1
|
Gangwar SP, Yelshanskaya MV, Aktolun M, Yen LY, Newton TP, Strømgaard K, Kurnikova MG, Sobolevsky AI. Trapping of spermine, Kukoamine A, and polyamine toxin blockers in GluK2 kainate receptor channels. Nat Commun 2024; 15:10257. [PMID: 39592599 PMCID: PMC11599716 DOI: 10.1038/s41467-024-54538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Kainate receptors (KARs) are a subtype of ionotropic glutamate receptor (iGluR) channels, a superfamily of ligand-gated ion channels which mediate the majority of excitatory neurotransmission in the central nervous system. KARs modulate neuronal circuits and plasticity during development and are implicated in neurological disorders, including epilepsy, depression, schizophrenia, anxiety, and autism. Calcium-permeable KARs undergo ion channel block, but the therapeutic potential of channel blockers remains underdeveloped, mainly due to limited structural knowledge. Here, we present closed-state structures of GluK2 KAR homotetramers in complex with ion channel blockers NpTx-8, PhTx-74, Kukoamine A, and spermine. We find that blockers reside inside the GluK2 ion channel pore, intracellular to the closed M3 helix bundle-crossing gate, with their hydrophobic heads filling the central cavity and positively charged polyamine tails spanning the selectivity filter. Molecular dynamics (MD) simulations of our structures illuminate interactions responsible for different affinity and binding poses of the blockers. Our structures elucidate the trapping mechanism of KAR channel block and provide a template for designing new blockers that can selectively target calcium-permeable KARs in neuropathologies.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Muhammed Aktolun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Thomas P Newton
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Maria G Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Kudriavskii VV, Goncharov AO, Eremeev AV, Ruchko ES, Veselovsky VA, Klimina KM, Bogomazova AN, Lagarkova MA, Moshkovskii SA, Kliuchnikova AA. RNA Editing by ADAR Adenosine Deaminases in the Cell Models of CAG Repeat Expansion Diseases: Significant Effect of Differentiation from Stem Cells into Brain Organoids in the Absence of Substantial Influence of CAG Repeats on the Level of Editing. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1474-1489. [PMID: 39245456 DOI: 10.1134/s0006297924080078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Expansion of CAG repeats in certain genes is a known cause of several neurodegenerative diseases, but exact mechanism behind this is not yet fully understood. It is believed that the double-stranded RNA regions formed by CAG repeats could be harmful to the cell. This study aimed to test the hypothesis that these RNA regions might potentially interfere with ADAR RNA editing enzymes, leading to the reduced A-to-I editing of RNA and activation of the interferon response. We studied induced pluripotent stem cells (iPSCs) derived from the patients with Huntington's disease or ataxia type 17, as well as midbrain organoids developed from these cells. A targeted panel for next-generation sequencing was used to assess editing in the specific RNA regions. Differentiation of iPSCs into brain organoids led to increase in the ADAR2 gene expression and decrease in the expression of protein inhibitors of RNA editing. As a result, there was increase in the editing of specific ADAR2 substrates, which allowed identification of differential substrates of ADAR isoforms. However, comparison of the pathology and control groups did not show differences in the editing levels among the iPSCs. Additionally, brain organoids with 42-46 CAG repeats did not exhibit global changes. On the other hand, brain organoids with the highest number of CAG repeats in the huntingtin gene (76) showed significant decrease in the level of RNA editing of specific transcripts, potentially involving ADAR1. Notably, editing of the long non-coding RNA PWAR5 was nearly absent in this sample. It could be stated in conclusion that in most cultures with repeat expansion, the hypothesized effect on RNA editing was not confirmed.
Collapse
Affiliation(s)
- Viacheslav V Kudriavskii
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Anton O Goncharov
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Artem V Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Evgenii S Ruchko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vladimir A Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ksenia M Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Sergei A Moshkovskii
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Max Planck Institute for Interdisciplinary Research, Göttingen, 37077, Germany.
