1
|
Bracamonte JH, Watkins L, Pat B, Dell’Italia LJ, Saucerman JJ, Holmes JW. Contributions of mechanical loading and hormonal changes to eccentric hypertrophy during volume overload: A Bayesian analysis using logic-based network models. PLoS Comput Biol 2025; 21:e1012390. [PMID: 40238825 PMCID: PMC12040246 DOI: 10.1371/journal.pcbi.1012390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 04/29/2025] [Accepted: 02/23/2025] [Indexed: 04/18/2025] Open
Abstract
Primary mitral regurgitation (MR) is a pathology that alters mechanical loading on the left ventricle, triggers an array of compensatory neurohormonal responses, and induces a distinctive ventricular remodeling response known as eccentric hypertrophy. Drug therapies may alleviate symptoms, but only mitral valve repair or replacement can provide significant recovery of cardiac function and dimensions. Questions remain about the optimal timing of surgery, with 20% of patients developing systolic dysfunction post-operatively despite being treated according to the current guidelines. Thus, better understanding of the hypertrophic process in the setting of ventricular volume overload (VO) is needed to improve and better personalize the management of MR. To address this knowledge gap, we employ a Bayesian approach to combine data from 70 studies on experimental volume overload in dogs and rats and use it to calibrate a logic-based network model of hypertrophic signaling in myocytes. The calibrated model predicts that growth in experimental VO is mostly driven by the neurohormonal response, with an initial increase in myocardial tissue stretch being compensated by subsequent remodeling fairly early in the time course of VO. This observation contrasts with a common perception that volume-overload hypertrophy is driven primarily by increased myocyte strain. The model reproduces many aspects of 43 studies not used in its calibration, including infusion of individual hypertrophic agonists alone or in combination with various drugs commonly employed to treat heart failure, as well as administration of some of those drugs in the setting of experimental volume overload. We believe this represents a promising approach to using the known structure of an intracellular signaling network to integrate information from multiple studies into quantitative predictions of the range of expected responses to potential interventions in the complex setting of cardiac hypertrophy driven by a combination of hormonal and mechanical factors.
Collapse
Affiliation(s)
- Johane H. Bracamonte
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lionel Watkins
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Betty Pat
- Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Louis J. Dell’Italia
- Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Cardiothoracic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
2
|
Nagasawa H, Suzuki H, Ueda S, Suzuki Y. Dual blockade of endothelin A and angiotensin II type 1 receptors with sparsentan as a novel treatment strategy to alleviate IgA nephropathy. Expert Opin Investig Drugs 2024; 33:1143-1152. [PMID: 39425494 DOI: 10.1080/13543784.2024.2414902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION Although immunoglobulin A nephropathy (IgAN) had been discovered more than 50 years ago, 30-40% of IgAN patients still have primary glomerular disease that progresses to end-stage renal disease. However, various treatment strategies for IgAN have rapidly expanded in recent years to include endothelin (ET) receptor antagonists. AREAS COVERED In this review, we discuss the role of the ET-1/ETA receptor axis in the development of IgAN, especially focusing on the potential of sparsentan, a dual ET and angiotensin receptor antagonist as a novel therapy for IgAN. EXPERT OPINION Evaluation of the MEST-C score at the time of renal biopsy in IgAN is important in determining treatment strategies. If lesions are mainly in the acute phase, such as crescents, steroid therapy should be continued. However, if lesions are mainly in the chronic phase, such as glomerulosclerosis, sparsentan rather than steroid or angiotensin II receptor blocker alone may improve renal outcomes. Although further clinical studies are needed to back up these assumptions, appropriate combination of new drugs containing sparsentan and conventional drugs for IgAN treatment at the appropriate disease stage is expected to further inhibit the progression of renal damage.
Collapse
Affiliation(s)
- Hajime Nagasawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, The Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Seiji Ueda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, The Center for Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Schiffrin EL, Pollock DM. Endothelin System in Hypertension and Chronic Kidney Disease. Hypertension 2024; 81:691-701. [PMID: 38059359 PMCID: PMC10954415 DOI: 10.1161/hypertensionaha.123.21716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
ET (endothelin) is a powerful vasoconstrictor 21-amino acid peptide present in many tissues, which exerts many physiological functions across the body and participates as a mediator in many pathological conditions. ETs exert their effects through ETA and ETB receptors, which can be blocked by selective receptor antagonists. ETs were shown to play important roles among others, in systemic hypertension, particularly when resistant or difficult to control, and in pulmonary hypertension, atherosclerosis, cardiac hypertrophy, subarachnoid hemorrhage, chronic kidney disease, diabetic cardiovascular disease, scleroderma, some cancers, etc. To date, ET antagonists are only approved for the treatment of primary pulmonary hypertension and recently for IgA nephropathy and used in the treatment of digital ulcers in scleroderma. However, they may soon be approved for the treatment of patients with resistant hypertension and different types of nephropathy. Here, the role of ETs is reviewed with a special emphasis on participation in and treatment of hypertension and chronic kidney disease.
Collapse
Affiliation(s)
- Ernesto L. Schiffrin
- Lady Davis Institute for Medical Research, and Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Hua R, Gao H, He C, Xin S, Wang B, Zhang S, Gao L, Tao Q, Wu W, Sun F, Xu J. An emerging view on vascular fibrosis molecular mediators and relevant disorders: from bench to bed. Front Cardiovasc Med 2023; 10:1273502. [PMID: 38179503 PMCID: PMC10764515 DOI: 10.3389/fcvm.2023.1273502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Vascular fibrosis is a widespread pathologic condition that arises during vascular remodeling in cardiovascular dysfunctions. According to previous studies, vascular fibrosis is characterized by endothelial matrix deposition and vascular wall thickening. The RAAS and TGF-β/Smad signaling pathways have been frequently highlighted. It is, however, far from explicit in terms of understanding the cause and progression of vascular fibrosis. In this review, we collected and categorized a large number of molecules which influence the fibrosing process, in order to acquire a better understanding of vascular fibrosis, particularly of pathologic dysfunction. Furthermore, several mediators that prevent vascular fibrosis are discussed in depth in this review, with the aim that this will contribute to the future prevention and treatment of related conditions.
Collapse
Affiliation(s)
- Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Qiang Tao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wenqi Wu
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Liao CW, Lin YT, Tsai CH, Chang YY, Chen ZW, Lu CC, Pan CT, Chang CC, Lee BC, Chiu YW, Huang WC, Huang KH, Lai TS, Hung CS, Wu VC, Wu XM, Lin YH. Mineralocorticoid receptor antagonist treatment improved arterial stiffness in patients with primary aldosteronism: a cohort study compared with adrenalectomy. Ther Adv Chronic Dis 2023; 14:20406223221143233. [PMID: 36687666 PMCID: PMC9846303 DOI: 10.1177/20406223221143233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
Background Elevated arterial stiffness in patients with primary aldosteronism (PA) can be reversed after adrenalectomy; however, the effect of medical treatment with mineralocorticoid receptor antagonist (MRAs) is unknown. Objectives The aim of this study was to evaluate the effect of MRAs and compare both treatment strategies on arterial stiffness in PA patients. Design Prospective cohort study. Methods We prospectively enrolled PA patients from 2006 to 2019 who received either adrenalectomy or MRA treatment (spironolactone). We compared their baseline and 1-year post-treatment biochemistry characteristics and arterial pulse wave velocity (PWV) to verify the effects of treatment and related determinant factors. Results A total 459 PA patients were enrolled. After 1:1 propensity score matching for age, sex and blood pressure (BP), each group had 176 patients. The major determinant factors of baseline PWV were age and baseline BP. The adrenalectomy group had greater improvements in BP, serum potassium level, plasma aldosterone concentration, and aldosterone-to-renin ratio. The MRA group had a significant improvement in PWV after 1 year of treatment (1706.2 ± 340.05 to 1613.6 ± 349.51 cm/s, p < 0.001). There were no significant differences in post-treatment PWV (p = 0.173) and improvement in PWV (p = 0.579) between the adrenalectomy and MRA groups. The determinant factors for an improvement in PWV after treatment were hypertension duration, baseline PWV, and the decrease in BP. Conclusion The PA patients who received medical treatment with MRAs had a significant improvement in arterial stiffness. There was no significant difference in the improvement in arterial stiffness between the two treatment strategies.
Collapse
Affiliation(s)
- Che-Wei Liao
- Department of Internal Medicine, National
Taiwan University Cancer Center, Taipei
| | - Yen-Tin Lin
- Department of Internal Medicine, Taoyuan
General Hospital, Ministry of Health and Welfare, Taoyuan
| | - Cheng-Hsuan Tsai
- Department of Internal Medicine, National
Taiwan University Hospital and National Taiwan University College of
Medicine, Taipei
| | | | - Zheng-Wei Chen
- Department of Internal Medicine, National
Taiwan University Hospital Yunlin Branch, Douliu
| | - Ching-Chu Lu
- Department of Nuclear Medicine, National Taiwan
University Hospital and National Taiwan University College of Medicine,
Taipei
| | - Chien-Ting Pan
- Department of Internal Medicine, National
Taiwan University Hospital Yunlin Branch, Douliu
| | - Chin-Chen Chang
- Department of Medical Imaging, National Taiwan
University Hospital, Taipei
| | - Bo-Ching Lee
- Department of Medical Imaging, National Taiwan
University Hospital, Taipei
| | - Yu-Wei Chiu
- Cardiology Division of Cardiovascular Medical
Center, Far Eastern Memorial Hospital, New Taipei City
| | - Wei-Chieh Huang
- Division of Cardiology, Department of Internal
Medicine, Taipei Veterans General Hospital, Taipei
| | - Kuo-How Huang
- Department of Urology, National Taiwan
University Hospital and National Taiwan University College of Medicine,
Taipei
| | - Tai-Shuan Lai
- Department of Internal Medicine, National
Taiwan University Hospital and National Taiwan University College of
Medicine, Taipei
| | - Chi-Shen Hung
- Department of Internal Medicine, National
Taiwan University Hospital and National Taiwan University College of
Medicine, Taipei
| | - Vin-Cent Wu
- Department of Internal Medicine, National
Taiwan University Hospital and National Taiwan University College of
Medicine, Taipei
| | | | | | | |
Collapse
|
6
|
Geng YJ, Smolensky M, Sum-Ping O, Hermida R, Castriotta RJ. Circadian rhythms of risk factors and management in atherosclerotic and hypertensive vascular disease: Modern chronobiological perspectives of an ancient disease. Chronobiol Int 2023; 40:33-62. [PMID: 35758140 PMCID: PMC10355310 DOI: 10.1080/07420528.2022.2080557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease of the arteries that appears to have been as prevalent in ancient as in modern civilizations, is predisposing to life-threatening and life-ending cardiac and vascular complications, such as myocardial and cerebral infarctions. The pathogenesis of atherosclerosis involves intima plaque buildup caused by vascular endothelial dysfunction, cholesterol deposition, smooth muscle proliferation, inflammatory cell infiltration and connective tissue accumulation. Hypertension is an independent and controllable risk factor for atherosclerotic cardiovascular disease (CVD). Conversely, atherosclerosis hardens the arterial wall and raises arterial blood pressure. Many CVD patients experience both atherosclerosis and hypertension and are prescribed medications to concurrently mitigate the two disease conditions. A substantial number of publications document that many pathophysiological changes caused by atherosclerosis and hypertension occur in a manner dependent upon circadian clocks or clock gene products. This article reviews progress in the research of circadian regulation of vascular cell function, inflammation, hemostasis and atherothrombosis. In particular, it delineates the relationship of circadian organization with signal transduction and activation of the renin-angiotensin-aldosterone system as well as disturbance of the sleep/wake circadian rhythm, as exemplified by shift work, metabolic syndromes and obstructive sleep apnea (OSA), as promoters and mechanisms of atherogenesis and risk for non-fatal and fatal CVD outcomes. This article additionally updates advances in the clinical management of key biological processes of atherosclerosis to optimally achieve suppression of atherogenesis through chronotherapeutic control of atherogenic/hypertensive pathological sequelae.
