1
|
Fofie CK, Granja-Vazquez R, Truong V, Walsh P, Price T, Biswas S, Dussor G, Pancrazio J, Kolber B. Profiling human iPSC-derived sensory neurons for analgesic drug screening using a multi-electrode array. CELL REPORTS METHODS 2025; 5:101051. [PMID: 40367946 DOI: 10.1016/j.crmeth.2025.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/16/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025]
Abstract
Chronic pain is a global health issue, yet effective treatments remain limited due to poor preclinical-to-human translation. To address this, we developed a high-content screening (HCS) platform using hiPSC-derived nociceptors to identify analgesics targeting the peripheral nervous system. These cells, cultured on multi-well microelectrode arrays, achieved nearly 100% active electrodes by week 2, maintaining stable activity for at least 2 weeks. After 28 days, we assessed drug effects on neuronal activity, achieving strong assay performance (robust Z' > 0.5). Pharmacological tests confirmed responses to key analgesic targets, including ion channels (Nav, Cav, Kv, and TRPV1), neurotransmitter receptors (AMPAR and GABA-R), and kinase inhibitors (tyrosine and JAK1/2). Transcriptomic analysis validated target expression, though levels differed from primary human DRG cells. The platform was used to screen over 700 natural compounds, demonstrating its potential for analgesic discovery. This HCS platform facilitates the rapid discovery of uncharacterized analgesics, reducing preclinical-to-human translation failure.
Collapse
Affiliation(s)
- Christian Kuete Fofie
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Rafael Granja-Vazquez
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | - Theodore Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Swati Biswas
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Joseph Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Benedict Kolber
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
2
|
Usher S, Toulmé E, Florea R, Yatskevich S, Jao CC, Dijkhof LRH, Colding JM, Joshi P, Zilberleyb I, Trimbuch T, Brokowski B, Hauser AS, Leitner A, Rosenmund C, Kschonsak M, Pless SA. The sodium leak channel NALCN is regulated by neuronal SNARE complex proteins. SCIENCE ADVANCES 2025; 11:eads6004. [PMID: 40085699 DOI: 10.1126/sciadv.ads6004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
NALCN (sodium leak channel, nonselective) is vital for regulating electrical activity in neurons and other excitable cells, and mutations in the channel or its auxiliary proteins lead to severe neurodevelopmental disorders. Here, we show that the neuronal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex proteins syntaxin and SNAP25 (synaptosome-associated protein 25), which enable synaptic transmission in the nervous system, inhibit the activity of the NALCN channel complex in both heterologous systems and primary neurons. The existence of this interaction suggests that the neurotransmitter release machinery can regulate electrical signaling directly and therefore modulate the threshold for its own activity. We further find that reduction of NALCN currents is sufficient to promote cell survival in syntaxin-depleted cells. This suggests that disinhibited NALCN may cause the puzzling phenomenon of rapid neuronal cell death in the absence of syntaxin. This interaction could offer opportunities for future drug development against genetic diseases linked to both NALCN- and SNARE protein-containing complexes.
Collapse
Affiliation(s)
- Samuel Usher
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Estelle Toulmé
- Institut für Neurophysiologie, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Roberta Florea
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, Zürich 8093, Switzerland
| | - Stanislau Yatskevich
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine C Jao
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Luuk R H Dijkhof
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Janne M Colding
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Prajakta Joshi
- Department of Biomolecular Resources, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Inna Zilberleyb
- Department of Biomolecular Resources, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thorsten Trimbuch
- Institut für Neurophysiologie, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Bettina Brokowski
- Institut für Neurophysiologie, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, Zürich 8093, Switzerland
| | - Christian Rosenmund
- Institut für Neurophysiologie, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Marc Kschonsak
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
3
|
Chin M, Kaeser PS. On the targeting of voltage-gated calcium channels to neurotransmitter release sites. Curr Opin Neurobiol 2024; 89:102931. [PMID: 39500143 PMCID: PMC11718439 DOI: 10.1016/j.conb.2024.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 11/13/2024]
Abstract
At the presynaptic active zone, voltage-gated Ca2+ channels (CaVs) mediate Ca2+ entry for neurotransmitter release. CaVs are a large family of proteins, and different subtypes have distinct localizations across neuronal somata, dendrites and axons. Here, we review how neurons establish and maintain a specific CaV repertoire at their active zones. We focus on molecular determinants for cargo assembly, presynaptic delivery and release site tethering, and we discuss recent work that has identified key roles of the CaV intracellular C-terminus. Finally, we evaluate how these mechanisms may differ between different types of neurons. Work on CaVs provides insight into the protein targeting pathways that help maintain neuronal polarity.
Collapse
Affiliation(s)
- Morven Chin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Kuete CF, Granja-Vazquez R, Truong V, Walsh P, Price T, Biswas S, Dussor G, Pancrazio J, Kolber B. Profiling Human iPSC-Derived Sensory Neurons for Analgesic Drug Screening Using a Multi-Electrode Array. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623405. [PMID: 39605708 PMCID: PMC11601878 DOI: 10.1101/2024.11.18.623405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chronic pain is a major global health issue, yet effective treatments are limited by poor translation from preclinical studies to humans. To address this, we developed a high-content screening (HCS) platform for analgesic discovery using hiPSC-derived nociceptors. These cells were cultured on multi-well micro-electrode arrays to monitor activity, achieving nearly 100% active electrodes by week two, maintaining stable activity for at least two weeks. After maturation (28 days), we exposed the nociceptors to various drugs, assessing their effects on neuronal activity, with excellent assay performance (Z' values >0.5). Pharmacological tests showed responses to analgesic targets, including ion channels (Nav, Cav, Kv, TRPV1), neurotransmitter receptors (AMPAR, GABA-R), and kinase inhibitors (tyrosine, JAK1/2). Transcriptomic analysis confirmed the presence of these drug targets, although expression levels varied compared to primary human dorsal root ganglion cells. This HCS platform facilitates the rapid discovery of novel analgesics, reducing the risk of preclinical-to-human translation failure. Motivation Chronic pain affects approximately 1.5 billion people worldwide, yet effective treatments remain elusive. A significant barrier to progress in analgesic drug discovery is the limited translation of preclinical findings to human clinical outcomes. Traditional rodent models, although widely used, often fail to accurately predict human responses, while human primary tissues are limited by scarcity, technical difficulties, and ethical concerns. Recent advancements have identified human induced pluripotent stem cell (hiPSC)-derived nociceptors as promising alternatives; however, current differentiation protocols produce cells with inconsistent and physiologically questionable phenotypes.To address these challenges, our study introduces a novel high-content screening (HCS) platform using hiPSC-derived nociceptors cultured on multi-well micro-electrode arrays (MEAs). The "Anatomic" protocol, used to generate these nociceptors, ensures cells with transcriptomic profiles closely matching human primary sensory neurons. Our platform achieves nearly 100% active electrode yield within two weeks and demonstrates sustained, stable activity over time. Additionally, robust Z' factor analysis (exceeding 0.5) confirms the platform's reliability, while pharmacological validation establishes the functional expression of critical analgesic targets. This innovative approach improves both the efficiency and clinical relevance of analgesic drug screening, potentially bridging the translational gap between preclinical studies and human clinical trials, and offering new hope for effective pain management.
Collapse
|
5
|
Iadarola MJ, Sapio MR, Loydpierson AJ, Mervis CB, Fehrenbacher JC, Vasko MR, Maric D, Eisenberg DP, Nash TA, Kippenhan JS, Garvey MH, Mannes AJ, Gregory MD, Berman KF. Syntaxin1A overexpression and pain insensitivity in individuals with 7q11.23 duplication syndrome. JCI Insight 2024; 9:e176147. [PMID: 38261410 DOI: 10.1172/jci.insight.176147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing "genetic analgesia" in Dup7 and offer previously untargeted routes to pain control.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carolyn B Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael R Vasko
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), and
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Tiffany A Nash
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - J Shane Kippenhan
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Madeline H Garvey
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael D Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Khvotchev M, Soloviev M. SNARE Modulators and SNARE Mimetic Peptides. Biomolecules 2022; 12:biom12121779. [PMID: 36551207 PMCID: PMC9776023 DOI: 10.3390/biom12121779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins play a central role in most forms of intracellular membrane trafficking, a key process that allows for membrane and biocargo shuffling between multiple compartments within the cell and extracellular environment. The structural organization of SNARE proteins is relatively simple, with several intrinsically disordered and folded elements (e.g., SNARE motif, N-terminal domain, transmembrane region) that interact with other SNAREs, SNARE-regulating proteins and biological membranes. In this review, we discuss recent advances in the development of functional peptides that can modify SNARE-binding interfaces and modulate SNARE function. The ability of the relatively short SNARE motif to assemble spontaneously into stable coiled coil tetrahelical bundles has inspired the development of reduced SNARE-mimetic systems that use peptides for biological membrane fusion and for making large supramolecular protein complexes. We evaluate two such systems, based on peptide-nucleic acids (PNAs) and coiled coil peptides. We also review how the self-assembly of SNARE motifs can be exploited to drive on-demand assembly of complex re-engineered polypeptides.
