the neurobiology underlying schizophrenia and techniques that could be applied for diagnosis. At first, we constructed four-level hierarchical sets from each fMRI volume of 34 schizophrenia patients (SZ) and healthy controls (HC) individually in terms of hemisphere, gyrus, lobes, and Brodmann areas. Second, we employed statistical methods, namely, t-tests and Pearson's correlation, to assess the group differences in cortical activation. Finally, we assessed the predictive power of the brain regions for machine learning algorithms using K-nearest Neighbor (KNN), Naive Bayes, Decision Tree (DT), Random Forest (RF), Support Vector Machines (SVMs), and Extreme Learning Machine (ELM). RESULTS Our investigation depicts promising results, obtaining an accuracy of up to 84% when applying Pearson's correlation-selected features at lobes and Brodmann region level (81% for Gyrus), as well as Hemispheres involving different stages. Thus, the results of our study were consistent with previous studies that have revealed some functional abnormalities in several brain regions. We also discovered the involvement of other brain regions which were never sufficiently studied in previous literature, such as the posterior lobe (posterior cerebellum), Pyramis, and Brodmann Area 34. CONCLUSIONS We present a unique and comprehensive approach to investigating the neurological basis of schizophrenia in this study. By bridging the gap between neuroimaging and computable analysis, we aim to improve diagnostic accuracy in patients with schizophrenia and identify potential prognostic markers for disease progression.
Collapse
Affiliation(s)
- Indranath Chatterjee
- Department of Computing and Mathematics, Manchester Metropolitan University, M1 5GD Manchester, UK
- School of Technology, Woxsen University, 502345 Hyderabad, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401 Punjab, India
| | - Lea Baumgärtner
- Department of Media, Hochschule der Medien, University of Applied Science, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Tubiolo PN, Williams JC, Van Snellenberg JX. A tale of two n-backs: Diverging associations of dorsolateral prefrontal cortex activation with n-back task performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595597. [PMID: 38826388 PMCID: PMC11142179 DOI: 10.1101/2024.05.23.595597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background In studying the neural correlates of working memory (WM) ability via functional magnetic resonance imaging (fMRI) in health and disease, it is relatively uncommon for investigators to report associations between brain activation and measures of task performance. Additionally, how the choice of WM task impacts observed activation-performance relationships is poorly understood. We sought to illustrate the impact of WM task on brain-behavior correlations using two large, publicly available datasets. Methods We conducted between-participants analyses of task-based fMRI data from two publicly available datasets: the Human Connectome Project (HCP; n = 866) and the Queensland Twin Imaging (QTIM) Study (n = 459). Participants performed two distinct variations of the n-back WM task with different stimuli, timings, and response paradigms. Associations between brain activation ([2-back - 0-back] contrast) and task performance (2-back % correct) were investigated separately in each dataset, as well as across datasets, within the dorsolateral prefrontal cortex (dlPFC), medial prefrontal cortex, and whole cortex. Results Global patterns of activation to task were similar in both datasets. However, opposite associations between activation and task performance were observed in bilateral pre-supplementary motor area and left middle frontal gyrus. Within the dlPFC, HCP participants exhibited a significantly greater activation-performance relationship in bilateral middle frontal gyrus relative to QTIM Study participants. Conclusions The observation of diverging activation-performance relationships between two large datasets performing variations of the n-back task serves as a critical reminder for investigators to exercise caution when selecting WM tasks and interpreting neural activation in response to a WM task.
Collapse
Affiliation(s)
- Philip N Tubiolo
- Department of Biomedical Engineering, Stony Brook University
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University
| | - John C Williams
- Department of Biomedical Engineering, Stony Brook University
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University
| | - Jared X Van Snellenberg
- Department of Biomedical Engineering, Stony Brook University
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University
- Department of Psychology, Stony Brook University
| |
Collapse
|
6
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
7
|
Pan Y, Xu C, He T, Wei Z, Seger CA, Chen Q, Peng Z. A network perspective on cognitive function and obsessive-compulsive related symptoms. J Affect Disord 2023; 329:428-437. [PMID: 36863477 DOI: 10.1016/j.jad.2023.02.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/31/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND The relationship between cognitive function and psychopathological symptoms has been an important research field in recent years. Previous studies have typically applied case-control designs to explore differences in certain cognitive variables. Multivariate analyses are needed to deepen our understanding of the intercorrelations among cognitive and symptom phenotypes in OCD. METHODS The present study used network analysis to construct networks of cognitive variables and OCD-related symptoms in patients with OCD and healthy controls (N = 226), aiming to explore the relationship among numerous cognitive function variables and OCD-related symptoms in detail and compare the network features between the two groups. RESULTS In the network of cognitive function and OCD-related symptoms, nodes representing IQ, letter/number span test, accuracy of task switching test and obsession were much important in the network in terms of their larger strengths and edges. By constructing the networks of these two groups respectively, there was a strong similarity except that the symptom's network in healthy group had a higher degree of overall connectivity. LIMITATIONS Due to the small sample size, the stability of the network cannot be guaranteed. Due to the cross-sectional nature of the data, we were unable to determine how the cognitive-symptom network would change with disease deterioration or treatment. CONCLUSIONS The present study highlights the important role of variables such as obsession and IQ from a network perspective. These results deepen our understanding of the multivariate relationship between cognitive dysfunction and OCD symptoms, and may promote the prediction and diagnosis of OCD.
Collapse
Affiliation(s)
- Yimeng Pan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Chuanyong Xu
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518017 Shenzhen, China
| | - Tingxin He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518017 Shenzhen, China
| | - Carol A Seger
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Qi Chen
- School of Psychology, Shenzhen University, 518061 Shenzhen, China.
| | - Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
8
|
Test-retest reliability of prepulse inhibition (PPI) and PPI correlation with working memory. Acta Neuropsychiatr 2022; 34:344-353. [PMID: 35959694 DOI: 10.1017/neu.2022.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Sensorimotor gating is experimentally operationalized by the prepulse inhibition (PPI) of the startle response (SR). Previous studies suggest high test-retest reliability of PPI and potential correlation with working memory (WM). Here, we aimed to validate and extend the test-retest reliability of PPI in healthy humans and its correlation with WM performance. METHODS We applied an acoustic startle PPI paradigm with four different prepulse intensities (64, 68, 72 and 76 dB) and two different WM tasks [n-back, change detection task (CDT)] in a group of 26 healthy adults (final sample size n = 23). To assess test-retest reliability, we performed all tests on two separate days ~27 days (range: 21-32 days) apart. RESULTS We were able to confirm high test-retest reliability of the PPI with a mean intraclass correlation (ICC) of > 0.80 and significant positive correlation of PPI with n-back but not with CDT performance. Detailed analysis showed that PPI across all prepulse intensities significantly correlated with both the 2-back and 0-back conditions, suggesting regulation by cross-conditional processes (e.g. attention). However, when removing the 0-back component from the 2-back data, we found a specific and significant correlation with WM for the 76-dB PPI condition. CONCLUSION With the present study, we were able to confirm the high test-retest reliability of the PPI in humans and could validate and expand on its correlation with WM performance.
Collapse
|
9
|
Pyrylium based derivatization imaging mass spectrometer revealed the localization of L-DOPA. PLoS One 2022; 17:e0271697. [PMID: 35917331 PMCID: PMC9345479 DOI: 10.1371/journal.pone.0271697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
Simultaneous imaging of l-dihydroxyphenylalanine (l-DOPA), dopamine (DA) and norepinephrine (NE) in the catecholamine metabolic pathway is particularly useful because l-DOPA is a neurophysiologically important metabolic intermediate. In this study, we found that 2,4,6-trimethylpyrillium tetrafluoroborate (TMPy) can selectively and efficiently react with target catecholamine molecules. Specifically, simultaneous visualization of DA and NE as metabolites of l-DOPA with high steric hinderance was achieved by derivatized-imaging mass spectrometry (IMS). Interestingly, l-DOPA showed strong localization in the brainstem, in contrast to the pattern of DA and NE, which co-localized with tyrosine hydroxylase (TH). In addition, to identify whether the detected molecules were endogenous or exogenous l-DOPA, mice were injected with l-DOPA deuterated in three positions (D3-l-DOPA), which was identifiable by a mass shift of 3Da. TMPy-labeled l-DOPA, DA and NE were detected at m/z 302.1, 258.1 and 274.1, while their D3 versions were detected at 305.0, 261.1 and 277.1 in mouse brain, respectively. l-DOPA and D3-l-DOPA were localized in the BS. DA and NE, and D3-DA and D3-NE, all of which are metabolites of L-DOPA and D3-l-DOPA, were localized in the striatum (STR) and locus coeruleus (LC). These findings suggest a mechanism in the brainstem that allows l-DOPA to accumulate without being metabolized to monoamines downstream of the metabolic pathway.
Collapse
|
10
|
Wei Y, Tang X, Zhang T, Su W, Xu L, Cui H, Qian Z, Zhang T, Wang J. Reduced temporal activation during a verbal fluency test in clinical high risk of psychosis: a functional near-infrared spectroscopy-based study. Gen Psychiatr 2022; 35:e100702. [PMID: 35572775 PMCID: PMC9058760 DOI: 10.1136/gpsych-2021-100702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/08/2022] [Indexed: 01/10/2023] Open
Abstract
Background Clinical high risk (CHR) of psychosis is a state in which positive symptoms cause the subjects distress but do not approach a severity level that fulfils the criteria for a psychotic episode. CHR exhibits cognitive deficits; however, the underlying neurobiological mechanisms remain unclear. This study aimed to investigate whether brain activation measured by the levels of oxygenated hemoglobin (oxy-Hb) in CHR subjects could be correlated with cognitive deficits. Methods Fifty-eight CHR individuals who fulfilled the criteria for attenuated positive syndrome as specified in the Structured Interview for Prodromal Syndrome (SIPS) and the Scale of Prodromal Syndrome (SOPS) and 58 age- and sex-matched healthy participants were included in the study. All subjects completed the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) that includes tests measuring attention, verbal memory, verbal fluency, executive function, and general intelligence. Functional near-infrared spectroscopy (fNIRS) was used to measure the level of oxy-Hb in the dorsolateral prefrontal and frontotemporal cortices. Results We observed significantly decreased oxy-Hb levels in channel 32 (located in the right superior temporal gyrus, rSTG)) within the CHR individuals compared with that in the healthy controls (HCs) (t=−3.44, Bonferroni-corrected p=0.002), indicating lower brain activity. A significant positive correlation was observed between task-related β values and working memory in the CHR group (r=0.35, p=0.008). Conclusions The brain activation of rSTG is abnormal among subjects at clinicial high risk for psychosis. This abnormality is probably associated with the neural mechanisms of deficits in the working memory during the early stage of psychosis.