Collapse
Affiliation(s)
- Yong-Jian Geng
- The Center for Cardiovascular Biology and Atherosclerosis Research, Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Smolensky
- The Center for Cardiovascular Biology and Atherosclerosis Research, Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Oliver Sum-Ping
- The Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ramon Hermida
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Telecommunication Technologies (atlanTTic), University of Vigo, Vigo, Spain
| | - Richard J. Castriotta
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Keck Medical School, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Bioletto F, Bollati M, Lopez C, Arata S, Procopio M, Ponzetto F, Ghigo E, Maccario M, Parasiliti-Caprino M. Primary Aldosteronism and Resistant Hypertension: A Pathophysiological Insight. Int J Mol Sci 2022; 23:ijms23094803. [PMID: 35563192 PMCID: PMC9100181 DOI: 10.3390/ijms23094803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Primary aldosteronism (PA) is a pathological condition characterized by an excessive aldosterone secretion; once thought to be rare, PA is now recognized as the most common cause of secondary hypertension. Its prevalence increases with the severity of hypertension, reaching up to 29.1% in patients with resistant hypertension (RH). Both PA and RH are "high-risk phenotypes", associated with increased cardiovascular morbidity and mortality compared to non-PA and non-RH patients. Aldosterone excess, as occurs in PA, can contribute to the development of a RH phenotype through several mechanisms. First, inappropriate aldosterone levels with respect to the hydro-electrolytic status of the individual can cause salt retention and volume expansion by inducing sodium and water reabsorption in the kidney. Moreover, a growing body of evidence has highlighted the detrimental consequences of "non-classical" effects of aldosterone in several target tissues. Aldosterone-induced vascular remodeling, sympathetic overactivity, insulin resistance, and adipose tissue dysfunction can further contribute to the worsening of arterial hypertension and to the development of drug-resistance. In addition, the pro-oxidative, pro-fibrotic, and pro-inflammatory effects of aldosterone may aggravate end-organ damage, thereby perpetuating a vicious cycle that eventually leads to a more severe hypertensive phenotype. Finally, neither the pathophysiological mechanisms mediating aldosterone-driven blood pressure rise, nor those mediating aldosterone-driven end-organ damage, are specifically blocked by standard first-line anti-hypertensive drugs, which might further account for the drug-resistant phenotype that frequently characterizes PA patients.
Collapse
|
8
|
Bollati M, Lopez C, Bioletto F, Ponzetto F, Ghigo E, Maccario M, Parasiliti-Caprino M. Atrial Fibrillation and Aortic Ectasia as Complications of Primary Aldosteronism: Focus on Pathophysiological Aspects. Int J Mol Sci 2022; 23:2111. [PMID: 35216224 PMCID: PMC8875197 DOI: 10.3390/ijms23042111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/22/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension. A growing body of evidence has suggested that, beyond its well-known effects on blood pressure and electrolyte balance, aldosterone excess can exert pro-inflammatory, pro-oxidant and pro-fibrotic effects on the kidney, blood vessels and heart, leading to potentially harmful pathophysiological consequences. In clinical studies, PA has been associated with an increased risk of cardiovascular, cerebrovascular, renal and metabolic complication compared to essential hypertension, including atrial fibrillation (AF) and aortic ectasia. An increased prevalence of AF in patients with PA has been demonstrated in several clinical studies. Aldosterone excess seems to be involved in the pathogenesis of AF by inducing cardiac structural and electrical remodeling that in turn predisposes to arrhythmogenicity. The association between PA and aortic ectasia is less established, but several studies have demonstrated an effect of aldosterone on aortic stiffness, vascular smooth muscle cells and media composition that, in turn, might lead to an increased risk of aortic dilation and dissection. In this review, we focus on the current evidence regarding the potential role of aldosterone excess in the pathogenesis of AF and aortic ectasia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mirko Parasiliti-Caprino
- Endocrinology, Diabetes and Metabolism, City of Health and Science University Hospital, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.B.); (C.L.); (F.B.); (F.P.); (E.G.); (M.M.)
| |
Collapse
|
9
|
Wu H, Lam TYC, Shum TF, Tsai TY, Chiou J. Hypotensive effect of captopril on deoxycorticosterone acetate-salt-induced hypertensive rat is associated with gut microbiota alteration. Hypertens Res 2022; 45:270-282. [PMID: 34857899 PMCID: PMC8766282 DOI: 10.1038/s41440-021-00796-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
The role of the gut microbiota in various metabolic diseases has been widely studied. This study aims to test the hypothesis that gut microbiota dysbiosis is associated with DOCA-salt-induced hypertension, while captopril, an antihypertensive drug, is able to rebalance the gut microbiota alterations caused by hypertension. Treatment with captopril resulted in an approximate 32 mmHg reduction in systolic blood pressure (162.57 vs. 194.61 mmHg) in DOCA-salt-induced hypertensive rats, although it was significantly higher than that in SHAM rats (136.10 mmHg). Moreover, the nitric oxide (NO) level was significantly increased (20.60 vs. 6.42 µM) while the angiotensin II (Ang II) content (42.40 vs. 59.47 pg/ml) was attenuated nonsignificantly by captopril treatment in comparison to those of DOCA-salt-induced hypertensive rats. The introduction of captopril significantly decreased the levels of tumor necrosis factor-α (TNF-ɑ) and interleukin-6 (IL-6). Hypertrophy and fibrosis in kidneys and hearts were also significantly attenuated by captopril. Furthermore, gut microbiota dysbiosis was observed in DOCA-salt-induced hypertensive rats. The abundances of several phyla and genera, including Proteobacteria, Cyanobacteria, Escherichia-Shigella, Eubacterium nodatum and Ruminococcus, were higher in DOCA-salt-induced hypertensive rats than in SHAM rats, while these changes were reversed by captopril treatment. Of particular interest, the genera Bifidobacterium and Akkermansia, reported as beneficial bacteria in the gut, were abundant in only hypertensive rats treated with captopril. These results provide evidence that captopril has the potential to rebalance the dysbiotic gut microbiota of DOCA-salt-induced hypertensive rats, suggesting that the alteration of the gut flora by captopril may contribute to the hypotensive effect of this drug.
Collapse
Affiliation(s)
- Haicui Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Theo Y C Lam
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Tim-Fat Shum
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Jiachi Chiou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
10
|
Zhu Q, Heizhati M, Lin M, Wang M, Yao X, Gan L, Luo Q, Zhang W, Hong J, Yue N, Li N. Higher Plasma Aldosterone Concentrations Are Associated With Elevated Risk of Aortic Dissection and Aneurysm: a Case-Control Study. Hypertension 2022; 79:736-746. [PMID: 35016529 DOI: 10.1161/hypertensionaha.121.18342] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Animal models demonstrate circulating aldosterone leads to aortic dissection and aneurysm, whereas data from humans are lacking. Therefore, we aimed to examine the associations of plasma aldosterone concentrations (PAC) with aortic dissection and aneurysm. METHODS We identified patients with aortic dissection and aneurysm with assessed PAC before disease onset from hospital-based electronic database and set as case group. Simultaneously, age and gender-matched cohort with PAC measurement whereas without aortic dissection and aneurysm were selected as control group using ratio of 1:4. Multi-variable logistic regression analysis was used to assess the relationship of PAC with aortic dissection and aneurysm. RESULTS Totally, 133 cases and 531 controls (all hypertensive) were enrolled between 2004 and 2021, with 77.9% men, mean age of 55.5 years and PAC of 13.9 ng/dL. Case group showed significantly higher PAC(14.51 versus 13.65 ng/dL, P=0.012) than did control group. In logistic regression analysis, higher PAC exhibited 1.68-fold higher odds (95% CI, 1.14-2.48, P=0.008) for presence of aortic dissection and aneurysm, significant in adjusted model (odds ratio, 1.69 [95% CI, 1.11-2.57], P=0.015). In stratified analysis, the association between the 2 was observed in women of all ages and in men with coronary artery disease. Sensitivity analysis by excluding those under interfering agents at PAC measurement and those with primary aldosteronism did not change the relationship of the 2. CONCLUSIONS Higher PAC is associated with the increased odd for aortic dissection and aneurysm in patients with hypertension, even in the absence of primary aldosteronism, implying that PAC might be a target for prevention.