Collapse
Affiliation(s)
- Mikhail Khvotchev
- Department of Biochemistry, Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (M.K.); (M.S.)
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Correspondence: (M.K.); (M.S.)
| |
Collapse
|
7
|
Atlas D. Revisiting the molecular basis of synaptic transmission. Prog Neurobiol 2022; 216:102312. [PMID: 35760141 DOI: 10.1016/j.pneurobio.2022.102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Measurements of the time elapsed during synaptic transmission has shown that synaptic vesicle (SV) fusion lags behind Ca2+-influx by approximately 60 microseconds (µsec). The conventional model cannot explain this extreme rapidity of the release event. Synaptic transmission occurs at the active zone (AZ), which comprises of two pools of SV, non-releasable "tethered" vesicles, and a readily-releasable pool of channel-associated Ca2+-primed vesicles, "RRP". A recent TIRF study at cerebellar-mossy fiber-terminal, showed that subsequent to an action potential, newly "tethered" vesicles, became fusion-competent in a Ca2+-dependent manner, 300-400 milliseconds after tethering, but were not fused. This time resolution may correspond to priming of tethered vesicles through Ca2+-binding to Syt1/Munc13-1/complexin. It confirms that Ca2+-priming and Ca2+-influx-independent fusion, are two distinct events. Notably, we have established that Ca2+ channel signals evoked-release in an ion flux-independent manner, demonstrated by Ca2+-impermeable channel, or a Ca2+ channel in which Ca2+ is replaced by impermeable La3+. Thus, conformational changes in a channel coupled to RRP appear to directly activate the release machinery and account for a µsec Ca2+-influx-independent vesicle fusion. Rapid vesicle fusion driven by non-ionotropic channel signaling strengthens a conformational-coupling mechanism of synaptic transmission, and contributes to better understanding of neuronal communication vital for brain function.
Collapse
Affiliation(s)
- Daphne Atlas
- Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel.
| |
Collapse
|
8
|
Joviano-Santos JV, Valadão PAC, Magalhães-Gomes MPS, Fernandes LF, Diniz DM, Machado TCG, Soares KB, Ladeira MS, Massensini AR, Gomez MV, Miranda AS, Tápia JC, Guatimosim C. Neuroprotective effect of CTK 01512-2 recombinant toxin at the spinal cord in a model of Huntington's disease. Exp Physiol 2022; 107:933-945. [PMID: 35478205 DOI: 10.1113/ep090327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We investigated the action of intrathecal administration of a novel toxin (CTK01512-2) in a mouse model for Huntington´s disease (HD). We asked if spinal cord neurons can represent a therapeutic target, as the spinal cord seems to be involved in HD motor-symptoms. Pharmacological approaches focusing on the spinal cord and skeletal muscles might represent a more feasible strategy. What is the main finding and its importance? We provided evidence of a novel, local, neuroprotector effect of CTK01512-2, paving a path for the development of approaches to treat HD-motor symptoms beyond the brain. ABSTRACT Phα1β is a neurotoxin from the venom of the Phoneutria nigriventer spider, available as CTK01512-2, a recombinant peptide. Due to its antinociceptive and analgesic properties, CTK01512-2 has been described to alleviate neuroinflammatory responses. Despite the diverse CTK01512-2 actions on the nervous system, little is known regarding its neuroprotective effect, especially in neurodegenerative conditions such as Huntington's disease (HD), a genetic movement disorder without cure. Here, we investigated whether CTK01512-2 has a neuroprotector effect in a mouse model of HD. We hypothesized that spinal cord neurons might represent a therapeutic target, as the spinal cord seems to be involved in the motor-symptoms of HD mice (BACHD). Then, we treated BACHD mice with CTK01512-2 by intrathecal injection, and performed in vivo motor behavior and morphological analyses in the central nervous system (brain and spinal cord) and muscles. Our data showed that intrathecal injection of CTK01512-2 significantly improves motor-performance in the Open-field task. CTK01512-2 protects neurons in the spinal cord (but not in the brain) from death, suggesting a local effect. CTK01512-2 exerts its neuroprotective effect by inhibiting BACHD-neuronal apoptosis, as revealed by a reduction in caspase-3 in the spinal cord. CTK01512-2 was also able to revert BACHD muscle atrophy. In conclusion, our data provide a novel role for CTK01512-2 acting directly in the spinal cord, ameliorating morphofunctional aspects of spinal cord neurons, and muscles, and improving BACHD mice performance in motor-behavioral tests. Since HD shares similar symptoms to many neurodegenerative conditions, the findings presented herein may also be applicable to other disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | | | - Lorena F Fernandes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | - Kivia B Soares
- Laboratório de Biologia da Neurotransmissão, Departamento de Morfologia
| | - Marina S Ladeira
- Laboratório de Biologia da Neurotransmissão, Departamento de Morfologia
| | - Andre R Massensini
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | - Aline S Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Juan C Tápia
- Escuela de Medicina, Universidad de Talca, Talca, Chile.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
9
|
Presynaptic L-Type Ca 2+ Channels Increase Glutamate Release Probability and Excitatory Strength in the Hippocampus during Chronic Neuroinflammation. J Neurosci 2020; 40:6825-6841. [PMID: 32747440 DOI: 10.1523/jneurosci.2981-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of several neurologic disorders, including epilepsy. Both changes in the input/output functions of synaptic circuits and cell Ca2+ dysregulation participate in neuroinflammation, but their impact on neuron function in epilepsy is still poorly understood. Lipopolysaccharide (LPS), a toxic byproduct of bacterial lysis, has been extensively used to stimulate inflammatory responses both in vivo and in vitro LPS stimulates Toll-like receptor 4, an important mediator of the brain innate immune response that contributes to neuroinflammation processes. Although we report that Toll-like receptor 4 is expressed in both excitatory and inhibitory mouse hippocampal neurons (both sexes), its chronic stimulation by LPS induces a selective increase in the excitatory synaptic strength, characterized by enhanced synchronous and asynchronous glutamate release mechanisms. This effect is accompanied by a change in short-term plasticity with decreased facilitation, decreased post-tetanic potentiation, and increased depression. Quantal analysis demonstrated that the effects of LPS on excitatory transmission are attributable to an increase in the probability of release associated with an overall increased expression of L-type voltage-gated Ca2+ channels that, at presynaptic terminals, abnormally contributes to evoked glutamate release. Overall, these changes contribute to the excitatory/inhibitory imbalance that scales up neuronal network activity under inflammatory conditions. These results provide new molecular clues for treating hyperexcitability of hippocampal circuits associated with neuroinflammation in epilepsy and other neurologic disorders.SIGNIFICANCE STATEMENT Neuroinflammation is thought to have a pathogenetic role in epilepsy, a disorder characterized by an imbalance between excitation/inhibition. Fine adjustment of network excitability and regulation of synaptic strength are both implicated in the homeostatic maintenance of physiological levels of neuronal activity. Here, we focused on the effects of chronic neuroinflammation induced by lipopolysaccharides on hippocampal glutamatergic and GABAergic synaptic transmission. Our results show that, on chronic stimulation with lipopolysaccharides, glutamatergic, but not GABAergic, neurons exhibit an enhanced synaptic strength and changes in short-term plasticity because of an increased glutamate release that results from an anomalous contribution of L-type Ca2+ channels to neurotransmitter release.