Collapse
Affiliation(s)
- Yanyan Wei
- EEG and Neuroimaging Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Tang
- EEG and Neuroimaging Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingyu Zhang
- The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| | - Wenjun Su
- EEG and Neuroimaging Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- EEG and Neuroimaging Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Cui
- EEG and Neuroimaging Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenying Qian
- EEG and Neuroimaging Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- EEG and Neuroimaging Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- EEG and Neuroimaging Department, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Lutti A, Corbin N, Ashburner J, Ziegler G, Draganski B, Phillips C, Kherif F, Callaghan MF, Di Domenicantonio G. Restoring statistical validity in group analyses of motion-corrupted MRI data. Hum Brain Mapp 2022; 43:1973-1983. [PMID: 35112434 PMCID: PMC8933245 DOI: 10.1002/hbm.25767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Motion during the acquisition of magnetic resonance imaging (MRI) data degrades image quality, hindering our capacity to characterise disease in patient populations. Quality control procedures allow the exclusion of the most affected images from analysis. However, the criterion for exclusion is difficult to determine objectively and exclusion can lead to a suboptimal compromise between image quality and sample size. We provide an alternative, data‐driven solution that assigns weights to each image, computed from an index of image quality using restricted maximum likelihood. We illustrate this method through the analysis of quantitative MRI data. The proposed method restores the validity of statistical tests, and performs near optimally in all brain regions, despite local effects of head motion. This method is amenable to the analysis of a broad type of MRI data and can accommodate any measure of image quality.
Collapse
Affiliation(s)
- Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nadège Corbin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/University Bordeaux, Bordeaux, France.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Gabriel Ziegler
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christophe Phillips
- GIGA Cyclotron Research Centre - in vivo imaging, GIGA Institute, University of Liège, Liège, Belgium
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Giulia Di Domenicantonio
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Yao L, Zhou L, Qian Z, Zhu Q, Liu Y, Zhang Y, Li W, Xing L. Exploring the impact of 3D movie watching on the brain source activities and energy consumption by ESI and fNIRS. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zhao YJ, Ma T, Zhang L, Ran X, Zhang RY, Ku Y. Atypically larger variability of resource allocation accounts for visual working memory deficits in schizophrenia. PLoS Comput Biol 2021; 17:e1009544. [PMID: 34748538 PMCID: PMC8601612 DOI: 10.1371/journal.pcbi.1009544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/18/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
Working memory (WM) deficits have been widely documented in schizophrenia (SZ), and almost all existing studies attributed the deficits to decreased capacity as compared to healthy control (HC) subjects. Recent developments in WM research suggest that other components, such as precision, also mediate behavioral performance. It remains unclear how different WM components jointly contribute to deficits in schizophrenia. We measured the performance of 60 SZ (31 females) and 61 HC (29 females) in a classical delay-estimation visual working memory (VWM) task and evaluated several influential computational models proposed in basic science of VWM to disentangle the effect of various memory components. We show that the model assuming variable precision (VP) across items and trials is the best model to explain the performance of both groups. According to the VP model, SZ exhibited abnormally larger variability of allocating memory resources rather than resources or capacity per se. Finally, individual differences in the resource allocation variability predicted variation of symptom severity in SZ, highlighting its functional relevance to schizophrenic pathology. This finding was further verified using distinct visual features and subject cohorts. These results provide an alternative view instead of the widely accepted decreased-capacity theory and highlight the key role of elevated resource allocation variability in generating atypical VWM behavior in schizophrenia. Our findings also shed new light on the utility of Bayesian observer models to characterize mechanisms of mental deficits in clinical neuroscience. Working memory is a core cognitive function related to a broad range of cognitive domains such as problem-solving, attention, executive control, and IQ. Although working memory deficits have been well-documented in schizophrenia, the underlying mechanisms remain unclear. Conventional working memory theories attribute working memory deficits in schizophrenia to their reduced memory capacity, overlooking the potential roles of other memory components, such as precision. In this study, we take the approach of computational psychiatry and use computational modeling to uncover the major determinants of working memory deficits. We assess working memory performance of a large cohort of participants (60 schizophrenia patients and 61 demographic matched healthy controls) and evaluate multiple mainstream computational models of visual working memory. The variable precision model turns out to be the best model for both groups. We further find that the poorer performance of schizophrenia patients arises from heterogeneous distribution of memory resources when encoding items in memory. This resource allocation variability can also predict symptom severity in schizophrenia. Our study highlights the use of computational models in psychiatric researches.
Collapse
Affiliation(s)
- Yi-Jie Zhao
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
- Peng Cheng Laboratory, Shenzhen, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Tianye Ma
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Li Zhang
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Xuemei Ran
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ru-Yuan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (R-YZ); (YK)
| | - Yixuan Ku
- Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
- Peng Cheng Laboratory, Shenzhen, China
- * E-mail: (R-YZ); (YK)
| |
Collapse
|
14
|
Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Transl Psychiatry 2021; 11:528. [PMID: 34650030 PMCID: PMC8516884 DOI: 10.1038/s41398-021-01607-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia, with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that control inflammatory gene expression. Here, we focus on the 'master immune regulator' nuclear factor kappa B (NF-κB) and review evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of 'immune biotyping' as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group. Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of patients with active neuroinflammation.
Collapse
Affiliation(s)
- Caitlin E. Murphy
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia
| | - Adam K. Walker
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Randwick, NSW 2031 Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Randwick, NSW, 2031, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
15
|
Umbricht D, Abt M, Tamburri P, Chatham C, Holiga Š, Frank MJ, Collins AG, Walling DP, Mofsen R, Gruener D, Gertsik L, Sevigny J, Keswani S, Dukart J. Proof-of-Mechanism Study of the Phosphodiesterase 10 Inhibitor RG7203 in Patients With Schizophrenia and Negative Symptoms. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:70-77. [PMID: 36324430 PMCID: PMC9616307 DOI: 10.1016/j.bpsgos.2021.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/16/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Background Reduced activation of dopamine D1 receptor signaling may be implicated in reward functioning as a potential driver of negative symptoms in schizophrenia. Phosphodiesterase 10A (PDE10A), an enzyme that is highly expressed in the striatum, modulates both dopamine D2- and D1-dependent signaling. Methods We assessed whether augmentation of D1 signaling by the PDE10 inhibitor RG7203 enhances imaging and behavioral markers of reward functions in patients with schizophrenia and negative symptoms. In a 3-period, double-blind, crossover study, we investigated the effects of RG7203 (5 mg and 15 mg doses) and placebo as adjunctive treatment to stable background antipsychotic treatment in patients with chronic schizophrenia with moderate levels of negative symptoms. Effects on reward functioning and reward-based effortful behavior were evaluated using the monetary incentive delay task during functional magnetic resonance imaging and the effort-cost-benefit and working memory reinforcement learning tasks. Results Patients (N = 33; 30 male, mean age ± SD 36.6 ± 7.0 years; Positive and Negative Syndrome Scale negative symptom factor score 23.0 ± 3.5 at screening) were assessed at three study centers in the United States; 24 patients completed the study. RG7203 at 5 mg significantly increased reward expectation–related activity in the monetary incentive delay task, but in the context of significantly decreased overall activity across all task conditions. Conclusions In contrast to our expectations, RG7203 significantly worsened reward-based effortful behavior and indices of reward learning. The results do not support the utility of RG7203 as adjunctive treatment for negative symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Daniel Umbricht
- Roche Pharma and Early Development, Basel, Switzerland
- Address correspondence to Daniel Umbricht, M.D.
| | - Markus Abt
- Roche Pharma and Early Development, Basel, Switzerland
| | | | | | - Štefan Holiga
- Roche Pharma and Early Development, Basel, Switzerland
| | - Michael J. Frank
- Department of Cognitive, Linguistic & Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Anne G.E. Collins
- Department of Psychology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California
| | - David P. Walling
- Collaborative Neuroscience Network, LLC, Garden Grove, California
| | - Rick Mofsen
- Translational Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel Gruener
- Evolution Research Group, LLC, New Providence, New Jersey
| | - Lev Gertsik
- California Clinical Trials Medical Group, Glendale, California
| | | | | | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Medical Faculty, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Kumar V, Nichenmetla S, Chhabra H, Sreeraj VS, Rao NP, Kesavan M, Varambally S, Venkatasubramanian G, Gangadhar BN. Prefrontal cortex activation during working memory task in schizophrenia: A fNIRS study. Asian J Psychiatr 2021; 56:102507. [PMID: 33388563 DOI: 10.1016/j.ajp.2020.102507] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/19/2022]
Abstract
Neurocognitive cognitive deficits including working memory (WM) impairment is a key component of schizophrenia (SCZ). Though a prefrontal cortex (PFC) abnormality is recognised to contribute to WM impairment, the exact nature of its neurobiological basis in SCZ is not well established. Functional near infra-red spectroscopy (fNIRS) is an emerging low-cost neuroimaging tool to study neuro-hemodynamics. In this background, we examined the hemodynamic activity during a WM task in schizophrenia using fNIRS. fNIRS was acquired during computerised N-back (zero-, one- & two-back) task in 15 SCZ patients and compared with 22 healthy controls. Performance in N-back test were calculated using signal detection theory alongside the mean reaction times. Concentration and latencies of oxy-, deoxy-, and totalhaemoglobin, and oxygen saturation were computed from 8*8 optodes positioned over bilateral PFC. SCZ performed poorly as measured by most of the WM parameters (p < 0.05). Lesser deoxyhemoglobin concentration (two > zero, at right BA10, p = 0.006) was noted in the right frontopolar cortex in SCZ surviving multiple-comparison correction. In addition, olanzapine equivalent doses correlated negatively with right frontopolar cortex activation (two > zero back, BA10, ρ = 0.70, p = 0.004) and better performance in two back (false alarm rate, ρ = 0.61, p = 0.015). A delayed but compensatory hyperactivation of right frontopolar cortex noted in SCZ may underlie the WM deficit in SCZ. Future studies are recommended to replicate the role of right frontopolar cortex in WM using larger samples and systematically explore the effect of antipsychotics on them.
Collapse
Affiliation(s)
- Vijay Kumar
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of mental health and neurosciences (NIMHANS), Bengaluru, India.