Collapse
Affiliation(s)
- Qing Zhu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| | - Mulalibieke Heizhati
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| | - Mengyue Lin
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| | - Menghui Wang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| | - Xiaoguang Yao
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| | - Lin Gan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| | - Qin Luo
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| | - Weiwei Zhang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| | - Jing Hong
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| | - Na Yue
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| | - Nanfang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases
| |
Collapse
|
11
|
Ekholm M, Kahan T. The Impact of the Renin-Angiotensin-Aldosterone System on Inflammation, Coagulation, and Atherothrombotic Complications, and to Aggravated COVID-19. Front Pharmacol 2021; 12:640185. [PMID: 34220496 PMCID: PMC8245685 DOI: 10.3389/fphar.2021.640185] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is considered a disease caused by a chronic inflammation, associated with endothelial dysfunction, and several mediators of inflammation are up-regulated in subjects with atherosclerotic disease. Healthy, intact endothelium exhibits an antithrombotic, protective surface between the vascular lumen and vascular smooth muscle cells in the vessel wall. Oxidative stress is an imbalance between anti- and prooxidants, with a subsequent increase of reactive oxygen species, leading to tissue damage. The renin-angiotensin-aldosterone system is of vital importance in the pathobiology of vascular disease. Convincing data indicate that angiotensin II accelerates hypertension and augments the production of reactive oxygen species. This leads to the generation of a proinflammatory phenotype in human endothelial and vascular smooth muscle cells by the up-regulation of adhesion molecules, chemokines and cytokines. In addition, angiotensin II also seems to increase thrombin generation, possibly via a direct impact on tissue factor. However, the mechanism of cross-talk between inflammation and haemostasis can also contribute to prothrombotic states in inflammatory environments. Thus, blocking of the renin-angiotensin-aldosterone system might be an approach to reduce both inflammatory and thrombotic complications in high-risk patients. During COVID-19, the renin-angiotensin-aldosterone system may be activated. The levels of angiotensin II could contribute to the ongoing inflammation, which might result in a cytokine storm, a complication that significantly impairs prognosis. At the outbreak of COVID-19 concerns were raised about the use of angiotensin converting enzyme inhibitors and angiotensin receptor blocker drugs in patients with COVID-19 and hypertension or other cardiovascular comorbidities. However, the present evidence is in favor of continuing to use of these drugs. Based on experimental evidence, blocking the renin-angiotensin-aldosterone system might even exert a potentially protective influence in the setting of COVID-19.
Collapse
Affiliation(s)
- M Ekholm
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine, Stockholm, Sweden
| | - T Kahan
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Cardiovascular Medicine, Stockholm, Sweden
| |
Collapse
|
12
|
Izzo C, Vitillo P, Di Pietro P, Visco V, Strianese A, Virtuoso N, Ciccarelli M, Galasso G, Carrizzo A, Vecchione C. The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life (Basel) 2021; 11:60. [PMID: 33467601 PMCID: PMC7829951 DOI: 10.3390/life11010060] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of aging expresses itself in age-related diseases. Aging is in fact a primary risk factor for many diseases and in particular for cardiovascular diseases and its derived morbidity and mortality. Here we highlight the role of oxidative stress in age-related cardiovascular aging and diseases. We take into consideration the molecular mechanisms, the structural and functional alterations, and the diseases accompanied to the cardiovascular aging process.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paolo Vitillo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Andrea Strianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| |
Collapse
|
13
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
14
|
Gorini S, Kim SK, Infante M, Mammi C, La Vignera S, Fabbri A, Jaffe IZ, Caprio M. Role of Aldosterone and Mineralocorticoid Receptor in Cardiovascular Aging. Front Endocrinol (Lausanne) 2019; 10:584. [PMID: 31507534 PMCID: PMC6716354 DOI: 10.3389/fendo.2019.00584] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
The mineralocorticoid receptor (MR) was originally identified as a regulator of blood pressure, able to modulate renal sodium handling in response to its principal ligand aldosterone. MR is expressed in several extra-renal tissues, including the heart, vasculature, and adipose tissue. More recent studies have shown that extra-renal MR plays a relevant role in the control of cardiovascular and metabolic functions and has recently been implicated in the pathophysiology of aging. MR activation promotes vasoconstriction and acts as a potent pro-fibrotic agent in cardiovascular remodeling. Aging is associated with increased arterial stiffness and vascular tone, and modifications of arterial structure and function are responsible for these alterations. MR activation contributes to increase blood pressure with aging by regulating myogenic tone, vasoconstriction, and vascular oxidative stress. Importantly, aging represents an important contributor to the increased prevalence of cardiometabolic syndrome. In the elderly, dysregulation of MR signaling is associated with hypertension, obesity, and diabetes, representing an important cause of increased cardiovascular risk. Clinical use of MR antagonists is limited by the adverse effects induced by MR blockade in the kidney, raising the risk of hyperkalaemia in older patients with reduced renal function. Therefore, there is an unmet need for the enhanced understanding of the role of MR in aging and for development of novel specific MR antagonists in the context of cardiovascular rehabilitation in the elderly, in order to reduce relevant side effects.
Collapse
Affiliation(s)
- Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Seung Kyum Kim
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
- Department of Sports Science, Seoul National University of Science and Technology, Seoul, South Korea
| | - Marco Infante
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Fabbri
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University of Rome Tor Vergata, Rome, Italy
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
15
|
Hung CS, Sung SH, Liao CW, Pan CT, Chang CC, Chen ZW, Wu VC, Chen CH, Cheng HM, Lin YH. Aldosterone Induces Vascular Damage. Hypertension 2019; 74:623-629. [PMID: 31352825 DOI: 10.1161/hypertensionaha.118.12342] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Primary aldosteronism (PA) is hemodynamically independently associated with arterial wall stiffness as assessed by pulse wave velocity (PWV) compared with essential hypertension. Arterial wave reflection parameters derived from pulse wave analysis, such as forward and backward wave amplitudes (Pf and Pb), are promising vascular markers to predict cardiovascular outcomes in addition to PWV. These vascular parameters have never been studied in patients with PA before. In study part A, we prospectively enrolled 67 patients with PA and 132 patients with essential hypertension. In study part B, another 54 patients with PA were enrolled. Heart-carotid PWV was measured, and carotid pressure waveforms were recorded to calculate Pf, Pb, and augmentation index at baseline (part A and B) and 6 months after treatment (part B). The results showed that the patients with PA had significantly higher Pf (P=0.001), Pb (P=0.01), and PWV (P=0.021) than the patients with essential hypertension. In univariate correlation analysis, both log Pf and Pb were significantly correlated with age, office blood pressure, serum potassium level, log PWV, and the presence of PA. However, only Pb was significantly correlated with log plasma renin activity and log aldosterone to renin ratio. In multivariate analysis, log Pf was significantly correlated with the presence of PA (P=0.001), male sex, age, and mean arterial blood pressure. Pb was significantly correlated with the presence of PA (P=0.031), age, and mean arterial pressure. Six months after treatment, Pf and Pb decreased significantly. In conclusion, the patients with PA had significantly increased wave reflections compared with the patients with essential hypertension. Our results provide clinical evidence of aldosterone-related extensive vascular dysfunction of the arterial system.
Collapse
Affiliation(s)
- Chi-Sheng Hung
- From the Telehealth Center, National Taiwan University Hospital, Taipei (C.-S.H.).,Department of Internal Medicine (C.-S.H., C.-T.P., V.-C.W., Y.-H.L.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Hsien Sung
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taiwan (S.-H.S.).,Department of Medicine, National Yang-Ming University, Taipei, Taiwan (S.-H.S., C.-H.C., H.-M.C.)
| | - Che-Wei Liao
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch (C.-W.L.)
| | - Chien-Ting Pan
- Department of Internal Medicine (C.-S.H., C.-T.P., V.-C.W., Y.-H.L.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chin-Chen Chang
- Department of Medical Imaging (C.-C.C.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Zheng-Wei Chen
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch (Z.-W.C.)
| | - Vin-Cent Wu
- Department of Internal Medicine (C.-S.H., C.-T.P., V.-C.W., Y.-H.L.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Huan Chen
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan (S.-H.S., C.-H.C., H.-M.C.).,Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan (C.-H.C., H.-M.C.).,Center for Evidence-based Medicine, Taipei Veterans General Hospital, Taiwan (C.-H.C., H.-M.C.)
| | - Hao-Min Cheng
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan (S.-H.S., C.-H.C., H.-M.C.).,Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan (C.-H.C., H.-M.C.).,Center for Evidence-based Medicine, Taipei Veterans General Hospital, Taiwan (C.-H.C., H.-M.C.)
| | - Yen-Hung Lin
- Department of Internal Medicine (C.-S.H., C.-T.P., V.-C.W., Y.-H.L.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | |
Collapse
|
16
|
Gorini S, Marzolla V, Mammi C, Armani A, Caprio M. Mineralocorticoid Receptor and Aldosterone-Related Biomarkers of End-Organ Damage in Cardiometabolic Disease. Biomolecules 2018; 8:biom8030096. [PMID: 30231508 PMCID: PMC6165349 DOI: 10.3390/biom8030096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
The mineralocorticoid receptor (MR) was first identified as a blood pressure regulator, modulating renal sodium handling in response to its principal ligand aldosterone. The mineralocorticoid receptor is also expressed in many tissues other than the kidney, such as adipose tissue, heart and vasculature. Recent studies have shown that MR plays a relevant role in the control of cardiovascular and metabolic function, as well as in adipogenesis. Dysregulation of aldosterone/MR signaling represents an important cause of disease as high plasma levels of aldosterone are associated with hypertension, obesity and increased cardiovascular risk. Aldosterone displays powerful vascular effects and acts as a potent pro-fibrotic agent in cardiovascular remodeling. Mineralocorticoid receptor activation regulates genes involved in vascular and cardiac fibrosis, calcification and inflammation. This review focuses on the role of novel potential biomarkers related to aldosterone/MR system that could help identify cardiovascular and metabolic detrimental conditions, as a result of altered MR activation. Specifically, we discuss: (1) how MR signaling regulates the number and function of different subpopulations of circulating and intra-tissue immune cells; (2) the role of aldosterone/MR system in mediating cardiometabolic diseases induced by obesity; and (3) the role of several MR downstream molecules as novel potential biomarkers of cardiometabolic diseases, end-organ damage and rehabilitation outcome.