Collapse
|
10
|
Dolphin AC, Lee A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci 2020; 21:213-229. [PMID: 32161339 PMCID: PMC7873717 DOI: 10.1038/s41583-020-0278-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 11/09/2022]
Abstract
Chemical synapses are heterogeneous junctions formed between neurons that are specialized for the conversion of electrical impulses into the exocytotic release of neurotransmitters. Voltage-gated Ca2+ channels play a pivotal role in this process as they are the major conduits for the Ca2+ ions that trigger the fusion of neurotransmitter-containing vesicles with the presynaptic membrane. Alterations in the intrinsic function of these channels and their positioning within the active zone can profoundly alter the timing and strength of synaptic output. Advances in optical and electron microscopic imaging, structural biology and molecular techniques have facilitated recent breakthroughs in our understanding of the properties of voltage-gated Ca2+ channels that support their presynaptic functions. Here we examine the nature of these channels, how they are trafficked to and anchored within presynaptic boutons, and the mechanisms that allow them to function optimally in shaping the flow of information through neural circuits.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
11
|
Moya‐Díaz J, Bayonés L, Montenegro M, Cárdenas AM, Koch H, Doi A, Marengo FD. Ca 2+ -independent and voltage-dependent exocytosis in mouse chromaffin cells. Acta Physiol (Oxf) 2020; 228:e13417. [PMID: 31769918 DOI: 10.1111/apha.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
AIM It is widely accepted that the exocytosis of synaptic and secretory vesicles is triggered by Ca2+ entry through voltage-dependent Ca2+ channels. However, there is evidence of an alternative mode of exocytosis induced by membrane depolarization but lacking Ca2+ current and intracellular Ca2+ increase. In this work we investigated if such a mechanism contributes to secretory vesicle exocytosis in mouse chromaffin cells. METHODS Exocytosis was evaluated by patch-clamp membrane capacitance measurements, carbon fibre amperometry and TIRF. Cytosolic Ca2+ was estimated using epifluorescence microscopy and fluo-8 (salt form). RESULTS Cells stimulated by brief depolatizations in absence of extracellular Ca+2 show moderate but consistent exocytosis, even in presence of high cytosolic BAPTA concentration and pharmacological inhibition of Ca+2 release from intracellular stores. This exocytosis is tightly dependent on membrane potential, is inhibited by neurotoxin Bont-B (cleaves the v-SNARE synaptobrevin), is very fast (saturates with time constant <10 ms), it is followed by a fast endocytosis sensitive to the application of an anti-dynamin monoclonal antibody, and recovers after depletion in <5 s. Finally, this exocytosis was inhibited by: (i) ω-agatoxin IVA (blocks P/Q-type Ca2+ channel gating), (ii) in cells from knock-out P/Q-type Ca2+ channel mice, and (iii) transfection of free synprint peptide (interferes in P/Q channel-exocytic proteins association). CONCLUSION We demonstrated that Ca2+ -independent and voltage-dependent exocytosis is present in chromaffin cells. This process is tightly coupled to membrane depolarization, and is able to support secretion during action potentials at low basal rates. P/Q-type Ca2+ channels can operate as voltage sensors of this process.
Collapse
Affiliation(s)
- José Moya‐Díaz
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Mauricio Montenegro
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso Facultad de Ciencias Universidad de Valparaíso Valparaíso Chile
| | - Henner Koch
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA USA
- Department of Neurology and Epileptology Hertie‐Institute for Clinical Brain ResearchUniversity of Tübingen Tübingen Germany
| | - Atsushi Doi
- Department of Rehabilitation Graduate School of Health Science Kumamoto Health Science University Kumamoto Japan
| | - Fernando D. Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| |
Collapse
|
12
|
Quantitation and Simulation of Single Action Potential-Evoked Ca 2+ Signals in CA1 Pyramidal Neuron Presynaptic Terminals. eNeuro 2019; 6:ENEURO.0343-19.2019. [PMID: 31551250 PMCID: PMC6800293 DOI: 10.1523/eneuro.0343-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 01/07/2023] Open
Abstract
Presynaptic Ca2+ evokes exocytosis, endocytosis, and synaptic plasticity. However, Ca2+ flux and interactions at presynaptic molecular targets are difficult to quantify because fluorescence imaging has limited resolution. In rats of either sex, we measured single varicosity presynaptic Ca2+ using Ca2+ dyes as buffers, and constructed models of Ca2+ dispersal. Action potentials evoked Ca2+ transients with little variation when measured with low-affinity dye (peak amplitude 789 ± 39 nM, within 2 ms of stimulation; decay times, 119 ± 10 ms). Endogenous Ca2+ buffering capacity, action potential-evoked free [Ca2+]i, and total Ca2+ amounts entering terminals were determined using Ca2+ dyes as buffers. These data constrained Monte Carlo (MCell) simulations of Ca2+ entry, buffering, and removal. Simulations of experimentally-determined Ca2+ fluxes, buffered by simulated calbindin28K well fit data, and were consistent with clustered Ca2+ entry followed within 4 ms by diffusion throughout the varicosity. Repetitive stimulation caused free varicosity Ca2+ to sum. However, simulated in nanometer domains, its removal by pumps and buffering was negligible, while local diffusion dominated. Thus, Ca2+ within tens of nanometers of entry, did not accumulate. A model of synaptotagmin1 (syt1)-Ca2+ binding indicates that even with 10 µM free varicosity evoked Ca2+, syt1 must be within tens of nanometers of channels to ensure occupation of all its Ca2+-binding sites. Repetitive stimulation, evoking short-term synaptic enhancement, does not modify probabilities of Ca2+ fully occupying syt1’s C2 domains, suggesting that enhancement is not mediated by Ca2+-syt1 interactions. We conclude that at spatiotemporal scales of fusion machines, Ca2+ necessary for their activation is diffusion dominated.
Collapse
|
13
|
Kornitzer J, Taha F, Segal E. Clinical Presentation and Outcome in Autoimmune Encephalitis Associated With N-Type Voltage-Gated Calcium Channels in Children. J Child Neurol 2019; 34:499-505. [PMID: 31014180 DOI: 10.1177/0883073819840448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We present the diagnostic and clinical course of the first multicenter case series of pediatric patients with autoimmune encephalitis associated with N-type voltage-gated calcium channel antibodies. METHODS Data from 2 university hospitals were retrospectively reviewed and records of 3 patients with autoimmune encephalitis associated with N-type voltage-gated calcium channel antibodies were evaluated. RESULTS The 3 pediatric patients (all female) had symptoms that spanned the clinical spectrum. All 3, however, had regression of expressive language and agitation. Neuroimaging in all 3 patients was normal; electroencephalographic (EEG) findings varied among the 3 patients. Positive titers against the N-type voltage-gated calcium channel antibody were found in their cerebrospinal fluid. Following administration of intravenous immunoglobulin, all 3 had improvement in their core presenting symptoms. CONCLUSION Autoimmune encephalitis associated with N-type voltage-gated calcium channel antibodies in the pediatric population presents with a wide clinical spectrum, although expressive language delay and agitation seem to be common symptoms. Treatment with intravenous immunoglobulin improves core symptoms.
Collapse
Affiliation(s)
- Jeffrey Kornitzer
- 1 Rutgers New Jersey Medical School, Newark, NJ, USA
- 2 St. Joseph's Children's Hospital, Paterson, NJ, USA
| | - Firas Taha
- 3 Northeast Epilepsy Group, Hackensack, NJ, USA
- 4 Hackensack University Medical Center, Hackensack, NJ, USA
| | - Eric Segal
- 3 Northeast Epilepsy Group, Hackensack, NJ, USA
- 4 Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
14
|
Presynaptic Calcium Channels. Int J Mol Sci 2019; 20:ijms20092217. [PMID: 31064106 PMCID: PMC6539076 DOI: 10.3390/ijms20092217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins. This article overviews modulation of the activity of CaV2.1 and CaV2.2 channels in the control of synaptic strength and presynaptic plasticity.
Collapse
|
15
|
Serra SA, Gené GG, Elorza-Vidal X, Fernández-Fernández JM. Cross talk between β subunits, intracellular Ca 2+ signaling, and SNAREs in the modulation of Ca V 2.1 channel steady-state inactivation. Physiol Rep 2019; 6. [PMID: 29380539 PMCID: PMC5789719 DOI: 10.14814/phy2.13557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023] Open
Abstract
Modulation of CaV2.1 channel activity plays a key role in interneuronal communication and synaptic plasticity. SNAREs interact with a specific synprint site at the second intracellular loop (LII‐III) of the CaV2.1 pore‐forming α1A subunit to optimize neurotransmitter release from presynaptic terminals by allowing secretory vesicles docking near the Ca2+ entry pathway, and by modulating the voltage dependence of channel steady‐state inactivation. Ca2+ influx through CaV2.1 also promotes channel inactivation. This process seems to involve Ca2+‐calmodulin interaction with two adjacent sites in the α1A carboxyl tail (C‐tail) (the IQ‐like motif and the Calmodulin‐Binding Domain (CBD) site), and contributes to long‐term potentiation and spatial learning and memory. Besides, binding of regulatory β subunits to the α interaction domain (AID) at the first intracellular loop (LI‐II) of α1A determines the degree of channel inactivation by both voltage and Ca2+. Here, we explore the cross talk between β subunits, Ca2+, and syntaxin‐1A‐modulated CaV2.1 inactivation, highlighting the α1A domains involved in such process. β3‐containing CaV2.1 channels show syntaxin‐1A‐modulated but no Ca2+‐dependent steady‐state inactivation. Conversely, β2a‐containing CaV2.1 channels show Ca2+‐dependent but not syntaxin‐1A‐modulated steady‐state inactivation. A LI‐II deletion confers Ca2+‐dependent inactivation and prevents modulation by syntaxin‐1A in β3‐containing CaV2.1 channels. Mutation of the IQ‐like motif, unlike CBD deletion, abolishes Ca2+‐dependent inactivation and confers modulation by syntaxin‐1A in β2a‐containing CaV2.1 channels. Altogether, these results suggest that LI‐II structural modifications determine the regulation of CaV2.1 steady‐state inactivation either by Ca2+ or by SNAREs but not by both.