| | - Sonika Nichenmetla
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of mental health and neurosciences (NIMHANS), Bengaluru, India
| | - Harleen Chhabra
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of mental health and neurosciences (NIMHANS), Bengaluru, India
| | - Vanteemar S Sreeraj
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of mental health and neurosciences (NIMHANS), Bengaluru, India
| | - Naren P Rao
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of mental health and neurosciences (NIMHANS), Bengaluru, India
| | - Muralidharan Kesavan
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of mental health and neurosciences (NIMHANS), Bengaluru, India
| | - Shivarama Varambally
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of mental health and neurosciences (NIMHANS), Bengaluru, India
| | - Ganesan Venkatasubramanian
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of mental health and neurosciences (NIMHANS), Bengaluru, India
| | - Bangalore N Gangadhar
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of mental health and neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
17
|
Geissler CF, Domes G, Frings C. Shedding light on the frontal hemodynamics of spatial working memory using functional near-infrared spectroscopy. Neuropsychologia 2020; 146:107570. [DOI: 10.1016/j.neuropsychologia.2020.107570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
|
18
|
Li G, Zhang S, Le TM, Tang X, Li CSR. Neural responses to negative facial emotions: Sex differences in the correlates of individual anger and fear traits. Neuroimage 2020; 221:117171. [PMID: 32682098 PMCID: PMC7789231 DOI: 10.1016/j.neuroimage.2020.117171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Studies have examined sex differences in emotion processing in health and illness. However, it remains unclear how these neural processes may relate to individual differences in affective traits. We addressed this issue with a dataset of 970 subjects (508 women) curated from the Human Connectome Project. Participants were assessed with the NIH Toolbox Emotion Measures and fMRI while identifying negative facial emotion and neutral shape targets in alternating blocks. Imaging data were analyzed with published routines and the results were reported at a corrected threshold. Men scored similarly in Anger- but lower in Fear-Affect, as compared to women. Men as compared with women engaged the occipital-temporal visual cortex, retrosplenial cortex (RSC), and both anterior and posterior cingulate cortex to a greater extent during face versus shape identification. Women relative to men engaged higher activation of bilateral middle frontal cortex. In regional brain responses to face versus shape identification, men relative to women showed more significant modulations by both Anger- and Fear- Affect traits. The left RSC and right RSC/precuneus each demonstrated activities during face vs. shape identification in negative correlation with Anger- and Fear- Affect scores in men only. Anger affect was positively correlated with prolonged RT in identifying face vs. shape target in men but not women. In contrast, women relative to men showed higher Fear-Affect score and higher activation in the right middle frontal cortex, which was more strongly correlated with prolonged RT during face vs. shape identification. Together, men and women with higher Fear-Affect demonstrated lower accuracy in identifying negative facial emotion versus neutral shape target, a relationship mediated by activity of the RSC. These findings add to the literature of sex and trait individual differences in emotion processing and may help research of sex-shared and sex-specific behavioral and neural markers of emotional disorders.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of technology, 715-3 Teaching Building No.5, Beijing Institute of technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of technology, 715-3 Teaching Building No.5, Beijing Institute of technology, 5 South Zhongguancun Road, Haidian District, Beijing 100081, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, Connecticut Mental Health Center S112, 34 Park Street, New Haven, CT 06519-1109, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
19
|
Polymorphisms in CRYBB2 encoding βB2-crystallin are associated with antisaccade performance and memory function. Transl Psychiatry 2020; 10:113. [PMID: 32317624 PMCID: PMC7174396 DOI: 10.1038/s41398-020-0791-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 02/03/2023] Open
Abstract
βB2-crystallin (gene symbol: Crybb2/CRYBB2) was first described as a structural protein of the ocular lens before it was detected in various brain regions of the mouse, including the hippocampus and the cerebral cortex. Mutations in the mouse Crybb2 gene lead to alterations of sensorimotor gating measured as prepulse inhibition (PPI) and reduced hippocampal size, combined with an altered number of parvalbumin-positive GABAergic interneurons. Decreased PPI and alterations of parvalbumin-positive interneurons are also endophenotypes that typically occur in schizophrenia. To verify the results found in mice, we genotyped 27 single nucleotide polymorphisms (SNPs) within the CRYBB2 gene and its flanking regions and investigated different schizophrenia typical endophenotypes in a sample of 510 schizophrenia patients and 1322 healthy controls. In the case-control study, no association with schizophrenia was found. However, 3 of the 4 investigated haplotype blocks indicated a decreased CRYBB2 mRNA expression. Two of these blocks were associated with poorer antisaccade task performance and altered working memory-linked functional magnetic resonance imaging signals. For the two haplotypes associated with antisaccade performance, suggestive evidence was found with visual memory and in addition, haplotype block 4 showed a nominally significant association with reduced sensorimotor gating, measured as P50 ratio. These results were not schizophrenia-specific, but could be detected in a combined sample of patients and healthy controls. This is the first study to demonstrate the importance of βB2-crystallin for antisaccade performance and memory function in humans and therefore provides implications for βB2-crystallin function in the human brain.
Collapse
|
20
|
Chun CA, Cooper S, Ellman LM. Associations of psychotic-like experiences, related symptoms, and working memory with functioning. Eur Psychiatry 2020; 63:e20. [PMID: 32093801 PMCID: PMC7315866 DOI: 10.1192/j.eurpsy.2020.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study examined the association of spatial working memory and attenuated psychotic-like experiences and related symptoms with social and role functioning. Findings from this study suggest that symptom dimensions and working memory impairment were associated with diminished functioning across a variety of domains. Specifically, negative symptoms and working memory impairment were inversely associated with both social and role functioning, whereas positive and disorganized symptoms showed inverse associations with social functioning only. Symptom dimensions did not moderate cognitive and functional variables, although working memory and attenuated clinical symptoms had an additive effect on functioning. Post-hoc analyses examining symptom dimensions simultaneously showed negative symptoms to be the variable most strongly predictive of overall functioning. These findings suggest that even in a non-clinical sample, sub-threshold psychosis symptoms and cognition may influence people’s social and role functioning.
Collapse
Affiliation(s)
- Charlotte A Chun
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Shanna Cooper
- Department of Mental Health, VA San Diego Healthcare System, San Diego, California, USA.,Department of Psychiatry, University of California, San Diego, California, USA
| | - Lauren M Ellman
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Daskalakis AA, Zomorrodi R, Blumberger DM, Rajji TK. Evidence for prefrontal cortex hypofunctioning in schizophrenia through somatosensory evoked potentials. Schizophr Res 2020; 215:197-203. [PMID: 31662233 DOI: 10.1016/j.schres.2019.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 09/11/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Patients with schizophrenia (SCZ) exhibit a variety of symptoms related to altered processing of somatosensory information. Little is known, however, about the neural substrates underlying somatosensory impairments in SCZ. This study endeavored to evaluate somatosensory processing in patients with SCZ compared to healthy individuals by generating somatosensory evoked potentials through stimulation of the right median nerve. The median nerve was stimulated by a peripheral nerve stimulator in 34 SCZ and 33 healthy control (HC) participants. The peripheral nerve stimulus (PNS) intensity was adjusted to 300 percent of sensory threshold and delivered at 0.1 Hz. The EEG data were acquired through 64-channels per 10-20 montage. We collected and averaged 100 trials and the recording electrodes of interest were the F3/F5 electrodes representing the dorsolateral prefrontal cortex (DLPFC) and C3/CP3 representing the somatosensory cortex (S1). In response to PNS, SCZ participants experienced over the DLPFC N30 amplitude that was significantly smaller than that of HC participants. By contrast, S1 N20 was of similar amplitude between the two groups. In addition, we found an association between N20 and N30 amplitudes in SCZ but not in HC participants. Our findings suggest that patients with SCZ demonstrate aberrant processing of somatosensory activation by the DLPFC locally and not due to a connectivity disruption between S1 and DLPFC. These results could help to develop a model through which to DLPFC hypofunctioning could be studied. Our findings may also help to identify a potential biological target to treat somatosensory information processing related deficits in SCZ.
Collapse
Affiliation(s)
- Anastasios A Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Ellis JK, Walker EF, Goldsmith DR. Selective Review of Neuroimaging Findings in Youth at Clinical High Risk for Psychosis: On the Path to Biomarkers for Conversion. Front Psychiatry 2020; 11:567534. [PMID: 33173516 PMCID: PMC7538833 DOI: 10.3389/fpsyt.2020.567534] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
First episode psychosis (FEP), and subsequent diagnosis of schizophrenia or schizoaffective disorder, predominantly occurs during late adolescence, is accompanied by a significant decline in function and represents a traumatic experience for patients and families alike. Prior to first episode psychosis, most patients experience a prodromal period of 1-2 years, during which symptoms first appear and then progress. During that time period, subjects are referred to as being at Clinical High Risk (CHR), as a prodromal period can only be designated in hindsight in those who convert. The clinical high-risk period represents a critical window during which interventions may be targeted to slow or prevent conversion to psychosis. However, only one third of subjects at clinical high risk will convert to psychosis and receive a formal diagnosis of a primary psychotic disorder. Therefore, in order for targeted interventions to be developed and applied, predicting who among this population will convert is of critical importance. To date, a variety of neuroimaging modalities have identified numerous differences between CHR subjects and healthy controls. However, complicating attempts at predicting conversion are increasingly recognized co-morbidities, such as major depressive disorder, in a significant number of CHR subjects. The result of this is that phenotypes discovered between CHR subjects and healthy controls are likely non-specific to psychosis and generalized for major mental illness. In this paper, we selectively review evidence for neuroimaging phenotypes in CHR subjects who later converted to psychosis. We then evaluate the recent landscape of machine learning as it relates to neuroimaging phenotypes in predicting conversion to psychosis.
Collapse
Affiliation(s)
- Justin K Ellis
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
23
|
Gregory MD, Kippenhan JS, Callicott JH, Rubinstein DY, Mattay VS, Coppola R, Berman KF. Sequence Variation Associated with SLC12A5 Gene Expression Is Linked to Brain Structure and Function in Healthy Adults. Cereb Cortex 2019; 29:4654-4661. [PMID: 30668668 PMCID: PMC6917513 DOI: 10.1093/cercor/bhy344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
A single-nucleotide polymorphism in the promoter region of the Matrix Metalloproteinase-9 (MMP9) gene, rs3918242, has been shown to affect MMP9 expression in macrophages and was associated with schizophrenia by two independent groups. However, rs3918242's effects on MMP9 expression were not replicable in cell lines or brain tissue. Additionally, publically available data indicate that rs3918242 genotype is related not to MMP9 expression, but rather to expression of SLC12A5, a nearby gene coding for a K+/Cl- cotransporter, whose expression has also been related to schizophrenia. Here, we studied brain structure and function in healthy participants stratified by rs3918242 genotype using structural MRI (N = 298), functional MRI during an N-back working memory task (N = 554), and magnetoencephalography (MEG) during the same task (N = 190). We found rs3918242 was associated with gray matter volume (GMV) in the insula and dorsolateral prefrontal cortex bilaterally, closely replicated in discovery and replication samples; and with inferior parietal lobule (IPL) GMV when the samples were meta-analytically combined. Additionally, using both fMRI and MEG, rs3918242 was associated with right IPL working memory-related activation, replicated in two cohorts and across imaging modalities. These convergent results provide further impetus for examinations of the relationship of SLC12A5 with brain structure and function in neuropsychiatric disease.
Collapse
Affiliation(s)
- Michael D Gregory
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - J Shane Kippenhan
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Joseph H Callicott
- Psychosis and Cognitive Studies Section, Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Y Rubinstein
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Coppola
- MEG Core Facility, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Karen F Berman
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Psychosis and Cognitive Studies Section, Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Li X, Yi ZH, Lv QY, Chu MY, Hu HX, Wang JH, Zhang JY, Cheung EEF, Chan RCK. Clinical utility of the dual n-back task in schizophrenia: A functional imaging approach. Psychiatry Res Neuroimaging 2019; 284:37-44. [PMID: 30658243 DOI: 10.1016/j.pscychresns.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
The neural correlate of working memory (WM) impairment in schizophrenia is key to the understanding of the cognitive deficits observed in this disorder. We sought to determine the clinical validity of the dual version n-back paradigm in patients with schizophrenia, and whether schizophrenia patients exhibit altered brain activation patterns compared with healthy controls in this dual version WM measure using functional magnetic resonance imaging. Patients with schizophrenia (n = 20) and healthy controls (n = 24) performed the dual n-back task that consists of both visuospatial and auditory-verbal n-back streams, in which participants were required to monitor and update the contents from these two different inputs simultaneously. Significant positive correlations were found between performance in the dual 2-back condition and another measure of WM capacity and IQ estimates. Moreover, hypoactivation was observed at the right middle frontal gyrus and the posterior parietal regions in schizophrenia participants compared with healthy controls. The right hippocampus was less deactivated in schizophrenia patients compared with healthy controls. Our results support the clinical utility of the dual n-back task in schizophrenia and may have implications for the development of specific cognitive training targeting these impaired neural substrates in relation to WM in patients with schizophrenia.