Collapse
Affiliation(s)
- Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy.
| |
Collapse
|
17
|
Favero G, Paini A, De Ciuceis C, Rodella LF, Moretti E, Porteri E, Rossini C, Ministrini S, Solaini L, Stefano C, Coschignano MA, Brami V, Petelca A, Nardin M, Valli I, Tiberio GAM, Bonomini F, Agabiti Rosei C, Portolani N, Rizzoni D, Rezzani R. Changes in extracellular matrix in subcutaneous small resistance arteries of patients with essential hypertension. Blood Press 2018; 27:231-239. [PMID: 29523048 DOI: 10.1080/08037051.2018.1448256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND In the development of hypertensive microvascular remodeling, a relevant role may be played by changes in extracellular matrix proteins. Aim of this study was the to evaluate some extracellular matrix components within the tunica media of subcutaneous small arteries in 9 normotensive subjects and 12 essential hypertensive patients, submitted to a biopsy of subcutaneous fat from the gluteal or the anterior abdominal region. PATIENTS AND METHODS Subcutaneous small resistance arteries were dissected and mounted on an isometric myograph, and the tunica media to internal lumen ratio was measured. In addition, fibronectin, laminin, transforming growth factor-beta-1 (TGF-β1) and emilin-1 contents within the tunica media were evaluated by immunofluorescence and relative immunomorphometrical analysis (immunopositivity % of area). The total collagen content and collagen subtypes within the tunica media were evaluated using both Sirius red staining (under polarized light) and immunofluorescence assay. RESULTS Normotensive controls had less total and type III collagen in respect with hypertensive patients. Fibronectin and TGF-β1 tunica media content was significantly greater in essential hypertensive patients, compared with normotensive controls, while laminin and emilin-1 tunica media content was lesser in essential hypertensive patients, compared with normotensive controls. A significant correlation was observed between fibronectin tunica media content and media to lumen ratio. CONCLUSIONS Our results indicate that, in small resistance arteries of patients with essential hypertension, a relevant fibrosis may be detected; fibronectin and TGF-β1 tunica media content is increased, while laminin and emilin-1 content is decreased; these changes might be involved in the development of small resistance artery remodeling in humans.
Collapse
Affiliation(s)
- Gaia Favero
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Anna Paini
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Carolina De Ciuceis
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Luigi F Rodella
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
- c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| | - Enrico Moretti
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Enzo Porteri
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Claudia Rossini
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Silvia Ministrini
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Leonardo Solaini
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Caletti Stefano
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | | | - Valeria Brami
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Alina Petelca
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Matteo Nardin
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Ilenia Valli
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Guido A M Tiberio
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Francesca Bonomini
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
- c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| | - Claudia Agabiti Rosei
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Nazario Portolani
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Damiano Rizzoni
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
- e Division of Medicine , Istituto Clinico Città di Brescia , Brescia , Italy
| | - Rita Rezzani
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
- c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| |
Collapse
|
18
|
Hermidorff MM, de Assis LVM, Isoldi MC. Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Fail Rev 2018; 22:65-89. [PMID: 27942913 DOI: 10.1007/s10741-016-9591-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aldosterone is the most known mineralocorticoid hormone synthesized by the adrenal cortex. The genomic pathway displayed by aldosterone is attributed to the mineralocorticoid receptor (MR) signaling. Even though the rapid effects displayed by aldosterone are long known, our knowledge regarding the receptor responsible for such event is still poor. It is intense that the debate whether the MR or another receptor-the "unknown receptor"-is the receptor responsible for the rapid effects of aldosterone. Recently, G protein-coupled estrogen receptor-1 (GPER-1) was elegantly shown to mediate some aldosterone-induced rapid effects in several tissues, a fact that strongly places GPER-1 as the unknown receptor. It has also been suggested that angiotensin receptor type 1 (AT1) also participates in the aldosterone-induced rapid effects. Despite this open question, the relevance of the beneficial effects of aldosterone is clear in the kidneys, colon, and CNS as aldosterone controls the important water reabsorption process; on the other hand, detrimental effects displayed by aldosterone have been reported in the cardiovascular system and in the kidneys. In this line, the MR antagonists are well-known drugs that display beneficial effects in patients with heart failure and hypertension; it has been proposed that MR antagonists could also play an important role in vascular disease, obesity, obesity-related hypertension, and metabolic syndrome. Taken altogether, our goal here was to (1) bring a historical perspective of both genomic and rapid effects of aldosterone in several tissues, and the receptors and signaling pathways involved in such processes; and (2) critically address the controversial points within the literature as regarding which receptor participates in the rapid pathway display by aldosterone.
Collapse
Affiliation(s)
- Milla Marques Hermidorff
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil.
| |
Collapse
|
19
|
The perioperative significance of systemic arterial diastolic hypertension in adults. Curr Opin Anaesthesiol 2018; 31:67-74. [DOI: 10.1097/aco.0000000000000552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Harvey AP, Montezano AC, Hood KY, Lopes RA, Rios F, Ceravolo G, Graham D, Touyz RM. Vascular dysfunction and fibrosis in stroke-prone spontaneously hypertensive rats: The aldosterone-mineralocorticoid receptor-Nox1 axis. Life Sci 2017; 179:110-119. [PMID: 28478264 PMCID: PMC5446265 DOI: 10.1016/j.lfs.2017.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/28/2022]
Abstract
AIMS We questioned whether aldosterone and oxidative stress play a role in vascular damage in severe hypertension and investigated the role of Nox1 in this process. MATERIALS AND METHODS We studied mesenteric arteries, aortas and vascular smooth muscle cells (VSMC) from WKY and SHRSP rats. Vascular effects of eplerenone or canrenoic acid (CA) (mineralocorticoid receptor (MR) blockers), ML171 (Nox1 inhibitor) and EHT1864 (Rac1/2 inhibitor) were assessed. Nox1-knockout mice were also studied. Vessels and VSMCs were probed for Noxs, reactive oxygen species (ROS) and pro-fibrotic/inflammatory signaling. KEY FINDINGS Blood pressure and plasma levels of aldosterone and galectin-3 were increased in SHRSP versus WKY. Acetylcholine-induced vasorelaxation was decreased (61% vs 115%) and phenylephrine-induced contraction increased in SHRSP versus WKY (Emax 132.8% vs 96.9%, p<0.05). Eplerenone, ML171 and EHT1864 attenuated hypercontractility in SHRSP. Vascular expression of collagen, fibronectin, TGFβ, MCP-1, RANTES, MMP2, MMP9 and p66Shc was increased in SHRSP versus WKY. These changes were associated with increased ROS generation, 3-nitrotyrosine expression and Nox1 upregulation. Activation of vascular p66Shc and increased expression of Nox1 and collagen I were prevented by CA in SHRSP. Nox1 expression was increased in aldosterone-stimulated WKY VSMCs, an effect that was amplified in SHRSP VSMCs (5.2vs9.9 fold-increase). ML171 prevented aldosterone-induced VSMC Nox1-ROS production. Aldosterone increased vascular expression of fibronectin and PAI-1 in wild-type mice but not in Nox1-knockout mice. SIGNIFICANCE Our findings suggest that aldosterone, which is increased in SHRSP, induces vascular damage through MR-Nox1-p66Shc-mediated processes that modulate pro-fibrotic and pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Adam P Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Katie Y Hood
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rheure A Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Graziela Ceravolo
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
21
|
The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: the SABPA study. Hypertens Res 2016; 40:189-195. [DOI: 10.1038/hr.2016.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023]
|
22
|
Susic D, Varagic J, Ahn J, Matavelli LC, Frohlich ED. Beneficial Cardiovascular Actions of Eplerenone in the Spontaneously Hypertensive Rat. J Cardiovasc Pharmacol Ther 2016; 10:197-203. [PMID: 16211209 DOI: 10.1177/107424840501000308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Aldosterone has been implicated as a potential mediator of cardiac and vascular damage in a variety of disorders. This study examined the role of aldosterone and its interplay with the renin-angiotensin system in the pathogenesis of hypertension. To this end, the effects of the aldosterone antagonist eplerenone and the angiotensin converting enzyme inhibitor lisinopril on cardiovascular mass, myocardial collagen, and coronary circulation were examined in spontaneously hypertensive rats. Methods: Male, 22-week-old rats were randomly divided into 4 groups (12 in each). The control group received no treatment, the second group was given eplerenone (100 mg/kg/day), the third received lisinopril (3 mg/kg/day), and the fourth was given eplerenone and lisinopril. After 12 weeks of respective treatments, systemic and regional hemodynamics and cardiovascular mass indexes were measured in conscious instrumented rats. Results: Eplerenone decreased arterial pressure but did not affect left ventricular mass or hydroxyproline concentration (an estimate of collagen). It did, however, reduce minimal coronary vascular resistance and increased coronary flow reserve. Lisinopril decreased arterial pressure and ventricular mass but did not affect regional hemodynamics. The combination therapy produced synergistic effects. Conclusion: Aldosterone antagonism improved coronary and systemic hemodynamics in adult spontaneously hypertensive rats but did not affect cardiovascular mass indexes. The finding that lisinopril and eplerenone decreased arterial pressure to the same extent but had different cardiovascular effects suggested that these effects might be pressure independent.
Collapse
Affiliation(s)
- Dinko Susic
- Hypertension Research Laboratory, Division of Research, Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| | | | | | | | | |
Collapse
|
23
|
Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications. Can J Cardiol 2016; 32:659-68. [PMID: 27118293 PMCID: PMC4906153 DOI: 10.1016/j.cjca.2016.02.070] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 02/08/2023] Open
Abstract
Aging is the primary risk factor underlying hypertension and incident cardiovascular disease. With aging, the vasculature undergoes structural and functional changes characterized by endothelial dysfunction, wall thickening, reduced distensibility, and arterial stiffening. Vascular stiffness results from fibrosis and extracellular matrix (ECM) remodelling, processes that are associated with aging and are amplified by hypertension. Some recently characterized molecular mechanisms underlying these processes include increased expression and activation of matrix metalloproteinases, activation of transforming growth factor-β1/SMAD signalling, upregulation of galectin-3, and activation of proinflammatory and profibrotic signalling pathways. These events can be induced by vasoactive agents, such as angiotensin II, endothelin-1, and aldosterone, which are increased in the vasculature during aging and hypertension. Complex interplay between the “aging process” and prohypertensive factors results in accelerated vascular remodelling and fibrosis and increased arterial stiffness, which is typically observed in hypertension. Because the vascular phenotype in a young hypertensive individual resembles that of an elderly otherwise healthy individual, the notion of “early” or “premature” vascular aging is now often used to describe hypertension-associated vascular disease. We review the vascular phenotype in aging and hypertension, focusing on arterial stiffness and vascular remodelling. We also highlight the clinical implications of these processes and discuss some novel molecular mechanisms of fibrosis and ECM reorganization.