Collapse
Affiliation(s)
- Selma Angèlica Serra
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma G Gené
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xabier Elorza-Vidal
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - José M Fernández-Fernández
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
16
|
Lefoulon C, Waghmare S, Karnik R, Blatt MR. Gating control and K + uptake by the KAT1 K + channel leaveraged through membrane anchoring of the trafficking protein SYP121. PLANT, CELL & ENVIRONMENT 2018; 41:2668-2677. [PMID: 29940699 PMCID: PMC6220998 DOI: 10.1111/pce.13392] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 05/20/2023]
Abstract
Vesicle traffic is tightly coordinated with ion transport for plant cell expansion through physical interactions between subsets of vesicle-trafficking (so-called SNARE) proteins and plasma membrane Kv channels, including the archetypal inward-rectifying K+ channel, KAT1 of Arabidopsis. Ion channels open and close rapidly over milliseconds, whereas vesicle fusion events require many seconds. Binding has been mapped to conserved motifs of both the Kv channels and the SNAREs, but knowledge of the temporal kinetics of their interactions, especially as it might relate to channel gating and its coordination with vesicle fusion remains unclear. Here, we report that the SNARE SYP121 promotes KAT1 gating through a persistent interaction that alters the stability of the channel, both in its open and closed states. We show, too, that SYP121 action on the channel open state requires SNARE anchoring in the plasma membrane. Our findings indicate that SNARE binding confers a conformational bias that encompasses the microscopic kinetics of channel gating, with leverage applied through the SNARE anchor in favour of the open channel.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Sakharam Waghmare
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| |
Collapse
|
17
|
Abstract
Neurofibromatosis type 1 (NF1), a genetic disorder linked to inactivating mutations or a homozygous deletion of the Nf1 gene, is characterized by tumorigenesis, cognitive dysfunction, seizures, migraine, and pain. Omic studies on human NF1 tissues identified an increase in the expression of collapsin response mediator protein 2 (CRMP2), a cytosolic protein reported to regulate the trafficking and activity of presynaptic N-type voltage-gated calcium (Cav2.2) channels. Because neurofibromin, the protein product of the Nf1 gene, binds to and inhibits CRMP2, the neurofibromin-CRMP2 signaling cascade will likely affect Ca channel activity and regulate nociceptive neurotransmission and in vivo responses to noxious stimulation. Here, we investigated the function of neurofibromin-CRMP2 interaction on Cav2.2. Mapping of >275 peptides between neurofibromin and CRMP2 identified a 15-amino acid CRMP2-derived peptide that, when fused to the tat transduction domain of HIV-1, inhibited Ca influx in dorsal root ganglion neurons. This peptide mimics the negative regulation of CRMP2 activity by neurofibromin. Neurons treated with tat-CRMP2/neurofibromin regulating peptide 1 (t-CNRP1) exhibited a decreased Cav2.2 membrane localization, and uncoupling of neurofibromin-CRMP2 and CRMP2-Cav2.2 interactions. Proteomic analysis of a nanodisc-solubilized membrane protein library identified syntaxin 1A as a novel CRMP2-binding protein whose interaction with CRMP2 was strengthened in neurofibromin-depleted cells and reduced by t-CNRP1. Stimulus-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices was inhibited by t-CNRP1. Intrathecal administration of t-CNRP1 was antinociceptive in experimental models of inflammatory, postsurgical, and neuropathic pain. Our results demonstrate the utility of t-CNRP1 to inhibit CRMP2 protein-protein interactions for the potential treatment of pain.
Collapse
|
18
|
Thalhammer A, Contestabile A, Ermolyuk YS, Ng T, Volynski KE, Soong TW, Goda Y, Cingolani LA. Alternative Splicing of P/Q-Type Ca 2+ Channels Shapes Presynaptic Plasticity. Cell Rep 2018; 20:333-343. [PMID: 28700936 DOI: 10.1016/j.celrep.2017.06.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/04/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
Alternative splicing of pre-mRNAs is prominent in the mammalian brain, where it is thought to expand proteome diversity. For example, alternative splicing of voltage-gated Ca2+ channel (VGCC) α1 subunits can generate thousands of isoforms with differential properties and expression patterns. However, the impact of this molecular diversity on brain function, particularly on synaptic transmission, which crucially depends on VGCCs, is unclear. Here, we investigate how two major splice isoforms of P/Q-type VGCCs (Cav2.1[EFa/b]) regulate presynaptic plasticity in hippocampal neurons. We find that the efficacy of P/Q-type VGCC isoforms in supporting synaptic transmission is markedly different, with Cav2.1[EFa] promoting synaptic depression and Cav2.1[EFb] synaptic facilitation. Following a reduction in network activity, hippocampal neurons upregulate selectively Cav2.1[EFa], the isoform exhibiting the higher synaptic efficacy, thus effectively supporting presynaptic homeostatic plasticity. Therefore, the balance between VGCC splice variants at the synapse is a key factor in controlling neurotransmitter release and presynaptic plasticity.
Collapse
Affiliation(s)
- Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | | | - Teclise Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | | | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yukiko Goda
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy.
| |
Collapse
|
19
|
Abstract
Neuropathic pain represents a significant and mounting burden on patients and society at large. Management of neuropathic pain, however, is both intricate and challenging, exacerbated by the limited quantity and quality of clinically available treatments. On this stage, dysfunctional voltage-gated ion channels, especially the presynaptic N-type voltage-gated calcium channel (VGCC) (Cav2.2) and the tetrodotoxin-sensitive voltage-gated sodium channel (VGSC) (Nav1.7), underlie the pathophysiology of neuropathic pain and serve as high profile therapeutic targets. Indirect regulation of these channels holds promise for the treatment of neuropathic pain. In this review, we focus on collapsin response mediator protein 2 (CRMP2), a protein with emergent roles in voltage-gated ion channel trafficking and discuss the therapeutic potential of targetting this protein.
Collapse
|
20
|
Presynaptic calcium channels. Neurosci Res 2018; 127:33-44. [DOI: 10.1016/j.neures.2017.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/13/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
|
21
|
Chai Z, Wang C, Huang R, Wang Y, Zhang X, Wu Q, Wang Y, Wu X, Zheng L, Zhang C, Guo W, Xiong W, Ding J, Zhu F, Zhou Z. Ca V2.2 Gates Calcium-Independent but Voltage-Dependent Secretion in Mammalian Sensory Neurons. Neuron 2017; 96:1317-1326.e4. [PMID: 29198756 DOI: 10.1016/j.neuron.2017.10.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/15/2017] [Accepted: 10/24/2017] [Indexed: 01/13/2023]
Abstract
Action potential induces membrane depolarization and triggers intracellular free Ca2+ concentration (Ca2+)-dependent secretion (CDS) via Ca2+ influx through voltage-gated Ca2+ channels. We report a new type of somatic exocytosis triggered by the action potential per se-Ca2+-independent but voltage-dependent secretion (CiVDS)-in dorsal root ganglion neurons. Here we uncovered the molecular mechanism of CiVDS, comprising a voltage sensor, fusion machinery, and their linker. Specifically, the voltage-gated N-type Ca2+ channel (CaV2.2) is the voltage sensor triggering CiVDS, the SNARE complex functions as the vesicle fusion machinery, the "synprint" of CaV2.2 serves as a linker between the voltage sensor and the fusion machinery, and ATP is a cargo of CiVDS vesicles. Thus, CiVDS releases ATP from the soma while CDS releases glutamate from presynaptic terminals, establishing the CaV2.2-SNARE "voltage-gating fusion pore" as a novel pathway co-existing with the canonical "Ca2+-gating fusion pore" pathway for neurotransmitter release following action potentials in primary sensory neurons.