Collapse
Affiliation(s)
- Xu Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior(CCNU), Ministry of Education, School of Psychology, Central China Normal University, Wuhan, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Hui Yi
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin-Yu Lv
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Chu
- Translational Neuropsychology and Applied Cognitive Neuroscience Laboratory, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Xin Hu
- Translational Neuropsychology and Applied Cognitive Neuroscience Laboratory, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Hong Wang
- MRI center, Shanghai Mental Health Centre, Shanghai, China
| | - Jian-Ye Zhang
- MRI center, Shanghai Mental Health Centre, Shanghai, China
| | - Eric E F Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Translational Neuropsychology and Applied Cognitive Neuroscience Laboratory, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Menzies Health Institute Queensland and School of Applied Psychology, Griffith University, Gold Coast, Australia.
| |
Collapse
|
25
|
Faiola E, Meyhöfer I, Steffens M, Kasparbauer AM, Kumari V, Ettinger U. Combining trait and state model systems of psychosis: The effect of sleep deprivation on cognitive functions in schizotypal individuals. Psychiatry Res 2018; 270:639-648. [PMID: 30384284 DOI: 10.1016/j.psychres.2018.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
Model systems of psychosis play an important role in pathophysiology and drug development research. Schizotypal individuals display similar cognitive impairments as schizophrenia patients in several domains. Therefore, schizotypy may be interpreted as a trait model system of psychosis. In addition, experimentally controlled sleep deprivation is a putative state psychosis model that evokes subclinical psychosis-like states. We aimed to further validate these model systems by examining them in relation to central cognitive biomarkers of schizophrenia. Most of all, we were interested in investigating, for the first time, effects of their combination on cognitive function. Healthy subjects with high (N = 17) or low (N = 19) levels of schizotypy performed a cognitive task battery after one night of normal sleep and after 24 h of sleep deprivation. Sleep deprivation impaired performance in the go/nogo and n-back tasks relative to the normal sleep control condition. No differences between groups or interactions of group with sleep condition were found. The role of sleep deprivation as a model of psychosis is thus supported to some extent by impairments in inhibitory control. However, classical measures of cognition may be less able to detect deficits in schizotypy, in line with evidence of more basic information processing dysfunctions in schizotypy.
Collapse
Affiliation(s)
- Eliana Faiola
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, Bonn 53111, Germany.
| | - Inga Meyhöfer
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, Bonn 53111, Germany.
| | - Maria Steffens
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, Bonn 53111, Germany.
| | | | - Veena Kumari
- Centre for Cognitive Neuroscience, Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK.
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, Bonn 53111, Germany.
| |
Collapse
|
26
|
Abstract
PURPOSE This study aimed to explore different aspects of executive function in patients with acromegaly and investigate the cause of dysexecutive syndrome in these patients. METHODS We conducted five typical executive function tests (Stroop test, verbal fluency [VF] test, Hayling Sentence Completion Test [HSCT], N-back test, and Sustained Attention to Response Task [SART]) on 42 acromegalic patients and 42 strictly matched healthy controls. Comparative analyses were conducted for five major executive function domains. The Dysexecutive Questionnaire (DEX) was used to assess patients' subjective feelings about their executive function. All patients underwent a magnetic resonance imaging (MRI) examination and a blood test to determine their pituitary hormone levels before the tests were performed. RESULTS The patients exhibited worse results on the Stroop test, VF test, HSCT and N-back test compared to the healthy control group. Moreover, part B of the HSCT and the N-back test performance were negatively correlated with IGF-1 concentrations, and the duration of the disease was significantly associated with the Stroop color task results. CONCLUSIONS Acromegalic patients were severely impaired in semantic inhibition, executive processing, working memory and executive inhibition, and they have realized a portion of these deficits. A high level of IGF-1, disease duration may contribute to the impairment of specific aspects of executive function.
Collapse
Affiliation(s)
- Shaobo Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center for Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Lingling Fang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center for Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Guijun Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center for Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Weiqing Wan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Center for Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
| |
Collapse
|
27
|
Rampino A, Taurisano P, Fanelli G, Attrotto M, Torretta S, Antonucci LA, Miccolis G, Pergola G, Ursini G, Maddalena G, Romano R, Masellis R, Di Carlo P, Pignataro P, Blasi G, Bertolino A. A Polygenic Risk Score of glutamatergic SNPs associated with schizophrenia predicts attentional behavior and related brain activity in healthy humans. Eur Neuropsychopharmacol 2017; 27:928-939. [PMID: 28651857 DOI: 10.1016/j.euroneuro.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/13/2017] [Accepted: 06/10/2017] [Indexed: 11/17/2022]
Abstract
Multiple genetic variations impact on risk for schizophrenia. Recent analyses by the Psychiatric Genomics Consortium (PGC2) identified 128 SNPs genome-wide associated with the disorder. Furthermore, attention and working memory deficits are core features of schizophrenia, are heritable and have been associated with variation in glutamatergic neurotransmission. Based on this evidence, in a sample of healthy volunteers, we used SNPs associated with schizophrenia in PGC2 to construct a Polygenic-Risk-Score (PRS) reflecting the cumulative risk for schizophrenia, along with a Polygenic-Risk-Score including only SNPs related to genes implicated in glutamatergic signaling (Glu-PRS). We performed Factor Analysis for dimension reduction of indices of cognitive performance. Furthermore, both PRS and Glu-PRS were used as predictors of cognitive functioning in the domains of Attention, Speed of Processing and Working Memory. The association of the Glu-PRS on brain activity during the Variable Attention Control (VAC) task was also explored. Finally, in a second independent sample of healthy volunteers we sought to confirm the association between the Glu-PRS and both performance in the domain of Attention and brain activity during the VAC.We found that performance in Speed of Processing and Working Memory was not associated with any of the Polygenic-Risk-Scores. The Glu-PRS, but not the PRS was associated with Attention and brain activity during the VAC. The specific effects of Glu-PRS on Attention and brain activity during the VAC were also confirmed in the replication sample.Our results suggest a pathway specificity in the relationship between genetic risk for schizophrenia, the associated cognitive dysfunction and related brain processing.
Collapse
Affiliation(s)
- Antonio Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppe Fanelli
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Mariateresa Attrotto
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit - Bari University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Silvia Torretta
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Linda Antonella Antonucci
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Grazia Miccolis
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, 21205 Baltimore, MD, USA
| | - Giancarlo Maddalena
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit - Bari University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaella Romano
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Rita Masellis
- Psychiatry Unit - Bari University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Pasquale Di Carlo
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Patrizia Pignataro
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit - Bari University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit - Bari University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
28
|
Blokland GAM, Wallace AK, Hansell NK, Thompson PM, Hickie IB, Montgomery GW, Martin NG, McMahon KL, de Zubicaray GI, Wright MJ. Genome-wide association study of working memory brain activation. Int J Psychophysiol 2017; 115:98-111. [PMID: 27671502 PMCID: PMC5364069 DOI: 10.1016/j.ijpsycho.2016.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/05/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022]
Abstract
In a population-based genome-wide association (GWA) study of n-back working memory task-related brain activation, we extracted the average percent BOLD signal change (2-back minus 0-back) from 46 regions-of-interest (ROIs) in functional MRI scans from 863 healthy twins and siblings. ROIs were obtained by creating spheres around group random effects analysis local maxima, and by thresholding a voxel-based heritability map of working memory brain activation at 50%. Quality control for test-retest reliability and heritability of ROI measures yielded 20 reliable (r>0.7) and heritable (h2>20%) ROIs. For GWA analysis, the cohort was divided into a discovery (n=679) and replication (n=97) sample. No variants survived the stringent multiple-testing-corrected genome-wide significance threshold (p<4.5×10-9), or were replicated (p<0.0016), but several genes were identified that are worthy of further investigation. A search of 529,379 genomic markers resulted in discovery of 31 independent single nucleotide polymorphisms (SNPs) associated with BOLD signal change at a discovery level of p<1×10-5. Two SNPs (rs7917410 and rs7672408) were associated at a significance level of p<1×10-7. Only one, most strongly affecting BOLD signal change in the left supramarginal gyrus (R2=5.5%), had multiple SNPs associated at p<1×10-5 in linkage disequilibrium with it, all located in and around the BANK1 gene. BANK1 encodes a B-cell-specific scaffold protein and has been shown to negatively regulate CD40-mediated AKT activation. AKT is part of the dopamine-signaling pathway, suggesting a mechanism for the involvement of BANK1 in the BOLD response to working memory. Variants identified here may be relevant to (the susceptibility to) common disorders affecting brain function.
Collapse
Affiliation(s)
- Gabriëlla A M Blokland
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Psychology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Angus K Wallace
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Narelle K Hansell
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, 2001 North Soto Street - Room 102, Marina del Rey, Los Angeles, CA 90032, United States
| | - Ian B Hickie
- Brain & Mind Research Institute, The University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Katie L McMahon
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Greig I de Zubicaray
- School of Psychology, The University of Queensland, St Lucia, QLD, 4072, Australia; Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Margaret J Wright
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Psychology, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
29
|
Berry AS, Sarter M, Lustig C. Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control. J Cogn Neurosci 2017; 29:1212-1225. [PMID: 28253080 DOI: 10.1162/jocn_a_01112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We investigated the brain activity patterns associated with stabilizing performance during challenges to attention. Our findings revealed distinct patterns of frontoparietal activity and functional connectivity associated with increased attentional effort versus preserved performance during challenged attention. Participants performed a visual signal detection task with and without presentation of a perceptual-attention challenge (changing background). The challenge condition increased activation in frontoparietal regions including right mid-dorsal/dorsolateral PFC (RPFC), approximating Brodmann's area 9, and superior parietal cortex. We found that greater behavioral impact of the challenge condition was correlated with greater RPFC activation, suggesting that increased engagement of cognitive control regions is not always sufficient to maintain high levels of performance. Functional connectivity between RPFC and ACC increased during the challenge condition and was also associated with performance declines, suggesting that the level of synchronized engagement of these regions reflects individual differences in attentional effort. Pretask, resting-state RPFC-ACC connectivity did not predict subsequent performance, suggesting that RPFC-ACC connectivity increased dynamically during task performance in response to performance decrement and error feedback. In contrast, functional connectivity between RPFC and superior parietal cortex not only during the task but also during pretask rest was associated with preserved performance in the challenge condition. Together, these data suggest that resting frontoparietal connectivity predicts performance on attention tasks that rely on those same cognitive control networks and that, under challenging conditions, other control regions dynamically couple with this network to initiate the engagement of cognitive control.