Collapse
Affiliation(s)
- Adam Harvey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Rheure Alves Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland.
| |
Collapse
|
24
|
Yao X, Li N, Zhang Y, Zhang J, Abulikm S, Zhang D, Chang G, Zhou K, Kong J. Plasma aldosterone concentration is positively associated with pulse pressure in patients with primary hypertension. Medicine (Baltimore) 2015; 94:e614. [PMID: 25761186 PMCID: PMC4602476 DOI: 10.1097/md.0000000000000614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Increasing evidence showed a link between arterial elasticity and stiffness and pulse pressure (PP), in which plasma aldosterone may play a role. The observational study aimed to explore the potential relations between plasma aldosterone concentration (PAC) and PP in patients with hypertension. We evaluated the relation between PP and PAC in supine, seated, and upright positions in 195 patients with primary hypertension who underwent postural stimulation test. They were divided into 3 groups by tertiles of PP: PP ≤ 44 mm Hg (n = 70), 44 mm Hg < PP ≤ 51 mm Hg (n = 63), and PP ≥ 51 mm Hg (n = 62). The PAC in different postures was compared, respectively. The results showed the following. First, segregated by tertiles of PP, serum K⁺, 24-hour systolic blood pressure, 24-hour diastolic blood pressure, sex, upright PAC, and seated PAC showed statistically significant differences in groups. Second, the PAC were significantly different in 3 levels of PP regardless of postures, the individuals with PP ≥ 51 mm Hg had the highest PAC. On contrast, the patients with PAC > 12 ng/dL showed greater PP than those with PAC ≤ 12 ng/dL. Third, weak associations between PP and upright (r = 0.288, P < 0.001), seated (r = 0.265, P < 0.001), and supine postures (r = 0.191, P = 0.008) were detected by simple correlation analysis. After corrected serum K⁺, age, and sex, the partial correlation coefficients did not change greatly. Fourth, the logistic regression model was constructed with PP ≥ 40 mm Hg or PP < 40 mm Hg as the dependent variable; the serum K⁺[OR = 0.043, 95% CI: 1.09(1.00-1.12)] and PAC [OR = 0.025, 95%CI: 0.35(0.13-0.88)] were included as significant contributing factors. The results showed that higher PAC was weakly, but significantly, correlated to greater PP regardless of different postures, suggesting that higher PAC may be a risk factor of reduced arterial elasticity in patients with hypertension.
Collapse
Affiliation(s)
- Xiaoguang Yao
- From The Center for Hypertension of the People's Hospital of Xinjiang Uygur Autonomous Region; the Center for Diagnosis, Treatment and Research of Hypertension in Xinjiang, Urumqi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ferrario CM, Schiffrin EL. Role of mineralocorticoid receptor antagonists in cardiovascular disease. Circ Res 2015; 116:206-13. [PMID: 25552697 PMCID: PMC4283558 DOI: 10.1161/circresaha.116.302706] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022]
Abstract
Aldosterone exerts its best known sodium homeostasis actions by controlling sodium excretion at the level of the distal tubules via activation of the apical epithelial sodium channel and the basolateral Na(+)/K(+)ATPase pump. Recently, this mineralocorticoid hormone has been demonstrated to act on the heart and blood vessels. Excess release of aldosterone in relation to the salt status induces both genomic and nongenomic effects that by promoting endothelial dysfunction, and vascular and cardiorenal adverse remodeling, contribute to the target organ damage found in hypertension, heart failure, myocardial infarction, and chronic renal failure. Mineralocorticoid receptor blockers have been shown to be highly effective in resistant hypertension and to slow down heart failure progression, and in experimental animals, the development of atherosclerosis. Blockade of the action of aldosterone and potentially other mineralocorticoid steroids has been increasingly demonstrated to be an extremely beneficial therapy in different forms of cardiovascular disease. This review provides a summary of the knowledge that exists on aldosterone actions in the cardiovascular system and, in providing the translational impact of this knowledge to the clinical arena, illustrates how much more needs to be achieved in exploring the use of mineralocorticoid receptor blockers in less advanced stages of heart, renal, and vascular disease.
Collapse
Affiliation(s)
- Carlos M Ferrario
- From the Hypertension Translational Research Laboratory, Departments of Surgery, Internal Medicine-Nephrology, and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston Salem, NC (C.M.F.); and Department of Medicine and Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, PQ, Canada (E.L.S.).
| | - Ernesto L Schiffrin
- From the Hypertension Translational Research Laboratory, Departments of Surgery, Internal Medicine-Nephrology, and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston Salem, NC (C.M.F.); and Department of Medicine and Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, PQ, Canada (E.L.S.)
| |
Collapse
|
26
|
Hofni A, El-Moselhy MA, Taye A, Khalifa MM. Combination therapy with spironolactone and candesartan protects against streptozotocin-induced diabetic nephropathy in rats. Eur J Pharmacol 2014; 744:173-82. [DOI: 10.1016/j.ejphar.2014.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/05/2014] [Accepted: 10/08/2014] [Indexed: 01/13/2023]
|
27
|
Adel H, Taye A, Khalifa MMA. Spironolactone improves endothelial dysfunction in streptozotocin-induced diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:1187-97. [PMID: 25238812 DOI: 10.1007/s00210-014-1048-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022]
Abstract
Endothelial dysfunction is a critical initiator for developing diabetic vascular complications. Substantial clinical and experimental evidence suggests that aldosterone plays a crucial role in its pathogenesis. The present study aimed to investigate the effect of the mineralocorticoid receptor (MR) blocker, spironolactone, on diabetes-associated endothelial dysfunction and address the underlying mechanism(s) involved in this setting. Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ) to rats and spironolactone was orally administered (50 mg/kg/day). Our results showed a marked increase in aortic malondialdehyde (MDA) level and upregulation of the catalytic NADPH oxidase subunit, NOX2 gene expression alongside reducing catalase enzyme capacity, and the serum nitric oxide (NO) bioavailability in diabetic rats. This was associated with a significant reduction in endothelial nitric oxide synthase (eNOS) immunoreactivity and gene expression in diabetic aorta. The transforming growth factor-β (TGF-β) protein and the MR gene expression levels were significantly increased in the diabetic rat aorta. Moreover, the diabetic aorta showed a marked impairment in acetylcholine-mediated endothelium-dependent relaxation. Additionally, spironolactone significantly inhibited the elevated MDA, TGF-β, NOX2, and MR levels alongside correcting the dysregulated eNOS expression and the defective antioxidant function as well as NO bioavailability. Spironolactone markedly reversed the impaired endothelial function in the diabetic aorta. Collectively, our study demonstrates that spironolactone ameliorated the vascular dysfunction of diabetic aorta, at least partially via its anti-inflammatory and anti-oxidative effects alongside correcting the dysregulated eNOS and TGF-β expression. Thus, blockade of MR may represent a useful therapeutic approach against diabetic vasculopathy.
Collapse
Affiliation(s)
- Heba Adel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | | | | |
Collapse
|
28
|
Abstract
The mineralocorticoid receptor (MR) is a ligand-dependent transcription factor that physiologically regulates water-electrolyte homeostasis and controls blood pressure. The MR can also elicit inflammatory and remodeling processes in the cardiovascular system and the kidneys, which require the presence of additional pathological factors like for example nitrosative stress. However, the underlying molecular mechanism(s) for pathophysiological MR effects remain(s) elusive. The inactive MR is located in the cytosol associated with chaperone molecules including HSP90. After ligand binding, the MR monomer rapidly translocates into the nucleus while still being associated to HSP90 and after dissociation from HSP90 binds to hormone-response-elements called glucocorticoid response elements (GREs) as a dimer. There are indications that rapid MR trafficking is modulated in the presence of high salt, oxidative or nitrosative stress, hypothetically by induction or posttranslational modifications. Additionally, glucocorticoids and the enzyme 11beta hydroxysteroid dehydrogenase may also influence MR activation. Because MR trafficking and its modulation by micro-milieu factors influence MR cellular localization, it is not only relevant for genomic but also for nongenomic MR effects.
Collapse
Affiliation(s)
- M Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - M Bretschneider
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - S Meinel
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - S Ruhs
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - C Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
29
|
Abstract
The steroid hormone aldosterone regulates sodium and potassium homeostasis. Aldosterone and activation of the mineralocorticoid receptor also causes inflammation and fibrosis of the heart, fibrosis and remodelling of blood vessels and tubulointerstitial fibrosis and glomerular injury in the kidney. Aldosterone and mineralocorticoid-receptor activation initiate an inflammatory response by increasing the generation of reactive oxygen species by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. High salt intake potentiates these effects, in part by activating the Rho family member Rac1, a regulatory subunit of reduced NADPH oxidase that activates the mineralocorticoid receptor. Studies in mice in which the mineralocorticoid receptor has been deleted from specific cell types suggest a key role for macrophages in promoting inflammation and fibrosis. Aldosterone can exert mineralocorticoid-receptor-independent effects via the angiotensin II receptor and via G-protein-coupled receptor 30. Mineralocorticoid-receptor antagonists are associated with decreased mortality in patients with heart disease and show promise in patients with kidney injury, but can elevate serum potassium concentration. Studies in rodents genetically deficient in aldosterone synthase or treated with a pharmacological aldosterone-synthase inhibitor are providing insight into the relative contribution of aldosterone compared with the contribution of mineralocorticoid-receptor activation in inflammation, fibrosis, and injury. Aldosterone-synthase inhibitors are under development in humans.