Collapse
Affiliation(s)
- Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rong Huang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaoyu Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; School of Stomatology, Peking University, Beijing 100871, China
| | - Qihui Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yeshi Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xi Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lianghong Zheng
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Chen Zhang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Guo
- THU IDG/McGovern Institute, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- THU IDG/McGovern Institute, Tsinghua University, Beijing 100084, China
| | - Jiuping Ding
- Institute of Biophysics and Biochemistry, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Chen RHC, Li Q, Snidal CA, Gardezi SR, Stanley EF. The Calcium Channel C-Terminal and Synaptic Vesicle Tethering: Analysis by Immuno-Nanogold Localization. Front Cell Neurosci 2017; 11:85. [PMID: 28424589 PMCID: PMC5371611 DOI: 10.3389/fncel.2017.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/13/2017] [Indexed: 12/27/2022] Open
Abstract
At chemical synapses the incoming action potential triggers the influx of Ca2+ through voltage-sensitive calcium channels (CaVs, typically CaV2.1 and 2.2) and the ions binds to sensors associated with docked, transmitter filled synaptic vesicles (SVs), triggering their fusion and discharge. The CaVs and docked SVs are located within the active zone (AZ) region of the synapse which faces a corresponding neurotransmitter receptor-rich region on the post-synaptic cell. Evidence that the fusion of a SV can be gated by Ca2+ influx through a single CaV suggests that the channel and docked vesicle are linked by one or more molecular tethers (Stanley, 1993). Short and long fibrous SV-AZ linkers have been identified in presynaptic terminals by electron microscopy and we recently imaged these in cytosol-vacated synaptosome ‘ghosts.’ Using CaV fusion proteins combined with blocking peptides we previously identified a SV binding site near the tip of the CaV2.2 C-terminal suggesting that this intracellular channel domain participates in SV tethering. In this study, we combined the synaptosome ghost imaging method with immunogold labeling to localize CaV intracellular domains. L45, raised against the C-terminal tip, tagged tethered SVs often as far as 100 nm from the AZ membrane whereas NmidC2, raised against a C-terminal mid-region peptide, and C2Nt, raised against a peptide nearer the C-terminal origin, resulted in gold particles that were proportionally closer to the AZ. Interestingly, the observation of gold-tagged SVs with NmidC2 suggests a novel SV binding site in the C-terminal mid region. Our results implicate the CaV C-terminal in SV tethering at the AZ with two possible functions: first, capturing SVs from the nearby cytoplasm and second, contributing to the localization of the SV close to the channel to permit single domain gating.
Collapse
Affiliation(s)
- Robert H C Chen
- Laboratory of Synaptic Transmission, Krembil Research Institute,Toronto, ON, Canada
| | - Qi Li
- Laboratory of Synaptic Transmission, Krembil Research Institute,Toronto, ON, Canada
| | - Christine A Snidal
- Laboratory of Synaptic Transmission, Krembil Research Institute,Toronto, ON, Canada
| | - Sabiha R Gardezi
- Laboratory of Synaptic Transmission, Krembil Research Institute,Toronto, ON, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Krembil Research Institute,Toronto, ON, Canada
| |
Collapse
|
23
|
MOCHIDA S. Millisecond Ca 2+ dynamics activate multiple protein cascades for synaptic vesicle control. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:802-820. [PMID: 29225307 PMCID: PMC5790758 DOI: 10.2183/pjab.93.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
For reliable transmission at chemical synapses, neurotransmitters must be released dynamically in response to neuronal activity in the form of action potentials. Stable synaptic transmission is dependent on the efficacy of transmitter release and the rate of resupplying synaptic vesicles to their release sites. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an action potential. Presynaptic Ca2+ concentration changes are dynamic functions in space and time, with wide fluctuations associated with different rates of neuronal activity. Thus, regulation of transmitter release includes reactions involving multiple Ca2+-dependent proteins, each operating over a specific time window. Classically, studies of presynaptic proteins function favored large invertebrate presynaptic terminals. I have established a useful mammalian synapse model based on sympathetic neurons in culture. This review summarizes the use of this model synapse to study the roles of presynaptic proteins in neuronal activity for the control of transmitter release efficacy and synaptic vesicle recycling.
Collapse
Affiliation(s)
- Sumiko MOCHIDA
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Toft-Bertelsen TL, Ziomkiewicz I, Houy S, Pinheiro PS, Sørensen JB. Regulation of Ca2+ channels by SNAP-25 via recruitment of syntaxin-1 from plasma membrane clusters. Mol Biol Cell 2016; 27:3329-3341. [PMID: 27605709 PMCID: PMC5170865 DOI: 10.1091/mbc.e16-03-0184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
SNAP-25 regulates Ca2+ channels in an unknown manner. Endogenous and exogenous SNAP-25 inhibit Ca2+ currents indirectly by recruiting syntaxin-1 from clusters on the plasma membrane, thereby making it available for Ca2+ current inhibition. Thus the cell can regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters. SNAP-25 regulates Ca2+ channels, with potentially important consequences for diseases involving an aberrant SNAP-25 expression level. How this regulation is executed mechanistically remains unknown. We investigated this question in mouse adrenal chromaffin cells and found that SNAP-25 inhibits Ca2+ currents, with the B-isoform being more potent than the A-isoform, but not when syntaxin-1 is cleaved by botulinum neurotoxin C. In contrast, syntaxin-1 inhibits Ca2+ currents independently of SNAP-25. Further experiments using immunostaining showed that endogenous or exogenous SNAP-25 expression recruits syntaxin-1 from clusters on the plasma membrane, thereby increasing the immunoavailability of syntaxin-1 and leading indirectly to Ca2+ current inhibition. Expression of Munc18-1, which recruits syntaxin-1 within the exocytotic pathway, does not modulate Ca2+ channels, whereas overexpression of the syntaxin-binding protein Doc2B or ubMunc13-2 increases syntaxin-1 immunoavailability and concomitantly down-regulates Ca2+ currents. Similar findings were obtained upon chemical cholesterol depletion, leading directly to syntaxin-1 cluster dispersal and Ca2+ current inhibition. We conclude that clustering of syntaxin-1 allows the cell to maintain a high syntaxin-1 expression level without compromising Ca2+ influx, and recruitment of syntaxin-1 from clusters by SNAP-25 expression makes it available for regulating Ca2+ channels. This mechanism potentially allows the cell to regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters.
Collapse
Affiliation(s)
- Trine Lisberg Toft-Bertelsen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Iwona Ziomkiewicz
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Paulo S Pinheiro
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jakob B Sørensen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
25
|
Ferron L. Fragile X mental retardation protein controls ion channel expression and activity. J Physiol 2016; 594:5861-5867. [PMID: 26864773 DOI: 10.1113/jp270675] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023] Open
Abstract
Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (Kv 3.1 and Kv 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Cav 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Cárdenas AM, Marengo FD. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells. J Neurochem 2016; 137:867-79. [DOI: 10.1111/jnc.13565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso; Universidad de Valparaíso; Valparaíso Chile
| | - Fernando D. Marengo
- Laboratorio de Fisiología y Biología Molecular; Instituto de Fisiología; Biología Molecular y Neurociencias (CONICET); Departamento de Fisiología y Biología Molecular y Celular; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
27
|
Crawford DC, Kavalali ET. Molecular underpinnings of synaptic vesicle pool heterogeneity. Traffic 2015; 16:338-64. [PMID: 25620674 DOI: 10.1111/tra.12262] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.
Collapse
Affiliation(s)
- Devon C Crawford
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | | |
Collapse
|
28
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 786] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
29
|
Zulliger R, Conley SM, Mwoyosvi ML, Stuck MW, Azadi S, Naash MI. SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting. PLoS One 2015; 10:e0138508. [PMID: 26406599 PMCID: PMC4583372 DOI: 10.1371/journal.pone.0138508] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the photoreceptor protein peripherin-2 (also known as RDS) cause severe retinal degeneration. RDS and its homolog ROM-1 (rod outer segment protein 1) are synthesized in the inner segment and then trafficked into the outer segment where they function in tetramers and covalently linked larger complexes. Our goal is to identify binding partners of RDS and ROM-1 that may be involved in their biosynthetic pathway or in their function in the photoreceptor outer segment (OS). Here we utilize several methods including mass spectrometry after affinity purification, in vitro co-expression followed by pull-down, in vivo pull-down from mouse retinas, and proximity ligation assay to identify and confirm the SNARE proteins Syntaxin 3B and SNAP-25 as novel binding partners of RDS and ROM-1. We show that both covalently linked and non-covalently linked RDS complexes interact with Syntaxin 3B. RDS in the mouse is trafficked from the inner segment to the outer segment by both conventional (i.e., Golgi dependent) and unconventional secretory pathways, and RDS from both pathways interacts with Syntaxin3B. Syntaxin 3B and SNAP-25 are enriched in the inner segment (compared to the outer segment) suggesting that the interaction with RDS/ROM-1 occurs in the inner segment. Syntaxin 3B and SNAP-25 are involved in mediating fusion of vesicles carrying other outer segment proteins during outer segment targeting, so could be involved in the trafficking of RDS/ROM-1.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
| | - Maggie L. Mwoyosvi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
| | - Michael W. Stuck
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
| | - Seifollah Azadi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
- * E-mail:
| |
Collapse
|
30
|
Optimization of neuronal cultures from rat superior cervical ganglia for dual patch recording. Sci Rep 2015; 5:14455. [PMID: 26399440 PMCID: PMC4585864 DOI: 10.1038/srep14455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/12/2015] [Indexed: 12/29/2022] Open
Abstract
Superior cervical ganglion neurons (SCGN) are often used to investigate neurotransmitter release mechanisms. In this study, we optimized the dissociation and culture conditions of rat SCGN cultures for dual patch clamp recordings. Two weeks in vitro are sufficient to achieve a significant CNTF-induced cholinergic switch and to develop mature and healthy neuronal profiles suited for detailed patch clamp analysis. One single pup provides sufficient material to prepare what was formerly obtained from 12 to 15 animals. The suitability of these cultures to study neurotransmitter release mechanisms was validated by presynaptically perturbing the interaction of the v-SNARE VAMP2 with the vesicular V-ATPase V0c subunit.