| | - Anna A Kliuchnikova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| |
Collapse
|
3
|
Milham LT, Morris GP, Konen LM, Rentsch P, Avgan N, Vissel B. Quantification of AMPA receptor subunits and RNA editing-related proteins in the J20 mouse model of Alzheimer's disease by capillary western blotting. Front Mol Neurosci 2024; 16:1338065. [PMID: 38299128 PMCID: PMC10828003 DOI: 10.3389/fnmol.2023.1338065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Accurate modelling of molecular changes in Alzheimer's disease (AD) dementia is crucial for understanding the mechanisms driving neuronal pathology and for developing treatments. Synaptic dysfunction has long been implicated as a mechanism underpinning memory dysfunction in AD and may result in part from changes in adenosine deaminase acting on RNA (ADAR) mediated RNA editing of the GluA2 subunit of AMPA receptors and changes in AMPA receptor function at the post synaptic cleft. However, few studies have investigated changes in proteins which influence RNA editing and notably, AD studies that focus on studying changes in protein expression, rather than changes in mRNA, often use traditional western blotting. Methods Here, we demonstrate the value of automated capillary western blotting to investigate the protein expression of AMPA receptor subunits (GluA1-4), the ADAR RNA editing proteins (ADAR1-3), and proteins known to regulate RNA editing (PIN1, WWP2, FXR1P, and CREB1), in the J20 AD mouse model. We describe extensive optimisation and validation of the automated capillary western blotting method, demonstrating the use of total protein to normalise protein load, in addition to characterising the optimal protein/antibody concentrations to ensure accurate protein quantification. Following this, we assessed changes in proteins of interest in the hippocampus of 44-week-old J20 AD mice. Results We observed an increase in the expression of ADAR1 p110 and GluA3 and a decrease in ADAR2 in the hippocampus of 44-week-old J20 mice. These changes signify a shift in the balance of proteins that play a critical role at the synapse. Regression analysis revealed unique J20-specific correlations between changes in AMPA receptor subunits, ADAR enzymes, and proteins that regulate ADAR stability in J20 mice, highlighting potential mechanisms mediating RNA-editing changes found in AD. Discussion Our findings in J20 mice generally reflect changes seen in the human AD brain. This study underlines the importance of novel techniques, like automated capillary western blotting, to assess protein expression in AD. It also provides further evidence to support the hypothesis that a dysregulation in RNA editing-related proteins may play a role in the initiation and/or progression of AD.
Collapse
Affiliation(s)
- Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Gary P. Morris
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Lyndsey M. Konen
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nesli Avgan
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Nair JD, Wilkinson KA, Yucel BP, Mulle C, Vissel B, Mellor J, Henley JM. GluK2 Q/R editing regulates kainate receptor signaling and long-term potentiation of AMPA receptors. iScience 2023; 26:107708. [PMID: 37720087 PMCID: PMC10504484 DOI: 10.1016/j.isci.2023.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Q/R editing of the kainate receptor (KAR) subunit GluK2 radically alters recombinant KAR properties, but the effects on endogenous KARs in vivo remain largely unexplored. Here, we compared GluK2 editing-deficient mice that express ∼95% unedited GluK2(Q) to wild-type counterparts that express ∼85% edited GluK2(R). At mossy fiber-CA3 (MF-CA3) synapses GluK2(Q) mice displayed increased postsynaptic KAR function and KAR-mediated presynaptic facilitation, demonstrating enhanced ionotropic function. Conversely, GluK2(Q) mice exhibited reduced metabotropic KAR function, assessed by KAR-mediated inhibition of slow after-hyperpolarization currents (ISAHP). GluK2(Q) mice also had fewer GluA1-and GluA3-containing AMPA receptors (AMPARs) and reduced postsynaptic AMPAR currents at both MF-CA3 and CA1-Schaffer collateral synapses. Moreover, long-term potentiation of AMPAR-mediated transmission at CA1-Schaffer collateral synapses was reduced in GluK2(Q) mice. These findings suggest that GluK2 Q/R editing influences ionotropic/metabotropic balance of KAR signaling to regulate synaptic expression of AMPARs and plasticity.