Collapse
Affiliation(s)
- Anne S Berry
- 1 University of Michigan.,2 Lawrence Berkeley National Laboratory
| | | | | |
Collapse
|
30
|
Slyepchenko A, Lokuge S, Nicholls B, Steiner M, Hall GBC, Soares CN, Frey BN. Subtle persistent working memory and selective attention deficits in women with premenstrual syndrome. Psychiatry Res 2017; 249:354-362. [PMID: 28152471 DOI: 10.1016/j.psychres.2017.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/06/2017] [Accepted: 01/13/2017] [Indexed: 01/16/2023]
Abstract
As a recurrent, cyclical phenomenon, premenstrual syndrome (PMS) affects a significant proportion of women of the reproductive age, and leads to regular monthly days of functional impairment. Symptoms of PMS include somatic and psychological symptoms, such as headaches, sleep disturbances, social withdrawal and mood changes, during the late luteal phase of the menstrual cycle, which alleviate during the follicular phase. This study investigated neurocognitive functioning in women with moderate to severe PMS symptoms (n=13) compared to women with mild/no PMS (n=27) through administration of a battery of neuropsychological tests during the asymptomatic follicular phase of the menstrual cycle. Relative to women with mild/no PMS symptoms, women with moderate to severe PMS showed significantly poorer accuracy and more errors of omission on the N-0-back, as well as more errors of omission on the N-2-back task, indicating the presence of impairment in selective attention and working memory. This study provides evidence of persistent, subtle working memory and selective attention difficulties in those with moderate to severe PMS during the follicular phase of the menstrual cycle.
Collapse
Affiliation(s)
- Anastasiya Slyepchenko
- Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, 100 West 5th Street, Suite C124, Hamilton, ON, Canada L8N 3K7; MiNDS Neuroscience Graduate Program, McMaster University, 1280 Main St. W., Hamilton, ON, Canada.
| | - Sonali Lokuge
- Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, 100 West 5th Street, Suite C124, Hamilton, ON, Canada L8N 3K7; Department of Obstetrics and Gynecology, University of Toronto, 123 Edward St. Suite 1200, Toronto, ON, Canada.
| | - Brianne Nicholls
- Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, 100 West 5th Street, Suite C124, Hamilton, ON, Canada L8N 3K7.
| | - Meir Steiner
- Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, 100 West 5th Street, Suite C124, Hamilton, ON, Canada L8N 3K7; MiNDS Neuroscience Graduate Program, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main St. W., Hamilton, ON, Canada.
| | - Geoffrey B C Hall
- MiNDS Neuroscience Graduate Program, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main St. W., Hamilton, ON, Canada.
| | - Claudio N Soares
- Department of Psychiatry, School of Medicine, Queen's University, Kingston, ON, Canada.
| | - Benicio N Frey
- Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, 100 West 5th Street, Suite C124, Hamilton, ON, Canada L8N 3K7; MiNDS Neuroscience Graduate Program, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main St. W., Hamilton, ON, Canada; Mood Disorders Program, St. Joseph's Healthcare Hamilton, 100 West 5th St, Hamilton, ON, Canada.
| |
Collapse
|
31
|
Reed JL, Gallagher NM, Sullivan M, Callicott JH, Green AE. Sex differences in verbal working memory performance emerge at very high loads of common neuroimaging tasks. Brain Cogn 2017; 113:56-64. [PMID: 28119206 DOI: 10.1016/j.bandc.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/05/2016] [Accepted: 01/02/2017] [Indexed: 11/16/2022]
Abstract
Working memory (WM) supports a broad range of intelligent cognition and has been the subject of rich cognitive and neural characterization. However, the highest ranges of WM have not been fully characterized, especially for verbal information. Tasks developed to test multiple levels of WM demand (load) currently predominate brain-based WM research. These tasks are typically used at loads that allow most healthy participants to perform well, which facilitates neuroimaging data collection. Critically, however, high performance at lower loads may obscure differences that emerge at higher loads. A key question not yet addressed at high loads concerns the effect of sex. Thoroughgoing investigation of high-load verbal WM is thus timely to test for potential hidden effects, and to provide behavioral context for effects of sex observed in WM-related brain structure and function. We tested 111 young adults, matched on genotype for the WM-associated COMT-Val108/158Met polymorphism, on three classic WM tasks using verbal information. Each task was tested at four WM loads, including higher loads than those used in previous studies of sex differences. All tasks loaded on a single factor, enabling comparison of verbal WM ability at a construct level. Results indicated sex effects at high loads across tasks and within each task, such that males had higher accuracy, even among groups that were matched for performance at lower loads.
Collapse
Affiliation(s)
- Jessica L Reed
- Department of Psychology, Georgetown University, United States; Clinical Brain Disorders Branch, National Institute of Mental Health, United States
| | - Natalie M Gallagher
- Department of Psychology, Georgetown University, United States; Department of Psychology, Northwestern University, United States
| | - Marie Sullivan
- Department of Psychology, Georgetown University, United States
| | - Joseph H Callicott
- Clinical Brain Disorders Branch, National Institute of Mental Health, United States
| | - Adam E Green
- Department of Psychology, Georgetown University, United States.
| |
Collapse
|
32
|
Pergola G, Di Carlo P, D'Ambrosio E, Gelao B, Fazio L, Papalino M, Monda A, Scozia G, Pietrangelo B, Attrotto M, Apud JA, Chen Q, Mattay VS, Rampino A, Caforio G, Weinberger DR, Blasi G, Bertolino A. DRD2 co-expression network and a related polygenic index predict imaging, behavioral and clinical phenotypes linked to schizophrenia. Transl Psychiatry 2017; 7:e1006. [PMID: 28094815 PMCID: PMC5545721 DOI: 10.1038/tp.2016.253] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/28/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Genetic risk for schizophrenia (SCZ) is determined by many genetic loci whose compound biological effects are difficult to determine. We hypothesized that co-expression pathways of SCZ risk genes are associated with system-level brain function and clinical phenotypes of SCZ. We examined genetic variants related to the dopamine D2 receptor gene DRD2 co-expression pathway and associated them with working memory (WM) behavior, the related brain activity and treatment response. Using two independent post-mortem prefrontal messenger RNA (mRNA) data sets (total N=249), we identified a DRD2 co-expression pathway enriched for SCZ risk genes. Next, we identified non-coding single-nucleotide polymorphisms (SNPs) associated with co-expression of this pathway. These SNPs were associated with regulatory genetic loci in the dorsolateral prefrontal cortex (P<0.05). We summarized their compound effect on co-expression into a Polygenic Co-expression Index (PCI), which predicted DRD2 pathway co-expression in both mRNA data sets (all P<0.05). We associated the PCI with brain activity during WM performance in two independent samples of healthy individuals (total N=368) and 29 patients with SCZ who performed the n-back task. Greater predicted DRD2 pathway prefrontal co-expression was associated with greater prefrontal activity and longer WM reaction times (all corrected P<0.05), thus indicating inefficient WM processing. Blind prediction of treatment response to antipsychotics in two independent samples of patients with SCZ suggested better clinical course of patientswith greater PCI (total N=87; P<0.05). The findings on this DRD2 co-expression pathway are a proof of concept that gene co-expression can parse SCZ risk genes into biological pathways associated with intermediate phenotypes as well as with clinically meaningful information.
Collapse
Affiliation(s)
- G Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - P Di Carlo
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - E D'Ambrosio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - B Gelao
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - L Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - M Papalino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - A Monda
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - G Scozia
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - B Pietrangelo
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - M Attrotto
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - J A Apud
- National Institutes of Health, National Institute of Mental Health, Clinical and Translational Neuroscience Branch, NIMH, Bethesda, MD, USA
| | - Q Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - V S Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Departments of Neurology and Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - G Caforio
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - D R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Departments of Psychiatry, Neurology, Neuroscience and The Mckusick-Nathans Institute of Genomic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - G Blasi
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - A Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| |
Collapse
|
33
|
Barkus E, Morrison P, Di Forti M, Murray RM. Are deficits in cognition associated with psychotic-like experiences after cannabis? Hum Psychopharmacol 2016; 31:402-411. [PMID: 27859664 DOI: 10.1002/hup.2556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 07/07/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Not all individuals who smoke cannabis report psychotic-like experiences. Given that risk factors for psychotic disorders are multifaceted, precipitating factors to psychotic-like experiences after cannabis are likely to be equally complex. Reduced neurocognitive performance is associated with both psychosis risk and cannabis use. Therefore, it is possible cognitive performance may differentiate those who report psychotic-like experiences after cannabis from those who do not. We determined whether those reporting psychotic/dysphoric experiences after cannabis had reduced neurocognitive performance compared to those reporting primarily euphoric experiences. METHODS Participants were recruited on the basis of responses to the cannabis high captured by the Psychosis-Dysphoric and Euphoric experiences subscales from the Cannabis Experiences Questionnaire (CEQ). RESULTS Compared to participants reporting primarily euphoric cannabis experiences (n = 36; 44% male; mean age (SD) = 28 (9) years), those who reported psychotic/dysphoric experiences (n = 40; 45% male; mean age (SD) = 26 (5) years) demonstrated significantly faster responses to a trial and error learning task. In the presence of distracters, those with psychotic/dysphoric experiences after cannabis made more errors on a Continuous Performance Task. CONCLUSIONS Those who report psychotic/dysphoric experiences after cannabis have subtle inefficiencies in their cognitive processes. The multiple factors which predict vulnerability to psychotic-like experiences after cannabis require further investigation.
Collapse
Affiliation(s)
- Emma Barkus
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia
| | - Paul Morrison
- Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Marta Di Forti
- Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Robin M Murray
- Institute of Psychiatry, Psychology & Neuroscience, London, UK
| |
Collapse
|
34
|
Van Snellenberg JX, Girgis RR, Horga G, van de Giessen E, Slifstein M, Ojeil N, Weinstein JJ, Moore H, Lieberman JA, Shohamy D, Smith EE, Abi-Dargham A. Mechanisms of Working Memory Impairment in Schizophrenia. Biol Psychiatry 2016; 80:617-26. [PMID: 27056754 PMCID: PMC4995154 DOI: 10.1016/j.biopsych.2016.02.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The neural correlates of working memory (WM) impairment in schizophrenia remain a key puzzle in understanding the cognitive deficits and dysfunction of dorsolateral prefrontal cortex observed in this disorder. We sought to determine whether patients with schizophrenia exhibit an alteration in the inverted-U relationship between WM load and activation that we recently observed in healthy individuals and whether this could account for WM deficits in this population. METHODS Medicated (n = 30) and unmedicated (n = 21) patients with schizophrenia and healthy control subjects (n = 45) performed the self-ordered WM task during functional magnetic resonance imaging. We identified regions exhibiting an altered fit to an inverted-U relationship between WM load and activation that were also predictive of WM performance. RESULTS A blunted inverted-U response was observed in left dorsolateral prefrontal cortex in patients and was associated with behavioral deficits in WM capacity. In addition, suppression of medial prefrontal cortex during WM was reduced in patients and was associated with poorer WM capacity in patients. Finally, activation of visual cortex in the cuneus was elevated in patients and associated with improved WM capacity. Together, these findings explained 55% of the interindividual variance in WM capacity when combined with diagnostic and medication status, which alone accounted for only 22% of the variance in WM capacity. CONCLUSIONS These findings identify a novel biomarker and putative mechanism of WM deficits in patients with schizophrenia, a reduction or flattening of the inverted-U relationship between activation and WM load observed in healthy individuals in left dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Jared X Van Snellenberg
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Divisions of Translational Imaging, New York, New York; Cognitive Neuroscience, New York, New York.