Collapse
|
31
|
Yan J, Leal K, Magupalli VG, Nanou E, Martinez GQ, Scheuer T, Catterall WA. Modulation of CaV2.1 channels by neuronal calcium sensor-1 induces short-term synaptic facilitation. Mol Cell Neurosci 2015; 63:124-31. [PMID: 25447945 DOI: 10.1016/j.mcn.2014.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 12/01/2022] Open
Abstract
Facilitation and inactivation of P/Q-type Ca2+ currents mediated by Ca2+/calmodulin binding to Ca(V)2.1 channels contribute to facilitation and rapid depression of synaptic transmission, respectively. Other calcium sensor proteins displace calmodulin from its binding site and differentially modulate P/Q-type Ca2 + currents, resulting in diverse patterns of short-term synaptic plasticity. Neuronal calcium sensor-1 (NCS-1, frequenin) has been shown to enhance synaptic facilitation, but the underlying mechanism is unclear. We report here that NCS-1 directly interacts with IQ-like motif and calmodulin-binding domain in the C-terminal domain of Ca(V)2.1 channel. NCS-1 reduces Ca2 +-dependent inactivation of P/Q-type Ca2+ current through interaction with the IQ-like motif and calmodulin-binding domain without affecting peak current or activation kinetics. Expression of NCS-1 in presynaptic superior cervical ganglion neurons has no effect on synaptic transmission, eliminating effects of this calcium sensor protein on endogenous N-type Ca2+ currents and the endogenous neurotransmitter release machinery. However, in superior cervical ganglion neurons expressing wild-type Ca(V)2.1 channels, co-expression of NCS-1 induces facilitation of synaptic transmission in response to paired pulses and trains of depolarizing stimuli, and this effect is lost in Ca(V)2.1 channels with mutations in the IQ-like motif and calmodulin-binding domain. These results reveal that NCS-1 directly modulates Ca(V)2.1 channels to induce short-term synaptic facilitation and further demonstrate that CaS proteins are crucial in fine-tuning short-term synaptic plasticity.
Collapse
|
32
|
Di Giovanni J, Sheng ZH. Regulation of synaptic activity by snapin-mediated endolysosomal transport and sorting. EMBO J 2015; 34:2059-77. [PMID: 26108535 DOI: 10.15252/embj.201591125] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/29/2015] [Indexed: 11/09/2022] Open
Abstract
Recycling synaptic vesicles (SVs) transit through early endosomal sorting stations, which raises a fundamental question: are SVs sorted toward endolysosomal pathways? Here, we used snapin mutants as tools to assess how endolysosomal sorting and trafficking impact presynaptic activity in wild-type and snapin(-/-) neurons. Snapin acts as a dynein adaptor that mediates the retrograde transport of late endosomes (LEs) and interacts with dysbindin, a subunit of the endosomal sorting complex BLOC-1. Expressing dynein-binding defective snapin mutants induced SV accumulation at presynaptic terminals, mimicking the snapin(-/-) phenotype. Conversely, over-expressing snapin reduced SV pool size by enhancing SV trafficking to the endolysosomal pathway. Using a SV-targeted Ca(2+) sensor, we demonstrate that snapin-dysbindin interaction regulates SV positional priming through BLOC-1/AP-3-dependent sorting. Our study reveals a bipartite regulation of presynaptic activity by endolysosomal trafficking and sorting: LE transport regulates SV pool size, and BLOC-1/AP-3-dependent sorting fine-tunes the Ca(2+) sensitivity of SV release. Therefore, our study provides new mechanistic insights into the maintenance and regulation of SV pool size and synchronized SV fusion through snapin-mediated LE trafficking and endosomal sorting.
Collapse
Affiliation(s)
- Jerome Di Giovanni
- Synaptic Functions Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Functions Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Rouwette T, Avenali L, Sondermann J, Narayanan P, Gomez-Varela D, Schmidt M. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief. Channels (Austin) 2015; 9:175-85. [PMID: 26039491 DOI: 10.1080/19336950.2015.1051270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles.
Collapse
Affiliation(s)
- Tom Rouwette
- a Max Planck Institute for Experimental Medicine. Somatosensory Signaling Group ; Goettingen , Germany
| | | | | | | | | | | |
Collapse
|
34
|
Proft J, Weiss N. G protein regulation of neuronal calcium channels: back to the future. Mol Pharmacol 2015; 87:890-906. [PMID: 25549669 DOI: 10.1124/mol.114.096008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022] Open
Abstract
Neuronal voltage-gated calcium channels have evolved as one of the most important players for calcium entry into presynaptic endings responsible for the release of neurotransmitters. In turn, and to fine-tune synaptic activity and neuronal communication, numerous neurotransmitters exert a potent negative feedback over the calcium signal provided by G protein-coupled receptors. This regulation pathway of physiologic importance is also extensively exploited for therapeutic purposes, for instance in the treatment of neuropathic pain by morphine and other μ-opioid receptor agonists. However, despite more than three decades of intensive research, important questions remain unsolved regarding the molecular and cellular mechanisms of direct G protein inhibition of voltage-gated calcium channels. In this study, we revisit this particular regulation and explore new considerations.
Collapse
Affiliation(s)
- Juliane Proft
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
35
|
Exogenous α-synuclein decreases raft partitioning of Cav2.2 channels inducing dopamine release. J Neurosci 2014; 34:10603-15. [PMID: 25100594 DOI: 10.1523/jneurosci.0608-14.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
α-Synuclein is thought to regulate neurotransmitter release through multiple interactions with presynaptic proteins, cytoskeletal elements, ion channels, and synaptic vesicles membrane. α-Synuclein is abundant in the presynaptic compartment, and its release from neurons and glia has been described as responsible for spreading of α-synuclein-derived pathology. α-Synuclein-dependent dysregulation of neurotransmitter release might occur via its action on surface-exposed calcium channels. Here, we provide electrophysiological and biochemical evidence to show that α-synuclein, applied to rat neurons in culture or striatal slices, selectively activates Cav2.2 channels, and said activation correlates with increased neurotransmitter release. Furthermore, in vivo perfusion of α-synuclein into the striatum also leads to acute dopamine release. We further demonstrate that α-synuclein reduces the amount of plasma membrane cholesterol and alters the partitioning of Cav2.2 channels, which move from raft to cholesterol-poor areas of the plasma membrane. We provide evidence for a novel mechanism through which α-synuclein acts from the extracellular milieu to modulate neurotransmitter release and propose a unifying hypothesis for the mechanism of α-synuclein action on multiple targets: the reorganization of plasma membrane microdomains.
Collapse
|
36
|
Mori M, Tanifuji S, Mochida S. Kinetic organization of Ca2+ signals that regulate synaptic release efficacy in sympathetic neurons. Mol Pharmacol 2014; 86:297-305. [PMID: 24981043 DOI: 10.1124/mol.114.094029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium regulation of neurotransmitter release is essential for maintenance of synaptic transmission. However, the temporal and spatial organization of Ca(2+) dynamics that regulate synaptic vesicle (SV) release efficacy in sympathetic neurons is poorly understood. Here, we investigate the N-type Ca(2+) channel-mediated kinetic structure of Ca(2+) regulation of cholinergic transmission of sympathetic neurons. We measured the effect of Ca(2+) chelation with fast 1,2-bis(2-aminophenoxy) ethane-tetraacetic acid (BAPTA) and slow ethyleneglycol-tetraacetic acid (EGTA) buffers on exocytosis, synaptic depression, and recovery of the readily releasable vesicle pool (RRP), after both single action potential (AP) and repetitive APs. Surprisingly, postsynaptic potentials peaking at ~12 milliseconds after the AP was inhibited by both rapid and slow Ca(2+) buffers suggests that, in addition to the well known fast Ca(2+) signals at the active zone (AZ), slow Ca(2+) signals at the peak of Ca(2+) entry also contribute to paired-pulse or repetitive AP responses. Following a single AP, discrete Ca(2+) transient increase regulated synaptic depression in rapid (<30-millisecond) and slow (<120-millisecond) phases. In contrast, following prolonged AP trains, synaptic depression was reduced by a slow Ca(2+) signal regulation lasting >200 milliseconds. Finally, after an AP burst, recovery of the RRP was mediated by an AP-dependent rapid Ca(2+) signal, and the expansion of releasable SV number by an AP firing activity-dependent slow Ca(2+) signal. These data indicate that local Ca(2+) signals operating near Ca(2+) sources in the AZ are organized into discrete fast and slow temporal phases that remodel exocytosis and short-term plasticity to ensure long-term stability in acetylcholine release efficacy.