Collapse
|
30
|
Wang E, Chong K, Yu M, Akhoundsadegh N, Granville DJ, Shapiro J, McElwee KJ. Development of autoimmune hair loss disease alopecia areata is associated with cardiac dysfunction in C3H/HeJ mice. PLoS One 2013; 8:e62935. [PMID: 23658656 PMCID: PMC3637254 DOI: 10.1371/journal.pone.0062935] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/26/2013] [Indexed: 02/08/2023] Open
Abstract
Alopecia areata (AA) is a chronic autoimmune hair loss disease that affects several million men, women and children worldwide. Previous studies have suggested a link between autoimmunity, stress hormones, and increased cardiovascular disease risk. In the current study, histology, immunohistology, quantitative PCR (qPCR) and ELISAs were used to assess heart health in the C3H/HeJ mouse model for AA and heart tissue response to adrenocorticotropic hormone (ACTH) exposure. Mice with AA exhibited both atrial and ventricular hypertrophy, and increased collagen deposition compared to normal-haired littermates. QPCR revealed significant increases in Il18 (4.6-fold), IL18 receptor-1 (Il18r1; 2.8-fold) and IL18 binding protein (Il18bp; 5.2-fold) in AA hearts. Time course studies revealed a trend towards decreased Il18 in acute AA compared to controls while Il18r1, Il18bp and Casp1 showed similar trends to those of chronic AA affected mice. Immunohistochemistry showed localization of IL18 in chronic AA mouse atria. ELISA indicated cardiac troponin-I (cTnI) was elevated in the serum and significantly increased in AA heart tissue. Cultures of heart atria revealed differential gene expression between AA and control mice in response to ACTH. ACTH treatment induced significant increase in cTnI release into the culture medium in a dose-dependent manner for both AA and control mice. In conclusion, murine AA is associated with structural, biochemical, and gene expression changes consistent with cardiac hypertrophy in response to ACTH exposure.
Collapse
Affiliation(s)
- Eddy Wang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Katy Chong
- University of British Columbia, Vancouver, BC, Canada
| | - Mei Yu
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Noushin Akhoundsadegh
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - David J. Granville
- Department of Pathology and Laboratory Medicine, James Hogg Research Centre, Institute for Heart and Lung Health, University of British Columbia, Vancouver, BC, Canada
| | - Jerry Shapiro
- Department of Dermatology and Skin Science, Vancouver General Hospital, Vancouver, BC, Canada
| | - Kevin J. McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
31
|
Schiffrin EL. Vascular mineralocorticoid receptors regulate blood pressure effects on myogenic tone and role in aging. Circ Res 2013; 112:415-7. [PMID: 23371898 DOI: 10.1161/circresaha.113.300883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ernesto L Schiffrin
- Department of Medicine, SMBD-Jewish General Hospital, #B-127, 3755 Côte-Ste-Catherine Rd, Montreal, Quebec, Canada H3T 1E2.
| |
Collapse
|
32
|
de Almeida PWM, de Freitas Lima R, de Morais Gomes ER, Resende CR, Roman-Campos D, Gondim ANS, Gavioli M, Lara A, Parreira A, de Azevedo Nunes SL, Alves MN, Santos SL, Alenina N, Bader M, Resende RR, dos Santos Cruz J, Souza dos Santos RA, Guatimosim S. Functional Cross-Talk Between Aldosterone and Angiotensin-(1-7) in Ventricular Myocytes. Hypertension 2013; 61:425-30. [DOI: 10.1161/hypertensionaha.111.199539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Pedro W. Machado de Almeida
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Ricardo de Freitas Lima
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Enéas Ricardo de Morais Gomes
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Cibele Rocha Resende
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Danilo Roman-Campos
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Antonio Nei S. Gondim
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Mariana Gavioli
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Aline Lara
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Amanda Parreira
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Sasha Luísa de Azevedo Nunes
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Márcia N.M. Alves
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Sandra Lauton Santos
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Natalia Alenina
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Michael Bader
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Rodrigo Ribeiro Resende
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Jader dos Santos Cruz
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Robson Augusto Souza dos Santos
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| | - Silvia Guatimosim
- From the Departments of Physiology and Biophysics (P.W.M.d.A., R.d.F.L., E.R.d.M.G., C.R.-R., M.G., A.L., A.P., S.L.d.A.N., M.N.M.A., R.A.S.d.S., S.G.), and Biochemistry and Imunology (D.R.-C., A.N.S.G., R.R.R., J.d.S.C.), Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Department of Physiology, Center for Health and Biological Sciences, Federal University of Sergipe, Sergipe, Brazil (S.L.S.); Biological Sciences, Helena Antipoff Foundation, Ibirité,
| |
Collapse
|
33
|
Briet M, Schiffrin EL. Vascular actions of aldosterone. J Vasc Res 2012; 50:89-99. [PMID: 23172373 DOI: 10.1159/000345243] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/18/2012] [Indexed: 02/03/2023] Open
Abstract
Aldosterone exerts direct effects on the vascular system by inducing oxidative stress, inflammation, hypertrophic remodeling, fibrosis, and endothelial dysfunction. Aldosterone exerts its effects through genomic and nongenomic pathways in a mineralocorticoid receptor (MR)-dependent or independent manner. Other aldosterone receptors such as GPR30 have been identified. A tight relation exists between the aldosterone and angiotensin II pathways, as well as with the endothelin-1 system. There is a correlation between plasma levels of aldosterone and cardiovascular risk. Recently, an increasing body of evidence has underlined the importance of aldosterone in cardiovascular complications associated with the metabolic syndrome, such as arterial remodeling and endothelial dysfunction. Blockade of MR is an increasingly used evidence-based therapy for many forms of cardiovascular disease, including hypertension, heart failure, chronic kidney disease, and diabetes mellitus.
Collapse
Affiliation(s)
- Marie Briet
- Université Paris Descartes, Faculté de Medicine, Assistance Publique des Hôpitaux de Paris, Hôpital Européen Georges Pompidou, INSERM CIC 9201, Paris, France
| | | |
Collapse
|
34
|
Peng H, Carretero OA, Peterson EL, Yang XP, Santra K, Rhaleb NE. N-Acetyl-seryl-aspartyl-lysyl-proline inhibits ET-1-induced collagen production by preserving Src homology 2-containing protein tyrosine phosphatase-2 activity in cardiac fibroblasts. Pflugers Arch 2012; 464:415-23. [PMID: 22968858 DOI: 10.1007/s00424-012-1150-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/29/2012] [Indexed: 11/24/2022]
Abstract
N-Acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) inhibits endothelin-1 (ET-1)-induced activation of p44/42 mitogen-activated protein kinase (p44/42 MAPK) and collagen production in cultured rat cardiac fibroblasts (RCFs). However, we do not know whether its inhibitory effect on p44/42 MAPK is due to the altered activity of protein tyrosine phosphatases (PTPs), which in turn downregulate the p44/42 MAPK signaling pathway. The activity of Src homology 2-containing protein tyrosine phosphatase-2 (SHP-2) is downregulated by ET-1 in RCFs; thus, we hypothesized that Ac-SDKP inhibits ET-1-stimulated collagen production in part by preserving SHP-2 activity and thereby inhibiting p44/42 MAPK phosphorylation. When we stimulated RCFs with ET-1 in the presence or absence of Ac-SDKP, we found that (a) PTP activity was reduced by ET-1 and (b) this effect was counteracted by Ac-SDKP in a dose-dependent fashion. Next, we extracted SHP-2 from RCF lysates by immunoprecipitation and determined that (a) ET-1 inhibited SHP-2 by 40 % and (b) this effect was prevented by Ac-SDKP. However, Ac-SDKP failed to inhibit ET-1-induced p44/42 MAPK phosphorylation in RCFs treated with SHP-2 short hairpin RNA (shRNA); in contrast, in cells transfected with control shRNA, Ac-SDKP's inhibitory effect on ET-1-induced p44/42 MAPK activation remained intact. Moreover, the inhibitory effect of Ac-SDKP on ET-1-stimulated collagen production was blunted in cells treated with the SHP-1/2 inhibitor NSC-87877. Thus, we concluded that the inhibitory effect of Ac-SDKP on ET-1-stimulated collagen production by RCFs is mediated in part by preserving SHP-2 activity and thereby preventing p44/42 MAPK activation. Ac-SDKP or its analogs could represent a new therapeutic tool to treat fibrotic diseases in the cardiovascular system.
Collapse
Affiliation(s)
- Hongmei Peng
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, E & R Bldg 7121, 2799 West Grand Blvd, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
35
|
Zhu CJ, Wang QQ, Zhou JL, Liu HZ, Hua F, Yang HZ, Hu ZW. The mineralocorticoid receptor-p38MAPK-NFκB or ERK-Sp1 signal pathways mediate aldosterone-stimulated inflammatory and profibrotic responses in rat vascular smooth muscle cells. Acta Pharmacol Sin 2012; 33:873-8. [PMID: 22659623 DOI: 10.1038/aps.2012.36] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AIM To explore the signalling pathways involved in aldosterone-induced inflammation and fibrosis in rat vascular smooth muscle cells (VSMCs). METHODS Using Western blotting and real-time RT-PCR, we investigated the effects of aldosterone on the expression of cyclooxygenase-2 (Cox-2) and IL-6, two important proinflammatory factors, and TGFβ1, a critical profibrotic factor, in VSMCs. RESULTS Aldosterone treatment significantly increased the expression of Cox-2 and IL-6 and activation of p38MAPK and NF-κB. The expression of both Cox-2 and IL-6 could be blocked by the mineralocorticoid receptor (MR) antagonist spironolactone and the p38MAPK inhibitor SB203580. Also, the rapid phosphorylation of p38MAPK could be suppressed by SB203580 but not by spironolactone, implicating in nongenomic effects of aldosterone. Similar to SB203580 and spironolactone, the NF-κB inhibitor α-p-tosyl-L-lysine chloromethyl ketone (TLCK) markedly attenuated expression of Cox-2, indicating that MR, p38MAPK and NF-κB are associated with aldosterone-induced inflammatory responses. Furthermore, aldosterone enhanced expression of TGFβ1 in rat VSMCs. This result may be related to activation of the MR/ERK-Sp1 signalling pathway because PD98059, an ERK1/2 inhibitor, significantly blocked the rapid phosphorylation of ERK1/2 and function of Sp1 and led to reduced expression of TGFβ1. Spironolactone was also shown to significantly inhibit TGFβ1 and Sp1 expression but not ERK1/2 phosphorylation. CONCLUSION These results suggest that aldosterone-induced inflammatory responses and fibrotic responses may be mediated by the MR/p38MAPK-NF-κB pathways and the MR/ERK-Sp1 pathways in VSMCs, respectively.