| | - Ragy R Girgis
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Divisions of Translational Imaging, New York, New York
| | - Guillermo Horga
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Divisions of Translational Imaging, New York, New York
| | - Elsmarieke van de Giessen
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Divisions of Translational Imaging, New York, New York; Department of Nuclear Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Slifstein
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Divisions of Translational Imaging, New York, New York
| | - Najate Ojeil
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Divisions of Translational Imaging, New York, New York
| | - Jodi J Weinstein
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Divisions of Translational Imaging, New York, New York
| | - Holly Moore
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Integrative Neuroscience, New York, New York
| | - Jeffrey A Lieberman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Daphna Shohamy
- Department of Psychology, Columbia University, New York, New York
| | - Edward E Smith
- Cognitive Neuroscience, New York, New York; Department of Psychology, Columbia University, New York, New York
| | - Anissa Abi-Dargham
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Divisions of Translational Imaging, New York, New York
| |
Collapse
|
35
|
Vogel T, Smieskova R, Schmidt A, Walter A, Harrisberger F, Eckert A, Lang UE, Riecher-Rössler A, Graf M, Borgwardt S. Increased superior frontal gyrus activation during working memory processing in psychosis: Significant relation to cumulative antipsychotic medication and to negative symptoms. Schizophr Res 2016; 175:20-26. [PMID: 27102424 DOI: 10.1016/j.schres.2016.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Impairment in working memory (WM) is a core symptom in schizophrenia. However, little is known about how clinical features influence functional brain activity specific to WM processing during the development of first-episode psychosis (FEP) to schizophrenia (SZ). We compared functional WM-specific brain activity in FEP and SZ patients, including the effects of the duration of illness, psychopathological factors and antipsychotic medication. METHODS Cross-sectional study of male FEP (n=22) and SZ (n=20) patients performing an n-back task when undergoing functional magnetic resonance imaging (fMRI). Clinical features were collected by semi-structured interviews and medical records. RESULTS The SZ group performed significantly worse than the FEP group in the 2-back condition. The SZ group also showed significantly higher activation in the left superior frontal gyrus in the 2-back versus 0-back condition (2-back>0-back). This frontal activation correlated positively with negative symptoms and with cumulative antipsychotic medication during the year before the fMRI examination. There were no significant correlations between activation and duration of illness. CONCLUSION There was greater frontal neural activation in SZ than in FEP. This indicated differences in WM processing, and was significantly related to cumulative antipsychotic exposure and negative symptoms, but not to the duration of illness.
Collapse
Affiliation(s)
- Tobias Vogel
- Psychiatric University Clinics (UPK) Basel, Wilhelm Klein-Strasse 27, Basel, Switzerland; Medical Image Analysis Center, University Hospital Basel, Switzerland
| | - Renata Smieskova
- Psychiatric University Clinics (UPK) Basel, Wilhelm Klein-Strasse 27, Basel, Switzerland; Medical Image Analysis Center, University Hospital Basel, Switzerland; Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric Clinics of the University of Basel, Basel, Switzerland; Transfacultary Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - André Schmidt
- Psychiatric University Clinics (UPK) Basel, Wilhelm Klein-Strasse 27, Basel, Switzerland; Medical Image Analysis Center, University Hospital Basel, Switzerland; Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric Clinics of the University of Basel, Basel, Switzerland; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Transfacultary Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anna Walter
- Psychiatric University Clinics (UPK) Basel, Wilhelm Klein-Strasse 27, Basel, Switzerland
| | - Fabienne Harrisberger
- Psychiatric University Clinics (UPK) Basel, Wilhelm Klein-Strasse 27, Basel, Switzerland; Medical Image Analysis Center, University Hospital Basel, Switzerland; Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric Clinics of the University of Basel, Basel, Switzerland; Transfacultary Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric Clinics of the University of Basel, Basel, Switzerland; Transfacultary Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Undine E Lang
- Psychiatric University Clinics (UPK) Basel, Wilhelm Klein-Strasse 27, Basel, Switzerland
| | - Anita Riecher-Rössler
- Psychiatric University Clinics (UPK) Basel, Wilhelm Klein-Strasse 27, Basel, Switzerland
| | - Marc Graf
- Psychiatric University Clinics (UPK) Basel, Wilhelm Klein-Strasse 27, Basel, Switzerland
| | - Stefan Borgwardt
- Psychiatric University Clinics (UPK) Basel, Wilhelm Klein-Strasse 27, Basel, Switzerland; Medical Image Analysis Center, University Hospital Basel, Switzerland; Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric Clinics of the University of Basel, Basel, Switzerland; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Transfacultary Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J Neurosci 2016; 36:2119-30. [PMID: 26888924 DOI: 10.1523/jneurosci.3056-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Stress and the major stress hormone corticosterone induce profound influences in the brain. Altered histone modification and transcriptional dysfunction have been implicated in stress-related mental disorders. We previously found that repeated stress caused an impairment of prefrontal cortex (PFC)-mediated cognitive functions by increasing the ubiquitination and degradation of AMPA-type glutamate receptors via a mechanism depending on the E3 ubiquitin ligase Nedd4. Here, we demonstrated that in PFC of repeatedly stressed rats, active glucocorticoid receptor had the increased binding to the glucocorticoid response element of histone deacetylase 2 (HDAC2) promoter, resulting in the upregulation of HDAC2. Inhibition or knock-down of HDAC2 blocked the stress-induced impairment of synaptic transmission, AMPAR expression, and recognition memory. Furthermore, we found that, in stressed animals, the HDAC2-dependent downregulation of histone methyltransferase Ehmt2 (G9a) led to the loss of repressive histone methylation at the Nedd4-1 promoter and the transcriptional activation of Nedd4. These results have provided an epigenetic mechanism and a potential treatment strategy for the detrimental effects of chronic stress. SIGNIFICANCE STATEMENT Prolonged stress exposure can induce altered histone modification and transcriptional dysfunction, which may underlie the profound influence of stress in regulating brain functions. We report an important finding about the epigenetic mechanism controlling the detrimental effects of repeated stress on synaptic transmission and cognitive function. First, it has revealed the stress-induced alteration of key epigenetic regulators HDAC2 and Ehmt2, which determines the synaptic and behavioral effects of repeated stress. Second, it has uncovered the stress-induced histone modification of the target gene Nedd4, an E3 ligase that is critically involved in the ubiquitination and degradation of AMPA receptors and cognition. Third, it has provided the epigenetic approach, HDAC2 inhibition or knock-down, to rescue synaptic and cognitive functions in stressed animals.
Collapse
|
37
|
Effects of childhood trauma on working memory in affective and non-affective psychotic disorders. Brain Imaging Behav 2016; 11:722-735. [DOI: 10.1007/s11682-016-9548-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Fang L, Huang J, Zhang Q, Chan RCK, Wang R, Wan W. Different aspects of dysexecutive syndrome in patients with moyamoya disease and its clinical subtypes. J Neurosurg 2016; 125:299-307. [PMID: 26722860 DOI: 10.3171/2015.7.jns142666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Dysexecutive syndrome is common in patients with moyamoya disease (MMD), a chronic cerebrovascular disease that is characterized by stenosis of the bilateral internal carotid arteries and progressive collateral revascularization, and MMD can be classified as ischemic or hemorrhagic according to the disease presentation and history. In this study, the authors aimed to determine which aspects of executive function are impaired in patients with MMD, in addition to the specific dysexecutive functions present among its clinical subtypes and the mechanisms underlying dysexecutive function in these patients. METHODS The authors administered 5 typical executive function tests (the Stroop test, the Hayling Sentence Completion Test [HSCT], the verbal fluency [VF] test, the N-back test, and the Sustained Attention to Response Task [SART]) to 49 patients with MMD and 47 IQ-, age-, education-, and social status-matched healthy controls. The dysexecutive questionnaire (DEX) was also used to assess participants' subjective feelings about their executive function. A total of 39 of the patients were evaluated by CT perfusion (CTP) before the assessments were performed, and the correlations among the performances of the patients on the above tests with the parameters of cerebral blood volume, cerebral blood flow (CBF), mean transit time (MTT), and time-to-peak (TTP) in the frontal lobes of these patients were also analyzed. RESULTS Many aspects of executive function in the patients with MMD were significantly poorer than those in the healthy controls, and the patients performed particularly poorer on the VF test, HSCT, N-back test, and SART. The patients with hemorrhagic MMD exhibited worse executive inhibition, executive processing, and semantic inhibition compared with those with ischemic MMD, but the latter group presented a worse working memory and poorer sustained attention. There were no significant differences in the DEX scores between the patients with MMD and healthy controls. The other findings were as follows: CBF was significantly positively correlated with the number correct on part B of the HSCT (r = 0.481, p = 0.01) and accuracy on the 0-back task of the N-back (r = 0.346, p = 0.031); MTT was significantly positively correlated with accuracy on the 2-back task of the N-back (r = 0.349, p = 0.034) and factor 5 of the DEX (r = 0.359, p = 0.032); and TTP was significantly positively correlated with the number correct on part B of the HSCT (r = 0.402, p = 0.034) and the 1-back reaction time of the N-back (r = 0.356, p = 0.026). CONCLUSIONS The patients with MMD exhibited impairments in semantic inhibition, executive processing, working memory, and sustained attention, but they were not aware of these deficits. Moreover, differences in dysexecutive function existed between the different subtypes of MMD. Hypoperfusion of the frontal lobe may be related to working memory and semantic inhibition impairments in patients with MMD.
Collapse
Affiliation(s)
- Lingling Fang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease; and
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease; and
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease; and
| | - Weiqing Wan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease; and
| |
Collapse
|
39
|
Ihne JL, Gallagher NM, Sullivan M, Callicott JH, Green AE. Is less really more: Does a prefrontal efficiency genotype actually confer better performance when working memory becomes difficult? Cortex 2015; 74:79-95. [PMID: 26649915 DOI: 10.1016/j.cortex.2015.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/24/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022]
Abstract
Perhaps the most widely studied effect to emerge from the combination of neuroimaging and human genetics is the association of the COMT-Val(108/158)Met polymorphism with prefrontal activity during working memory. COMT-Val is a putative risk factor in schizophrenia, which is characterized by disordered prefrontal function. Work in healthy populations has sought to characterize mechanisms by which the valine (Val) allele may lead to disadvantaged prefrontal cognition. Lower activity in methionine (Met) carriers has been interpreted as advantageous neural efficiency. Notably, however, studies reporting COMT effects on neural efficiency have generally not reported working memory performance effects. Those studies have employed relatively low/easy working memory loads. Higher loads are known to elicit individual differences in working memory performance that are not visible at lower loads. If COMT-Met confers greater neural efficiency when working memory is easy, a reasonable prediction is that Met carriers will be better able to cope with increasing demand for neural resources when working memory becomes difficult. To our knowledge, this prediction has thus far gone untested. Here, we tested performance on three working memory tasks. Performance on each task was measured at multiple levels of load/difficulty, including loads more demanding than those used in prior studies. We found no genotype-by-load interactions or main effects of COMT genotype on accuracy or reaction time. Indeed, even testing for performance differences at each load of each task failed to find a single significant effect of COMT genotype. Thus, even if COMT genotype has the effects on prefrontal efficiency that prior work has suggested, such effects may not directly impact high-load working memory ability. The present findings accord with previous evidence that behavioral effects of COMT are small or nonexistent and, more broadly, with a growing consensus that substantial effects on phenotype will not emerge from candidate gene studies.