Collapse
Affiliation(s)
- Michinori Mori
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Shota Tanifuji
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
37
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Bachnoff N, Cohen-Kutner M, Trus M, Atlas D. Intra-membrane signaling between the voltage-gated Ca2+-channel and cysteine residues of syntaxin 1A coordinates synchronous release. Sci Rep 2014; 3:1620. [PMID: 23567899 PMCID: PMC3621091 DOI: 10.1038/srep01620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/26/2013] [Indexed: 11/28/2022] Open
Abstract
The interaction of syntaxin 1A (Sx1A) with voltage-gated calcium channels (VGCC) is required for depolarization-evoked release. However, it is unclear how the signal is transferred from the channel to the exocytotic machinery and whether assembly of Sx1A and the calcium channel is conformationally linked to triggering synchronous release. Here we demonstrate that depolarization-evoked catecholamine release was decreased in chromaffin cells infected with semliki forest viral vectors encoding Sx1A mutants, Sx1AC271V, or Sx1AC272V, or by direct oxidation of these Sx1A transmembrane (TM) cysteine residues. Mutating or oxidizing these highly conserved Sx1A Cys271 and Cys272 equally disrupted the Sx1A interaction with the channel. The results highlight the functional link between the VGCC and the exocytotic machinery, and attribute the redox sensitivity of the release process to the Sx1A TM C271 and C272. This unique intra-membrane signal-transduction pathway enables fast signaling, and triggers synchronous release by conformational-coupling of the channel with Sx1A.
Collapse
Affiliation(s)
- Niv Bachnoff
- The Hebrew University of Jerusalem, Institute of Life Sciences, Department of Biological Chemistry, Givat-Ram, Jerusalem, Israel
| | | | | | | |
Collapse
|
39
|
Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nat Commun 2014; 5:3628. [PMID: 24709664 PMCID: PMC3982139 DOI: 10.1038/ncomms4628] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/12/2014] [Indexed: 12/25/2022] Open
Abstract
Fragile X syndrome (FXS), the most common heritable form of mental retardation, is
characterized by synaptic dysfunction. Synaptic transmission depends critically on
presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here
we show that the functional expression of neuronal N-type CaV channels
(CaV2.2) is
regulated by fragile X mental retardation
protein (FMRP).
We find that FMRP knockdown in
dorsal root ganglion neurons increases CaV channel density in somata and
in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels
to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain
of FMRP and domains of
CaV2.2 known to
interact with the neurotransmitter release machinery. Finally, we show that
FMRP controls synaptic
exocytosis via CaV2.2
channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss
is likely to contribute to synaptic dysfunction in FXS. Mutations in the fragile X mental retardation protein are
implicated in synaptic dysfunction in fragile X syndrome. Here, Ferron et al.
show that fragile X mental retardation protein maintains proper neurotransmission by
regulating the density of N-type calcium channels in the presynaptic terminal.
Collapse
|
40
|
Wang D, Fisher TE. Expression of CaV 2.2 and splice variants of CaV 2.1 in oxytocin- and vasopressin-releasing supraoptic neurones. J Neuroendocrinol 2014; 26:100-10. [PMID: 24344901 DOI: 10.1111/jne.12127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/25/2013] [Accepted: 12/12/2013] [Indexed: 11/29/2022]
Abstract
The magnocellular neurosecretory cells (MNCs) release vasopressin (VP) and oxytocin (OT) from their axon terminals into the circulation and from their somata and dendrites to exert paracrine effects on other MNCs. MNCs express several types of voltage-gated Ca(2+) channels, including Ca(V)2.1 and Ca(V)2.2. These two channels types are similar in structure and function in other cells, but although influx of Ca(2+) through Ca(V)2.2 triggers the release of both OT and VP into the circulation, Ca(V)2.1 is involved in stimulating the release of VP but not OT. Release of OT from MNC somata is also triggered by Ca(V)2.2 but not Ca(V)2.1. These observations could be explained by differences in the level of expression of Ca(V)2.1 in VP and OT MNCs or by differences in the way that the two channels interact with the exocytotic apparatus. We used immunohistochemistry to confirm earlier work suggesting that MNCs express variants of Ca(V)2.1 lacking portions of an internal loop that enables the channels to interact with synaptic proteins. We used an antibody that would recognise both the full-length Ca(V)2.1 and the deletion variants to show that OT MNCs express fewer Ca(V)2.1 channels than do VP MNCs in both somata and axon terminals. We used the reverse transcriptase-polymerase chain reaction and immunocytochemistry to test whether MNCs express similar deletion variants of Ca(V)2.2 and were unable to find any evidence to support this. Our data suggest that the different roles that Ca(V)2.1 and Ca(V)2.2 play in MNC secretion may be a result of the different levels of expression of Ca(V)2.1 in VP and OT MNCs, as well as the expression in MNCs of deletion variants of Ca(V)2.1 that do not interact with exocytotic proteins and therefore may be less likely to mediate exocytotic release.
Collapse
Affiliation(s)
- D Wang
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
41
|
Feldman P, Khanna R. Challenging the catechism of therapeutics for chronic neuropathic pain: Targeting CaV2.2 interactions with CRMP2 peptides. Neurosci Lett 2013; 557 Pt A:27-36. [PMID: 23831344 PMCID: PMC3849117 DOI: 10.1016/j.neulet.2013.06.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 11/25/2022]
Abstract
Chronic neuropathic pain management is a worldwide concern. Pharmaceutical companies globally have historically targeted ion channels as the therapeutic catechism with many blockbuster successes. Remarkably, no new pain therapeutic has been approved by European or American regulatory agencies over the last decade. This article will provide an overview of an alternative approach to ion channel drug discovery: targeting regulators of ion channels, specifically focusing on voltage-gated calcium channels. We will highlight the discovery of an anti-nociceptive peptide derived from a novel calcium channel interacting partner - the collapsin response mediator protein 2 (CRMP2). In vivo administration of this peptide reduces pain behavior in a number of models of neuropathic pain without affecting sympathetic-associated cardiovascular activity, memory retrieval, sensorimotor function, or depression. A CRMP2-derived peptide analgesic, with restricted access to the CNS, represents a completely novel approach to the treatment of severe pain with an improved safety profile. As peptides now represent one of the fastest growing classes of new drugs, it is expected that peptide targeting of protein interactions within the calcium channel complex may be a paradigm shift in ion channel drug discovery.
Collapse
Affiliation(s)
- Polina Feldman
- Sophia Therapeutics LLC, 351 West 10th Street, Indianapolis, IN 46202, USA
| | - Rajesh Khanna
- Sophia Therapeutics LLC, 351 West 10th Street, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, 950 West Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
42
|
Kaeser PS, Regehr WG. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol 2013; 76:333-63. [PMID: 24274737 DOI: 10.1146/annurev-physiol-021113-170338] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most neuronal communication relies upon the synchronous release of neurotransmitters, which occurs through synaptic vesicle exocytosis triggered by action potential invasion of a presynaptic bouton. However, neurotransmitters are also released asynchronously with a longer, variable delay following an action potential or spontaneously in the absence of action potentials. A compelling body of research has identified roles and mechanisms for synchronous release, but asynchronous release and spontaneous release are less well understood. In this review, we analyze how the mechanisms of the three release modes overlap and what molecular pathways underlie asynchronous and spontaneous release. We conclude that the modes of release have key fusion processes in common but may differ in the source of and necessity for Ca(2+) to trigger release and in the identity of the Ca(2+) sensor for release.