Collapse
|
36
|
El-Seweidy MM, Mohamed HE, Asker ME, Atteia HH. Nicotine and vascular endothelial dysfunction in female ovariectomized rats: role of estrogen replacement therapy. J Pharm Pharmacol 2012; 64:108-119. [PMID: 22150678 DOI: 10.1111/j.2042-7158.2011.01377.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The protective effects of estrogen replacement therapy (ERT) against oxidative injury and endothelial dysfunction in the aortic tissues induced with nicotine in ovariectomized (OVX) rats were investigated. METHODS Female rats were divided into a sham-operated group (n = 8) and four groups in which OVX rats received either vehicle (0.1 ml sesame oil, i.m., n = 8), or nicotine (0.1 mg/kg, s.c., n = 8), or estradiol benzoate (0.1 mg/kg, i.m., n = 8), or both nicotine and estradiol benzoate (n = 8) starting at week 5 after the surgery and continuing for the following 6 weeks. KEY FINDINGS ERT was effective in preventing the rise in plasma lipid profile, atherogenic index and the level of induced endothelin-1 (ET-1) in nicotine-treated OVX rats. It also reduced aortic malondialdehyde, hydroxyproline levels, calcium content and caspase-3 expression induced in nicotine-treated OVX rats. ERT increased serum estradiol, high-density lipoprotein cholesterol and nitric oxide levels in nicotine-treated OVX rats. Furthermore, ERT was effective in restoring reduced glutathione and cyclic guanosine monophosphate contents and endothelial nitric oxide synthase expression in aortic tissues of nicotine-treated OVX rats. CONCLUSIONS Short-term ERT could be a promising therapeutic strategy to minimize nicotine-induced oxidative stress and vascular endothelial dysfunction in menopausal women subjected to environmental smoke.
Collapse
Affiliation(s)
- Mohamed M El-Seweidy
- Department of Biochemistry, Faculty of Pharmacy, University of Zagazig, Zagazig, Egypt
| | | | | | | |
Collapse
|
37
|
Resch M, Schmid P, Amann K, Fredersdorf S, Weil J, Schach C, Birner C, Griese DP, Kreuzer P, Brunner S, Luchner A, Riegger GAJ, Endemann DH. Eplerenone prevents salt-induced vascular stiffness in Zucker diabetic fatty rats: a preliminary report. Cardiovasc Diabetol 2011; 10:94. [PMID: 22008236 PMCID: PMC3217853 DOI: 10.1186/1475-2840-10-94] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/19/2023] Open
Abstract
Background Aldosterone levels are elevated in a rat model of type 2 diabetes mellitus, the Zucker Diabetic fatty rat (ZDF). Moreover blood pressure in ZDF rats is salt-sensitive. The aim of this study was to examine the effect of the aldosterone antagonist eplerenone on structural and mechanical properties of resistance arteries of ZDF-rats on normal and high-salt diet. Methods After the development of diabetes, ZDF animals were fed either a normal salt diet (0.28%) or a high-salt diet (5.5%) starting at an age of 15 weeks. ZDF rats on high-salt diet were randomly assigned to eplerenone (100 mg/kg per day, in food) (ZDF+S+E), hydralazine (25 mg/kg per day) (ZDF+S+H), or no treatment (ZDF+S). Rats on normal salt-diet were assigned to eplerenone (ZDF+E) or no treatment (ZDF). Normoglycemic Zucker lean rats were also divided into two groups receiving normal (ZL) or high-salt diet (ZL+S) serving as controls. Systolic blood pressure was measured by tail cuff method. The experiment was terminated at an age of 25 weeks. Mesenteric resistance arteries were studied on a pressurized myograph. Specifically, vascular hypertrophy (media-to-lumen ratio) and vascular stiffness (strain and stress) were analyzed. After pressurized fixation histological analysis of collagen and elastin content was performed. Results Blood pressure was significantly higher in salt-loaded ZDF compared to ZDF. Eplerenone and hydralazine prevented this rise similarily, however, significance niveau was missed. Media-to-lumen ratio of mesenteric resistance arteries was significantly increased in ZDF+S when compared to ZDF and ZL. Both, eplerenone and hydralazine prevented salt-induced vascular hypertrophy. The strain curve of arteries of salt-loaded ZDF rats was significantly lower when compared to ZL and when compared to ZDF+S+E, but was not different compared to ZDF+S+H. Eplerenone, but not hydralazine shifted the strain-stress curve to the right indicating a vascular wall composition with less resistant components. This indicates increased vascular stiffness in salt-loaded ZDF rats, which could be prevented by eplerenone but not by hydralazine. Collagen content was increased in ZL and ZDF rats on high-salt diet. Eplerenone and hydralazine prevented the increase of collagen content. There was no difference in elastin content. Conclusion Eplerenone and hydralazine prevented increased media-to-lumen ratio in salt-loaded ZDF-rats, indicating a regression of vascular hypertrophy, which is likely mediated by the blood pressure lowering-effect. Eplerenone has additionally the potential to prevent increased vascular stiffness in salt-loaded ZDF-rats. This suggests an effect of the specific aldosterone antagonist on adverse vascular wall remodelling.
Collapse
Affiliation(s)
- Markus Resch
- Department of Internal Medicine II, Regensburg University Medical Center, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Briet M, Schiffrin EL. The role of aldosterone in the metabolic syndrome. Curr Hypertens Rep 2011; 13:163-72. [PMID: 21279740 DOI: 10.1007/s11906-011-0182-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome associates metabolic abnormalities such as insulin resistance and dyslipidemia with increased waist circumference and hypertension. It is a major public health concern, as its prevalence could soon reach 30% to 50% in developed countries. Aldosterone, a mineralocorticoid hormone classically involved in sodium balance regulation, is increased in patients with metabolic syndrome. Besides its classic actions, aldosterone and mineralocorticoid receptor (MR) activation affect glucose metabolism, inducing insulin resistance through various mechanisms that involve oxidative stress, inflammation, and downregulation of proteins involved in insulin signaling pathways. Aldosterone and MR signaling exert deleterious effects on the cardiovascular system and the kidney that influence the cardiovascular risk associated with metabolic syndrome. Salt load plays a major role in cardiovascular injury induced by aldosterone and MR signaling. Large multicenter, randomized clinical trials testing the beneficial effects of MR antagonists on cardiovascular events and mortality in patients with metabolic syndrome are needed.
Collapse
Affiliation(s)
- Marie Briet
- Department of Medicine, B-127, SMBD-Jewish General Hospital, 3755 Côte-Ste-Catherine Road, Montreal, QC H3T 1E2, Canada.
| | | |
Collapse
|
39
|
Essick EE, Sam F. Cardiac hypertrophy and fibrosis in the metabolic syndrome: a role for aldosterone and the mineralocorticoid receptor. Int J Hypertens 2011; 2011:346985. [PMID: 21747976 PMCID: PMC3124304 DOI: 10.4061/2011/346985] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/07/2011] [Indexed: 12/28/2022] Open
Abstract
Obesity and hypertension, major risk factors for the metabolic syndrome, render individuals susceptible to an increased risk of cardiovascular complications, such as adverse cardiac remodeling and heart failure. There has been much investigation into the role that an increase in the renin-angiotensin-aldosterone system (RAAS) plays in the pathogenesis of metabolic syndrome and in particular, how aldosterone mediates left ventricular hypertrophy and increased cardiac fibrosis via its interaction with the mineralocorticoid receptor (MR). Here, we review the pertinent findings that link obesity with elevated aldosterone and the development of cardiac hypertrophy and fibrosis associated with the metabolic syndrome. These studies illustrate a complex cross-talk between adipose tissue, the heart, and the adrenal
cortex. Furthermore, we discuss findings from our laboratory that suggest that cardiac hypertrophy and fibrosis in the metabolic syndrome may involve cross-talk between aldosterone and adipokines (such as adiponectin).
Collapse
Affiliation(s)
- Eric E Essick
- Whitaker Cardiovascular Institute, Boston University School of Medicine 715 Albany Street, W507 Boston, MA 02118, USA
| | | |
Collapse
|
40
|
Cascella T, Radhakrishnan Y, Maile LA, Busby WH, Gollahon K, Colao A, Clemmons DR. Aldosterone enhances IGF-I-mediated signaling and biological function in vascular smooth muscle cells. Endocrinology 2010; 151:5851-64. [PMID: 20881255 PMCID: PMC2999491 DOI: 10.1210/en.2010-0350] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The IGF-I pathway and renin-angiotensin-aldosterone axis are both involved in the pathogenesis of hypertension and atherosclerosis, but no information is available about IGF-I and aldosterone interaction or their potential synergistic effects in vascular smooth muscle cells (VSMCs). The aims of this study were to investigate whether aldosterone influences IGF-I signaling and to determine the mechanism(s) by which aldosterone affects IGF-I function. Aldosterone resulted in significant increases in the Akt (1.87 ± 0.24, P < 0.001), MAPK (1.78 ± 0.13, P < 0.001), p70S6kinase (1.92 ± 0.15, P < 0.001), IGF-I receptor (1.69 ± 0.05, P < 0.01), and insulin receptor substrate-1 (1.7 ± 0.04, P < 0.01) (fold increase, mean ± SEM, n = 3) phosphorylation responses to IGF-I compared with IGF-I treatment alone. There were also significant increases in VSMC proliferation, migration, and protein synthesis (1.63 ± 0.03-, 1.56 ± 0.08-, and 1.51 ± 0.04-fold increases compared with IGF-I alone, respectively, n = 3, P < 0.001). Aldosterone induced osteopontin (OPN) mRNA expression and activation of αVβ3-integrin as well as an increase in the synthesis of IGF-I receptor. The enhancing effects of aldosterone were inhibited by eplerenone (10 μmol/liter), actinomycin-D (20 nmol/liter), and an anti-αVβ3-integrin antibody that blocks OPN binding. The antioxidant N-acetylcysteine (2 mmol/liter) completely inhibited the ability of aldosterone to induce any of these changes. In conclusion, our results show that aldosterone enhances IGF-I signaling and biological actions in VSMCs through induction of OPN followed by its subsequent activation of the αVβ3-integrin and by increasing IGF-I receptor. These changes are mediated in part through increased oxidative stress. The findings suggest a new mechanism by which aldosterone could accelerate the development of atherosclerosis.