Collapse
Affiliation(s)
- Jessica L Ihne
- Department of Psychology, Georgetown University, United States
| | | | - Marie Sullivan
- Department of Psychology, Georgetown University, United States
| | - Joseph H Callicott
- Clinical Brain Disorders Branch, National Institute of Mental Health, United States
| | - Adam E Green
- Department of Psychology, Georgetown University, United States.
| |
Collapse
|
40
|
Shan ZY, Vinkhuyzen AAE, Thompson PM, McMahon KL, Blokland GAM, de Zubicaray GI, Calhoun V, Martin NG, Visscher PM, Wright MJ, Reutens DC. Genes influence the amplitude and timing of brain hemodynamic responses. Neuroimage 2015; 124:663-671. [PMID: 26375212 DOI: 10.1016/j.neuroimage.2015.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022] Open
Abstract
In functional magnetic resonance imaging (fMRI), the hemodynamic response function (HRF) reflects regulation of regional cerebral blood flow in response to neuronal activation. The HRF varies significantly between individuals. This study investigated the genetic contribution to individual variation in HRF using fMRI data from 125 monozygotic (MZ) and 149 dizygotic (DZ) twin pairs. The resemblance in amplitude, latency, and duration of the HRF in six regions in the frontal and parietal lobes was compared between MZ and DZ twin pairs. Heritability was estimated using an ACE (Additive genetic, Common environmental, and unique Environmental factors) model. The genetic influence on the temporal profile and amplitude of HRF was moderate to strong (24%-51%). The HRF may be used in the genetic analysis of diseases with a cerebrovascular etiology.
Collapse
Affiliation(s)
- Zuyao Y Shan
- Centre for Advanced Imaging, The University of QLD, Brisbane, QLD 4072, Australia
| | - Anna A E Vinkhuyzen
- Queensland Brain Institute, The University of QLD, Brisbane, QLD 4072, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Institute of Neuroimaging Informatics, Keck School of Medicine of University of Southern California, Marina del Rey, CA 90292, USA
| | - Katie L McMahon
- Centre for Advanced Imaging, The University of QLD, Brisbane, QLD 4072, Australia
| | - Gabriëlla A M Blokland
- Centre for Advanced Imaging, The University of QLD, Brisbane, QLD 4072, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | | | - Vince Calhoun
- The Mind Research Network, Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM 87313, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Peter M Visscher
- Queensland Brain Institute, The University of QLD, Brisbane, QLD 4072, Australia
| | - Margaret J Wright
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - David C Reutens
- Centre for Advanced Imaging, The University of QLD, Brisbane, QLD 4072, Australia.
| |
Collapse
|
41
|
Jiang S, Yan H, Chen Q, Tian L, Lu T, Tan HY, Yan J, Zhang D. Cerebral Inefficient Activation in Schizophrenia Patients and Their Unaffected Parents during the N-Back Working Memory Task: A Family fMRI Study. PLoS One 2015; 10:e0135468. [PMID: 26270056 PMCID: PMC4536207 DOI: 10.1371/journal.pone.0135468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/22/2015] [Indexed: 01/18/2023] Open
Abstract
Background It has been suggested that working memory deficits is a core feature of symptomatology of schizophrenia, which can be detected in patients and their unaffected relatives. The impairment of working memory has been found related to the abnormal activity of human brain regions in many functional magnetic resonance imaging (fMRI) studies. This study investigated how brain region activation was altered in schizophrenia and how it was inherited independently from performance deficits. Method The authors used fMRI method during N-back task to assess working memory related cortical activation in four groups (N = 20 in each group, matching task performance, age, gender and education): schizophrenic patients, their unaffected biological parents, young healthy controls for the patients and older healthy controls for their parents. Results Compared to healthy controls, patients showed an exaggerated response in the right dorsolateral prefrontal cortex (brodmann area [BA] 46) and bilateral ventrolateral prefrontal cortex, and had reduced activation in bilateral dorsolateral prefrontal cortex (BA 9). In the conjunction analysis, the effect of genetic risk (parents versus older control) shared significantly overlapped activation with effect of disease (patients versus young control) in the right middle frontal gyrus (BA 46) and left inferior parietal gyrus (BA 40). Conclusions Physiological inefficiency of dorsal prefrontal cortex and compensation involvement of ventral prefrontal cortex in working memory function may one physiological characteristics of schizophrenia. And relatively inefficient activation in dorsolateral prefrontal cortex probably can be a promising intermediate phenotype for schizophrenia.
Collapse
Affiliation(s)
- Sisi Jiang
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Hao Yan
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, Maryland, United States of America
| | - Lin Tian
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Hao-Yang Tan
- Lieber Institute for Brain Development, Baltimore, Maryland, United States of America
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jun Yan
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Dai Zhang
- Peking University Sixth Hospital, Beijing, 100191, China
- Peking University Institute of Mental Health, Beijing,100191, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
42
|
Zhang Z, Chen X, Yu P, Zhang Q, Sun X, Gu H, Zhang H, Zhai J, Chen M, Du B, Deng X, Ji F, Wang C, Xiang Y, Li D, Wu H, Li J, Dong Q, Chen C. Evidence for the contribution of NOS1 gene polymorphism (rs3782206) to prefrontal function in schizophrenia patients and healthy controls. Neuropsychopharmacology 2015; 40:1383-94. [PMID: 25490993 PMCID: PMC4397396 DOI: 10.1038/npp.2014.323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/04/2023]
Abstract
Nitric oxide (NO), a gaseous neurotransmitter, has been implicated in the pathogenesis of schizophrenia. Accordingly, several polymorphisms of the gene that codes for the main NO-producing enzyme, the nitric oxide synthase 1 (NOS1), have been found to convey a risk for schizophrenia. This study examined the role of NOS1 gene polymorphisms in cognitive functions and related neural mechanism. First, with a sample of 580 schizophrenia patients and 720 healthy controls, we found that rs3782206 genotype had main effects on the 1-back task (P=0.005), the 2-back task (P=0.049), the AY condition of the dot-pattern expectancy (DPX) task (P=0.001), and the conflict effect of the attention network (ANT) test (P<0.001 for RT differences and P=0.002 for RT ratio) and interaction effects with diagnosis on the BX condition of the DPX (P=0.009), the AY condition of the DPX (P<0.001), and the Stroop conflict effect (P=0.003 for RT differences and P=0.038 for RT ratio). Simple effect analyses further showed that the schizophrenia risk allele (T) of rs3782206 was associated with poorer performance in five measures for the patients (1-back, P=0.025; BX, P=0.017; AY, P<0.001; ANT conflict effect (RT differences), P=0.005; Stroop conflict effect (RT differences), P=0.019) and three measures for the controls ( for the 2-back task, P=0.042; for the ANT conlict effect (RT differences), P=0.013; for the ANT conflict effect (RT ratios), P=0.028). Then, with a separate sample of 78 healthy controls, we examined the association between rs3782206 and brain activation patterns during the N-back task and the Stroop task. Whole brain analyses found that the risk allele carriers showed reduced activation at the right inferior frontal gyrus (IFG) during both tasks. Finally, we examined functional connectivity seeded from the right IFG to the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex under three conditions (the N-back task, the Stroop task, and the resting state). Results showed reduced connectivity with the DLPFC for the risk allele carriers mainly in the Stroop task and the resting state. Taken together, results of this study strongly suggested a link between NOS1 gene polymorphism at rs3782206 and cognitive functions and their neural underpinnings at the IFG. These results have important implications for our understanding of the neural mechanism underlying the association between NOS1 gene polymorphism and schizophrenia.
Collapse
Affiliation(s)
- Zhifang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Xiongying Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Ping Yu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Qiumei Zhang
- School of Mental Health, Jining Medical University, Jining, Shandong Province, P.R. China
| | - Xiaochen Sun
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Huang Gu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Hao Zhang
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, P. R. China,Key Laboratory of Opto-electronics Information Technology, Ministry of Education, Tianjin, China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, Jining, Shandong Province, P.R. China
| | - Min Chen
- School of Mental Health, Jining Medical University, Jining, Shandong Province, P.R. China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, Shandong Province, P.R. China
| | | | - Yutao Xiang
- Beijing Anding Hospital, Beijing, China,Faculty of Health Sciences, Macau University of Science and Technology, Taipa, Macau, China
| | - Dawei Li
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Hongjie Wu
- Shengli Hospital of Shengli Petroleum Administration Bureau, Dongying, Shandong province, P.R. China
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China,State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19# Xinjiekouwai Road, Beijing 100875, China, Tel: +86 10 58801755, Fax: +86 10 58801755, E-mail:
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
43
|
Shepherd AM, Quidé Y, Laurens KR, O’Reilly N, Rowland JE, Mitchell PB, Carr VJ, Green MJ. Shared intermediate phenotypes for schizophrenia and bipolar disorder: neuroanatomical features of subtypes distinguished by executive dysfunction. J Psychiatry Neurosci 2015; 40:58-68. [PMID: 25268788 PMCID: PMC4275333 DOI: 10.1503/jpn.130283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/15/2014] [Accepted: 05/26/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Shared genetic vulnerability for schizophrenia and bipolar disorder may be associated with common neuroanatomical features. In view of the evidence for working memory dysfunction as a candidate intermediate phenotype for both disorders, we explored neuroanatomical distinctions between subtypes defined according to working memory (n-back task) performance. METHODS We analyzed T1-weighted MRI scans for patients with schizophrenia-spectrum disorder, bipolar-I disorder (BD-I) and healthy controls. The VBM8 toolbox was used to assess differences in grey and white matter volume across traditional diagnostic groups (schizophrenia v. BD-I). Subsequently, groups were defined as "executively spared" (ES) based on the achievement of greater than 50% accuracy in the 2-back task performance (comparable to performance in the control group) or "executively deficit" (ED) based on the achievement of less than 50% accuracy. RESULTS Our study included 40 patients with schizophrenia-spectrum disorders, 30 patients with BD-I and 34 controls. Both the schizophrenia and BD-I groups showed grey matter volume reductions relative to the control group, but not relative to each other. The ED subtype (n = 32 [10 BD-I, 22 schizophrenia]) showed grey matter volume reductions in the bilateral superior and medial frontal gyri, right inferior opercular gyri and hippocampus relative to controls. The ES subtype (n = 38 [20 BD-I, 18 schizophrenia]) showed grey matter volume reductions in the right precuneus and left superior and medial orbital frontal gyri relative to controls. The ED subtype showed grey matter volume reduction in the right inferior frontal and precentral gyri relative to the ES subtype. There were no significant differences in white matter volume in any group comparisons. LIMITATIONS This analysis was limited by small sample sizes. Further, insufficient numbers were available to assess a control-deficit comparison group. We were unable to assess the effects of mood stabilizer dose on brain structure. CONCLUSION Neuroanatomical commonalities are evident among patients with schizophrenia-spectrum disorders and BD-I with working memory deficits. Reduced inferior frontal lobe volume may mediate cognitive deficits shared across the psychosis-mood spectrum.