Collapse
Affiliation(s)
- Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | | |
Collapse
|
43
|
Atlas D. The Voltage-Gated Calcium Channel Functions as the Molecular Switch of Synaptic Transmission. Annu Rev Biochem 2013; 82:607-35. [DOI: 10.1146/annurev-biochem-080411-121438] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel;
| |
Collapse
|
44
|
Catterall WA, Leal K, Nanou E. Calcium channels and short-term synaptic plasticity. J Biol Chem 2013; 288:10742-9. [PMID: 23400776 DOI: 10.1074/jbc.r112.411645] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Voltage-gated Ca(2+) channels in presynaptic nerve terminals initiate neurotransmitter release in response to depolarization by action potentials from the nerve axon. The strength of synaptic transmission is dependent on the third to fourth power of Ca(2+) entry, placing the Ca(2+) channels in a unique position for regulation of synaptic strength. Short-term synaptic plasticity regulates the strength of neurotransmission through facilitation and depression on the millisecond time scale and plays a key role in encoding information in the nervous system. Ca(V)2.1 channels are the major source of Ca(2+) entry for neurotransmission in the central nervous system. They are tightly regulated by Ca(2+), calmodulin, and related Ca(2+) sensor proteins, which cause facilitation and inactivation of channel activity. Emerging evidence reviewed here points to this mode of regulation of Ca(V)2.1 channels as a major contributor to short-term synaptic plasticity of neurotransmission and its diversity among synapses.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | |
Collapse
|
45
|
Álvarez YD, Belingheri AV, Perez Bay AE, Javis SE, Tedford HW, Zamponi G, Marengo FD. The immediately releasable pool of mouse chromaffin cell vesicles is coupled to P/Q-type calcium channels via the synaptic protein interaction site. PLoS One 2013; 8:e54846. [PMID: 23382986 PMCID: PMC3559834 DOI: 10.1371/journal.pone.0054846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/18/2012] [Indexed: 01/17/2023] Open
Abstract
It is generally accepted that the immediately releasable pool is a group of readily releasable vesicles that are closely associated with voltage dependent Ca2+ channels. We have previously shown that exocytosis of this pool is specifically coupled to P/Q Ca2+ current. Accordingly, in the present work we found that the Ca2+ current flowing through P/Q-type Ca2+ channels is 8 times more effective at inducing exocytosis in response to short stimuli than the current carried by L-type channels. To investigate the mechanism that underlies the coupling between the immediately releasable pool and P/Q-type channels we transiently expressed in mouse chromaffin cells peptides corresponding to the synaptic protein interaction site of Cav2.2 to competitively uncouple P/Q-type channels from the secretory vesicle release complex. This treatment reduced the efficiency of Ca2+ current to induce exocytosis to similar values as direct inhibition of P/Q-type channels via ω-agatoxin-IVA. In addition, the same treatment markedly reduced immediately releasable pool exocytosis, but did not affect the exocytosis provoked by sustained electric or high K+ stimulation. Together, our results indicate that the synaptic protein interaction site is a crucial factor for the establishment of the functional coupling between immediately releasable pool vesicles and P/Q-type Ca2+ channels.
Collapse
Affiliation(s)
- Yanina D. Álvarez
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Verónica Belingheri
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrés E. Perez Bay
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Scott E. Javis
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - H. William Tedford
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Gerald Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Fernando D. Marengo
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
46
|
Magupalli VG, Mochida S, Yan J, Jiang X, Westenbroek RE, Nairn AC, Scheuer T, Catterall WA. Ca2+-independent activation of Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain of CaV2.1 calcium channels. J Biol Chem 2012; 288:4637-48. [PMID: 23255606 DOI: 10.1074/jbc.m112.369058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of Ca(V)2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca(2+)/CaM stimulus. Autophosphorylated CaMKII can bind the Ca(V)2.1 channel and synapsin-1 simultaneously. CaMKII binding to Ca(V)2.1 channels induces Ca(2+)-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of Ca(V)2.1 channels by binding of Ca(2+)/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to Ca(V)2.1 channels. These results define the functional properties of a signaling complex of CaMKII and Ca(V)2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity.
Collapse
Affiliation(s)
- Venkat G Magupalli
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Weiss N, Zamponi GW, De Waard M. How do T-type calcium channels control low-threshold exocytosis? Commun Integr Biol 2012; 5:377-80. [PMID: 23060963 PMCID: PMC3460844 DOI: 10.4161/cib.19997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Low-voltage-activated T-type calcium channels act as a major pathway for calcium entry near the resting membrane potential in a wide range of neuronal cell types. Several reports have uncovered an unrecognized feature of T-type channels in the control of vesicular neurotransmitter and hormone release, a process so far thought to be mediated exclusively by high-voltage-activated calcium channels. However, the underlying molecular mechanisms linking T-type calcium channels to vesicular exocytosis have remained enigmatic. In a recent study, we have reported that Ca(v)3.2 T-type channel forms a signaling complex with the neuronal Q-SNARE syntaxin-1A and SNAP-25. This interaction that relies on specific Ca(v)3.2 molecular determinants, not only modulates T-type channel activity, but was also found essential to support low-threshold exocytosis upon Ca(v)3.2 channel expression in MPC 9/3L-AH chromaffin cells. Overall, we have indentified an unrecognized regulation pathway of T-type calcium channels by SNARE proteins, and proposed the first molecular mechanism by which T-type channels could mediate low-threshold exocytosis.
Collapse
Affiliation(s)
- Norbert Weiss
- Hotchkiss Brain Institute; Department of Physiology and Pharmacology; University of Calgary; Calgary, AB Canada
| | | | | |
Collapse
|
48
|
Zamponi GW, Currie KPM. Regulation of Ca(V)2 calcium channels by G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1629-43. [PMID: 23063655 DOI: 10.1016/j.bbamem.2012.10.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/29/2022]
Abstract
Voltage gated calcium channels (Ca²⁺ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of Ca(V)2 (N- and P/Q-type) Ca²⁺-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of Ca(V)2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|
49
|
Christel CJ, Schaer R, Wang S, Henzi T, Kreiner L, Grabs D, Schwaller B, Lee A. Calretinin regulates Ca2+-dependent inactivation and facilitation of Ca(v)2.1 Ca2+ channels through a direct interaction with the α12.1 subunit. J Biol Chem 2012; 287:39766-75. [PMID: 23033479 DOI: 10.1074/jbc.m112.406363] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated Ca(v)2.1 Ca(2+) channels undergo dual modulation by Ca(2+), Ca(2+)-dependent inactivation (CDI), and Ca(2+)-dependent facilitation (CDF), which can influence synaptic plasticity in the nervous system. Although the molecular determinants controlling CDI and CDF have been the focus of intense research, little is known about the factors regulating these processes in neurons. Here, we show that calretinin (CR), a Ca(2+)-binding protein highly expressed in subpopulations of neurons in the brain, inhibits CDI and enhances CDF by binding directly to α(1)2.1. Screening of a phage display library with CR as bait revealed a highly basic CR-binding domain (CRB) present in multiple copies in the cytoplasmic linker between domains II and III of α(1)2.1. In pulldown assays, CR binding to fusion proteins containing these CRBs was largely Ca(2+)-dependent. α(1)2.1 coimmunoprecipitated with CR antibodies from transfected cells and mouse cerebellum, which confirmed the existence of CR-Ca(v)2.1 complexes in vitro and in vivo. In HEK293T cells, CR significantly decreased Ca(v)2.1 CDI and increased CDF. CR binding to α(1)2.1 was required for these effects, because they were not observed upon substitution of the II-III linker of α(1)2.1 with that from the Ca(v)1.2 α(1) subunit (α(1)1.2), which lacks the CRBs. In addition, coexpression of a protein containing the CRBs blocked the modulatory action of CR, most likely by competing with CR for interactions with α(1)2.1. Our findings highlight an unexpected role for CR in directly modulating effectors such as Ca(v)2.1, which may have major consequences for Ca(2+) signaling and neuronal excitability.
Collapse
Affiliation(s)
- Carl J Christel
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fine-tuning synaptic plasticity by modulation of Ca(V)2.1 channels with Ca2+ sensor proteins. Proc Natl Acad Sci U S A 2012; 109:17069-74. [PMID: 23027954 DOI: 10.1073/pnas.1215172109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modulation of P/Q-type Ca(2+) currents through presynaptic voltage-gated calcium channels (Ca(V)2.1) by binding of Ca(2+)/calmodulin contributes to short-term synaptic plasticity. Ca(2+)-binding protein-1 (CaBP1) and Visinin-like protein-2 (VILIP-2) are neurospecific calmodulin-like Ca(2+) sensor proteins that differentially modulate Ca(V)2.1 channels, but how they contribute to short-term synaptic plasticity is unknown. Here, we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels by CaBP1 and VILIP-2 has opposing effects on short-term synaptic plasticity in superior cervical ganglion neurons. Expression of CaBP1, which blocks Ca(2+)-dependent facilitation of P/Q-type Ca(2+) current, markedly reduced facilitation of synaptic transmission. VILIP-2, which blocks Ca(2+)-dependent inactivation of P/Q-type Ca(2+) current, reduced synaptic depression and increased facilitation under conditions of high release probability. These results demonstrate that activity-dependent regulation of presynaptic Ca(V)2.1 channels by differentially expressed Ca(2+) sensor proteins can fine-tune synaptic responses to trains of action potentials and thereby contribute to the diversity of short-term synaptic plasticity.
Collapse
|