Collapse
Affiliation(s)
- Teresa Cascella
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
From aldosteronism to oxidative stress: the role of excessive intracellular calcium accumulation. Hypertens Res 2010; 33:1091-101. [DOI: 10.1038/hr.2010.159] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Abstract
ET (endothelin)-1 was first described as a potent vasoconstrictor. Since then, many other deleterious properties mediated via its two receptors, ETA and ETB, have been described, such as inflammation, fibrosis and hyperplasia. These effects, combined with a wide tissue distribution of the ET system, its up-regulation in pathological situations and a local autocrine/paracrine activity due to a high tissue receptor binding, make the tissue ET system a key local player in end-organ damage. Furthermore, ET-1 interacts in tissues with other systems such as the RAAS (renin-angiotensin-aldosterone system) to exert its effects. In numerous genetically modified animal models, non-specific or organ-targeted ET-1 overexpression causes intense organ damage, especially hypertrophy and fibrosis, in the absence of haemodynamic changes, confirming a local activity of the ET system. ET receptor antagonists have been shown to prevent and sometimes reverse these tissue alterations in an organ-specific manner, leading to long-term benefits and an improvement in survival in different animal models. Potential for such benefits going beyond a pure haemodynamic effect have also been suggested by clinical trial results in which ET receptor antagonism decreased the occurrence of new digital ulcers in patients with systemic sclerosis and delayed the time to clinical worsening in patients with PAH (pulmonary arterial hypertension). The tissue ET system allows therapeutic interventions to provide organ selectivity and beneficial effects in diseases associated with tissue inflammation, hypertrophy or fibrosis.
Collapse
|
43
|
Abstract
The cytochrome P450 monooxygenase system (CYP) is a multigene superfamily of heme-thiolate enzymes, which are important in the metabolism of foreign and endogenous compounds. Genetic variations, drug interactions, or pathophysiological factors can lead to reduced, absent, or increased enzymatic activity. This altered CYP activity greatly influences an individual's response to therapeutic treatment. What is not known is the impact of these changes on the many functional roles of CYP in physiological and pathophysiological processes of the heart. Many extrahepatic tissues, like heart, contain active P450 enzymes but lack information regarding their role in cellular injury or homeostasis. Much of our current knowledge about cardiac CYP has been limited to studies investigating the role of fatty acid metabolites in heart. Traditional risk factors including diabetes, smoking, and hypertension have well established links to cardiovascular disease. And new evidence strongly suggests exposure to chemicals and other environmental agents has a profound impact on the cardiovascular system. These risk factors can independently affect the expression and activity of CYP enzymes. Therefore, altered CYP activity is important from a detoxification as well as a bioactivation perspective. Considering CYP, interactions are greatly dependent on inherited differences or acquired changes in enzyme activity further research into their potential impact on pathogenesis, risk assessment, and therapy of heart disease is warranted. This review explores the expression of CYP isoforms, their functional roles, and the effects of genetic variation in the heart.
Collapse
Affiliation(s)
- Ketul R Chaudhary
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2N8, Canada
| | | | | |
Collapse
|
44
|
Luther JM, Wang Z, Ma J, Makhanova N, Kim HS, Brown NJ. Endogenous aldosterone contributes to acute angiotensin II-stimulated plasminogen activator inhibitor-1 and preproendothelin-1 expression in heart but not aorta. Endocrinology 2009; 150:2229-36. [PMID: 19106220 PMCID: PMC2671907 DOI: 10.1210/en.2008-1296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To test the hypothesis that angiotensin (Ang) II induces profibrotic gene expression through endogenous aldosterone, we measured the effect of 4 h infusion (600 ng/kg x min) of Ang II on tissue mRNA expression of plasminogen activator inhibitor 1 (PAI-1), preproendothelin-1 (ppET-1), TGF-beta, and osteopontin in wild-type (WT), aldosterone synthase-deficient (AS(-/-)), and AS(-/-) mice treated with aldosterone (either 500 ng/d for 7 d or 250 ng as a concurrent 4 h infusion). Ang II increased aldosterone in WT (P < 0.001) but not in AS(-/-) mice. Aldosterone (7 d) normalized basal aldosterone concentrations in AS(-/-) mice; however, there was no further effect of Ang II on aldosterone (P = NS). Basal cardiac and aortic PAI-1 and ppET-1 expression were similar in WT and AS(-/-) mice. Ang II-stimulated PAI-1 (P < 0.001) and ppET-1 expression (P = 0.01) was diminished in the heart of AS(-/-) mice; treatment with aldosterone for 4 h or 7 d restored PAI-1 and ppET-1 mRNA responsiveness to Ang II in the heart. Ang II increased PAI-1 (P = 0.01) expression in the aorta of AS(-/-) as well as WT mice. In the kidney, basal PAI-1, ppET-1, and TGF-beta mRNA expression was increased in AS(-/-) compared with WT mice and correlated with plasma renin activity. Ang II did not stimulate osteopontin or TGF-beta expression in the heart or kidney. Endogenous aldosterone contributes to the acute stimulatory effect of Ang II on PAI-1 and ppET-1 mRNA expression in the heart; renin activity correlates with basal profibrotic gene expression in the kidney.
Collapse
Affiliation(s)
- James M Luther
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6602, USA.
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Park YM, Lim BH, Touyz RM, Park JB. Expression of NAD(P)H oxidase subunits and their contribution to cardiovascular damage in aldosterone/salt-induced hypertensive rat. J Korean Med Sci 2008; 23:1039-45. [PMID: 19119450 PMCID: PMC2610641 DOI: 10.3346/jkms.2008.23.6.1039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 03/04/2008] [Indexed: 12/21/2022] Open
Abstract
NAD(P)H oxidase plays an important role in hypertension and its complication in aldosterone-salt rat. We questioned whether NAD(P)H oxidase subunit expression and activity are modulated by aldosterone and whether this is associated with target-organ damage. Rats were infused with aldosterone (0.75 microg/hr/day) for 6 weeks and were given 0.9% NaCl+/-losartan (30 mg/kg/day), spironolactone (200 mg/kg/day), and apocynin (1.5 mM/L). Aldosterone-salt hypertension was prevented completely by spironolactone and modestly by losartan and apocynin. Aldosterone increased aortic NAD(P)H oxidase activity by 34% and spironolactone and losartan inhibited the activity. Aortic expression of the subunits p47(phox), gp91(phox), and p22(phox) increased in aldosterone-infused rats by 5.5, 4.7, and 3.2-fold, respectively, which was decreased completely by spironolactone and partially by losartan and apocynin. Therefore, the increased expression of NAD(P)H oxidase may contribute to cardiovascular damage in aldosterone-salt hypertension through the increased expression of each subunit.
Collapse
Affiliation(s)
| | | | - Rhian M. Touyz
- Ottawa Health Research Institute, University of Ottawa, Ottawa, Canada
| | - Jeong Bae Park
- Department of Medicine/Cardiology, Cheil General Hospital, Kwandong University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Lai YH, Wang HZ, Lin CP, Hong SJ, Chang SJ. Endothelin-1 Enhances Corneal Fibronectin Deposition and Promotes Corneal Epithelial Wound Healing after Photorefractive Keratectomy in Rabbits. Kaohsiung J Med Sci 2008; 24:254-61. [DOI: 10.1016/s1607-551x(08)70150-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
48
|
Sun Z, Bello-Roufai M, Wang X. RNAi inhibition of mineralocorticoid receptors prevents the development of cold-induced hypertension. Am J Physiol Heart Circ Physiol 2008; 294:H1880-7. [DOI: 10.1152/ajpheart.01319.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective was to determine whether the mineralocorticoid receptor (MR) plays a role in the initiation and development of cold-induced hypertension (CIH) by testing the hypothesis that the RNA interference (RNAi) inhibition of the MR attenuates CIH. The recombinant adeno-associated virus (AAV) carrying a short-hairpin small-interference RNA for MR (MRshRNA) or a scrambled sequence (ControlshRNA) was constructed. Six groups of albino mice were used (6 mice/group). Three groups were exposed to cold (6.7°C), whereas the remaining three groups were kept at room temperature (RT; warm) as controls. In each temperature condition, three groups received an intravenous injection of MRshRNA, ControlshRNA, or virus-free PBS, respectively, before exposure to cold. The viral complexes (0.35 × 1011 particles/mouse, 0.5 ml) or PBS (0.5 ml) was delivered into the circulation via the tail vein. The blood pressure (BP) of the mice treated with ControlshRNA or PBS increased significantly during exposure to cold, whereas the BP of the cold-exposed MRshRNA-treated mice did not increase and remained at the level of the control group kept at RT. Thus AAV delivery of MRshRNA prevented the initiation of CIH. MRshRNA significantly attenuated cardiac and renal hypertrophy. MRshRNA decreased the cold-induced increase in MR protein expression to the control level in the hypothalamus, kidneys, and heart, indicating an effective prevention of the cold-induced upregulation of MR. RNAi inhibition of MR resulted in significant decreases in the plasma level of norepinephrine, plasma renin activity, and plasma level of aldosterone in cold-exposed mice. MR played a critical role in the initiation and development of CIH. AAV delivery of MRshRNA may serve as a new approach for the prevention of cold-induced hypertension.
Collapse
|
49
|
Carey RM. Pathophysiology of Primary Hypertension. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Abstract
Aldosterone concentrations are inappropriately high in many patients with hypertension, as well as in an increasing number of individuals with metabolic syndrome and sleep apnoea. A growing body of evidence suggests that aldosterone and/or activation of the MR (mineralocorticoid receptor) contributes to cardiovascular remodelling and renal injury in these conditions. In addition to causing sodium retention and increased blood pressure, MR activation induces oxidative stress, endothelial dysfunction, inflammation and subsequent fibrosis. The MR may be activated by aldosterone and cortisol or via transactivation by the AT(1) (angiotenin II type 1) receptor through a mechanism involving the EGFR (epidermal growth factor receptor) and MAPK (mitogen-activated protein kinase) pathway. In addition, aldosterone can generate rapid non-genomic effects in the heart and vasculature. MR antagonism reduces mortality in patients with CHF (congestive heart failure) and following myocardial infarction. MR antagonism improves endothelial function in patients with CHF, reduces circulating biomarkers of cardiac fibrosis in CHF or following myocardial infarction, reduces blood pressure in resistant hypertension and decreases albuminuria in hypertensive and diabetic patients. In contrast, whereas adrenalectomy improves glucose homoeostasis in hyperaldosteronism, MR antagonism may worsen glucose homoeostasis and impairs endothelial function in diabetes, suggesting a possible detrimental effect of aldosterone via non-genomic pathways.
Collapse
Affiliation(s)
- Annis M Marney
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | | |
Collapse
|