Collapse
Affiliation(s)
- Alana M. Shepherd
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Kristin R. Laurens
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Nicole O’Reilly
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Jesseca E. Rowland
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Philip B. Mitchell
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Vaughan J. Carr
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Melissa J. Green
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| |
Collapse
|
44
|
Collier AK, Wolf DH, Valdez JN, Gur RE, Gur RC. Subsequent memory effects in schizophrenia. Psychiatry Res 2014; 224:211-7. [PMID: 25453165 PMCID: PMC4254629 DOI: 10.1016/j.pscychresns.2014.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 09/14/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Differential neural activation at encoding can predict which stimuli will be subsequently remembered or forgotten, and memory deficits are pronounced in schizophrenia. We used event-related functional magnetic resonance imaging (fMRI) to investigate subsequent memory (SM) effects for visual fractals in patients with schizophrenia (n=26) and healthy controls (n=28). Participants incidentally encoded the fractals during an oddball task and 10 min later they made old/new recognition memory judgments on 30 target fractals and 30 foil fractals. We found evidence for subsequent memory (SM, subsequently remembered>subsequently forgotten) effects on regional brain activation in both groups but with distinct patterns. Region of interest (ROI) analyses in controls demonstrated SM activation in both medial temporal lobe (MTL) and fusiform cortex (FF), whereas patients showed SM effects only in the FF. There were no significant between group differences in MTL activation; however, patients demonstrated greater FF activation than controls. Notably, greater FF activation during successful encoding was associated with more severe negative symptoms. Exploratory whole brain analyses in patients demonstrated SM activation in the occipital pole, lateral occipital cortex, left inferior temporal gyrus, and fusiform cortex; whereas in controls there was no significant activation that survived correction for multiple comparisons. Our findings suggest that patients, particularly those with prominent negative symptoms, may activate FF as a compensatory strategy to promote successful encoding, with relatively less reliance on MTL recruitment.
Collapse
|
45
|
Huang J, Tan SP, Walsh SC, Spriggens LK, Neumann DL, Shum DHK, Chan RCK. Working memory dysfunctions predict social problem solving skills in schizophrenia. Psychiatry Res 2014; 220:96-101. [PMID: 25110314 DOI: 10.1016/j.psychres.2014.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 07/19/2014] [Accepted: 07/19/2014] [Indexed: 12/21/2022]
Abstract
The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions.
Collapse
Affiliation(s)
- Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| | - Shu-ping Tan
- Psychiatry Research Center, Huilongguan Hospital, Beijing, China
| | - Sarah C Walsh
- Behavioural Basis of Health Research Program, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - Lauren K Spriggens
- Behavioural Basis of Health Research Program, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - David L Neumann
- Behavioural Basis of Health Research Program, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - David H K Shum
- Behavioural Basis of Health Research Program, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
46
|
Plichta MM, Grimm O, Morgen K, Mier D, Sauer C, Haddad L, Tost H, Esslinger C, Kirsch P, Schwarz AJ, Meyer-Lindenberg A. Amygdala habituation: a reliable fMRI phenotype. Neuroimage 2014; 103:383-390. [PMID: 25284303 DOI: 10.1016/j.neuroimage.2014.09.059] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 12/27/2022] Open
Abstract
Amygdala function is of high interest for cognitive, social and psychiatric neuroscience, emphasizing the need for reliable assessments in humans. Previous work has indicated unsatisfactorily low within-subject reliability of amygdala activation fMRI measures. Based on basic science evidence for strong habituation of amygdala response to repeated stimuli, we investigated whether a quantification of habituation provides additional information beyond the usual estimate of the overall mean activity. We assessed the within-subject reliability of amygdala habituation measures during a facial emotion matching paradigm in 25 healthy subjects. We extracted the amygdala signal decrement across the course of the fMRI run for the two test-retest measurement sessions and compared reliability estimates with previous findings based on mean response amplitude. Retest-reliability of the session-wise amygdala habituation was significantly higher than the evoked amygdala mean amplitude (intraclass correlation coefficients (ICC)=0.53 vs. 0.16). To test the task-specificity of this finding, we compared the retest-reliability of amygdala habituation across two different tasks. Significant amygdala response decrement was also seen in a cognitive task (n-back working memory) that did not per se activate the amygdala, but was totally unreliable in that context (ICC~0.0), arguing for task-specificity. Together the results show that emotion-dependent amygdala habituation is a robust and considerably more reliable index than the mean amplitude, and provides a robust potential endpoint for within-subject designs including pharmaco-fMRI studies.
Collapse
Affiliation(s)
- Michael M Plichta
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany.
| | - Oliver Grimm
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Katrin Morgen
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Daniela Mier
- Central Institute of Mental Health, Department of Clinical Psychology, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Carina Sauer
- Central Institute of Mental Health, Department of Clinical Psychology, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Leila Haddad
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Heike Tost
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Christine Esslinger
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Peter Kirsch
- Central Institute of Mental Health, Department of Clinical Psychology, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | | | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
47
|
Barch DM, Sheffield JM. Cognitive impairments in psychotic disorders: common mechanisms and measurement. World Psychiatry 2014; 13:224-32. [PMID: 25273286 PMCID: PMC4219054 DOI: 10.1002/wps.20145] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decades of research have provided robust evidence of cognitive impairments in psychotic disorders. Individuals with schizophrenia appear to be impaired on the majority of neuropsychological tasks, leading some researchers to argue for a "generalized deficit", in which the multitude of cognitive impairments are the result of a common neurobiological source. One such common mechanism may be an inability to actively represent goal information in working memory as a means to guide behavior, with the associated neurobiological impairment being a disturbance in the function of the dorsolateral prefrontal cortex. Here, we provide a discussion of the evidence for such impairment in schizophrenia, and how it manifests in domains typically referred to as cognitive control, working memory and episodic memory. We also briefly discuss cognitive impairment in affective psychoses, reporting that the degree of impairment is worse in schizophrenia than in bipolar disorder and psychotic major depression, but the profile of impairment is similar, possibly reflecting common mechanisms at the neural level. Given the recent release of the DSM-5, we end with a brief discussion on assessing cognition in the context of diagnosis and treatment planning in psychotic disorders.
Collapse
Affiliation(s)
- Deanna M Barch
- Departments of Psychology, Psychiatry and Radiology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, 63130, USA
| | | |
Collapse
|
48
|
Oflaz S, Akyuz F, Hamamci A, Firat Z, Keskinkılıç C, Kilickesmez O, Cihangiroglu M. Working memory dysfunction in delusional disorders: an fMRI investigation. J Psychiatr Res 2014; 56:43-9. [PMID: 24841112 DOI: 10.1016/j.jpsychires.2014.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/15/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Delusional disorder (DD) is a rare and understudied psychiatric disorder. There is limited number of studies concerning cognitive characteristics in DD. Using an established working memory paradigm with variable levels of memory load, we investigated alterations in functional magnetic resonance imaging (fMRI) of brain regions in patients with DD. METHODS This case control study included 9 patients with DD and 9 healthy control subjects matched for age, sex, and education level. Diagnosis of DD was confirmed using the Structured Clinical Interview for DSM-IV Axis I. The severity of the symptoms was evaluated using the Positive and Negative Syndrome Scale. All patients were asked to perform 0-back and 2-back tasks during fMRI experiments. Functional imaging was performed using the 3.0 T Philips whole-body scanner using an 8-channel head coil. RESULTS Participants with DD had less neural activation of the left dorsolateral prefrontal cortex in fMRI scans obtained during performance tasks. On the other hand, neural activation of the left and right superior temporal gyrus, left middle and inferior temporal gyrus, right and left posterior cingulate gyrus, right amygdala, left and right fusiform gyrus was more prominent in patients with DD in comparison with the control group. DISCUSSION Patients with DD had dysfunction in the prefrontal, temporal and limbic regions of the brain in particular, during performance tasks of working memory. Our findings were in line with the findings of the early reports on deficient functioning in temporal or limbic regions of the brain. Further, patients with DD displayed prefrontal dysfunction as seen in patients with schizophrenia.
Collapse
Affiliation(s)
- Serap Oflaz
- Department of Psychiatry, Istanbul School of Medicine, Istanbul University, Istanbul Millet Street, Capa 34390 Istanbul, Turkey.
| | - Fatma Akyuz
- Department of Psychiatry, Bakirkoy Dr Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Andac Hamamci
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Zeynep Firat
- Department of Radiology, Yeditepe University Hospital, Istanbul, Turkey
| | - Cahit Keskinkılıç
- Department of Neurology, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, İstanbul, Turkey
| | - Ozgur Kilickesmez
- Department of Radiology, Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Mutlu Cihangiroglu
- Department of Radiology, Medicalpark University, Göztepe Hospital, Istanbul, Turkey
| |
Collapse
|
49
|
Modeling of the hemodynamic responses in block design fMRI studies. J Cereb Blood Flow Metab 2014; 34:316-24. [PMID: 24252847 PMCID: PMC3915209 DOI: 10.1038/jcbfm.2013.200] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/08/2022]
Abstract
The hemodynamic response function (HRF) describes the local response of brain vasculature to functional activation. Accurate HRF modeling enables the investigation of cerebral blood flow regulation and improves our ability to interpret fMRI results. Block designs have been used extensively as fMRI paradigms because detection power is maximized; however, block designs are not optimal for HRF parameter estimation. Here we assessed the utility of block design fMRI data for HRF modeling. The trueness (relative deviation), precision (relative uncertainty), and identifiability (goodness-of-fit) of different HRF models were examined and test-retest reproducibility of HRF parameter estimates was assessed using computer simulations and fMRI data from 82 healthy young adult twins acquired on two occasions 3 to 4 months apart. The effects of systematically varying attributes of the block design paradigm were also examined. In our comparison of five HRF models, the model comprising the sum of two gamma functions with six free parameters had greatest parameter accuracy and identifiability. Hemodynamic response function height and time to peak were highly reproducible between studies and width was moderately reproducible but the reproducibility of onset time was low. This study established the feasibility and test-retest reliability of estimating HRF parameters using data from block design fMRI studies.
Collapse
|
50
|
Quidé Y, Morris RW, Shepherd AM, Rowland JE, Green MJ. Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia. Schizophr Res 2013; 150:468-75. [PMID: 24016726 DOI: 10.1016/j.schres.2013.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/21/2013] [Accepted: 08/10/2013] [Indexed: 01/31/2023]
Abstract
Working memory (WM) deficits and associated brain dysfunction are among the most well replicated candidate endophenotypic processes in schizophrenia. However, previous studies demonstrate inconsistent over- and under-activation of dorsolateral and ventrolateral prefrontal cortices (DLPFC; VLPFC), inferior parietal lobule (IPL) during WM performance, as well as subcortical structures including the striatum, and dysfunctional connectivity among fronto-striatal regions in schizophrenia. However, no previous study has investigated task-related functional connectivity (FC) of DLPFC and striatal regions using a seed-based method; here we employed this method to assess patterns of cortical and subcortical functional connectivity among WM structures during a standard 2-back WM task performed by 28 schizophrenia (SZ) and 28 healthy controls (HC). Initial group comparisons of blood oxygenation level dependent (BOLD) responses during the WM task revealed significantly greater bilateral activity in the striatum in SZ relative to HC, but there was no significant group difference in WM cortical activity (right DLPFC, VLPFC or IPL). Analyses of FC within the cortico-subcortical WM network in the HC group revealed positive performance-related FC between the right DLPFC and the right caudate, and between the right VLPFC and the right IPL; this pattern was absent in SZ. In contrast, SZ patients showed negative performance-related functional connectivity between the left putamen and the right VLPFC. Direct group comparisons in functional connectivity showed significantly greater performance-related FC between the VLPFC and bilateral putamen, as well as unilaterally between the VLPFC and the right IPL, in HC. Results suggest a critical dysfunction of cortico-striatal connectivity underpinning information retrieval for SZ patients during WM performance.
Collapse
Affiliation(s)
- Yann Quidé
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia; School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | | | | | | | | |
Collapse
|