Collapse
Affiliation(s)
- Jithin D. Nair
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Busra P. Yucel
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christophe Mulle
- CNRS UMR 5297, Interdisciplinary Institute of Neuroscience, University of Bordeaux, France
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Jack Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M. Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
6
|
Hajji K, Sedmík J, Cherian A, Amoruso D, Keegan LP, O'Connell MA. ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations. RNA (NEW YORK, N.Y.) 2022; 28:1281-1297. [PMID: 35863867 PMCID: PMC9479739 DOI: 10.1261/rna.079266.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The adenosine deaminase acting on RNA (ADAR) enzymes are essential for neuronal function and innate immune control. ADAR1 RNA editing prevents aberrant activation of antiviral dsRNA sensors through editing of long, double-stranded RNAs (dsRNAs). In this review, we focus on the ADAR2 proteins involved in the efficient, highly site-specific RNA editing to recode open reading frames first discovered in the GRIA2 transcript encoding the key GLUA2 subunit of AMPA receptors; ADAR1 proteins also edit many of these sites. We summarize the history of ADAR2 protein research and give an up-to-date review of ADAR2 structural studies, human ADARBI (ADAR2) mutants causing severe infant seizures, and mouse disease models. Structural studies on ADARs and their RNA substrates facilitate current efforts to develop ADAR RNA editing gene therapy to edit disease-causing single nucleotide polymorphisms (SNPs). Artificial ADAR guide RNAs are being developed to retarget ADAR RNA editing to new target transcripts in order to correct SNP mutations in them at the RNA level. Site-specific RNA editing has been expanded to recode hundreds of sites in CNS transcripts in Drosophila and cephalopods. In Drosophila and C. elegans, ADAR RNA editing also suppresses responses to self dsRNA.
Collapse
Affiliation(s)
- Khadija Hajji
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Jiří Sedmík
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Anna Cherian
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | | - Liam P Keegan
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | |
Collapse
|
7
|
Zhai J, Koh JH, Soong TW. RNA editing of ion channels and receptors in physiology and neurological disorders. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac010. [PMID: 38596706 PMCID: PMC11003377 DOI: 10.1093/oons/kvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional modification that diversifies protein functions by recoding RNA or alters protein quantity by regulating mRNA level. A-to-I editing is catalyzed by adenosine deaminases that act on RNA. Millions of editing sites have been reported, but they are mostly found in non-coding sequences. However, there are also several recoding editing sites in transcripts coding for ion channels or transporters that have been shown to play important roles in physiology and changes in editing level are associated with neurological diseases. These editing sites are not only found to be evolutionary conserved across species, but they are also dynamically regulated spatially, developmentally and by environmental factors. In this review, we discuss the current knowledge of A-to-I RNA editing of ion channels and receptors in the context of their roles in physiology and pathological disease. We also discuss the regulation of editing events and site-directed RNA editing approaches for functional study that offer a therapeutic pathway for clinical applications.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Joanne Huifen Koh
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore 117456, Singapore
| |
Collapse
|
8
|
Gaidin SG, Kosenkov AM. mRNA editing of kainate receptor subunits: what do we know so far? Rev Neurosci 2022; 33:641-655. [DOI: 10.1515/revneuro-2021-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Kainate receptors (KARs) are considered one of the key modulators of synaptic activity in the mammalian central nervous system. These receptors were discovered more than 30 years ago, but their role in brain functioning remains unclear due to some peculiarities. One such feature of these receptors is the editing of pre-mRNAs encoding GluK1 and GluK2 subunits. Despite the long history of studying this phenomenon, numerous questions remain unanswered. This review summarizes the current data about the mechanism and role of pre-mRNA editing of KAR subunits in the mammalian brain and proposes a perspective of future investigations.
Collapse
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| |
Collapse
|
9
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
10
|
Nakahama T, Kawahara Y. Deciphering the Biological Significance of ADAR1-Z-RNA Interactions. Int J Mol Sci 2021; 22:ijms222111435. [PMID: 34768866 PMCID: PMC8584189 DOI: 10.3390/ijms222111435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an enzyme responsible for double-stranded RNA (dsRNA)-specific adenosine-to-inosine RNA editing, which is estimated to occur at over 100 million sites in humans. ADAR1 is composed of two isoforms transcribed from different promoters: p150 and N-terminal truncated p110. Deletion of ADAR1 p150 in mice activates melanoma differentiation-associated protein 5 (MDA5)-sensing pathway, which recognizes endogenous unedited RNA as non-self. In contrast, we have recently demonstrated that ADAR1 p110-mediated RNA editing does not contribute to this function, implying that a unique Z-DNA/RNA-binding domain α (Zα) in the N terminus of ADAR1 p150 provides specific RNA editing, which is critical for preventing MDA5 activation. In addition, a mutation in the Zα domain is identified in patients with Aicardi–Goutières syndrome (AGS), an inherited encephalopathy characterized by overproduction of type I interferon. Accordingly, we and other groups have recently demonstrated that Adar1 Zα-mutated mice show MDA5-dependent type I interferon responses. Furthermore, one such mutant mouse carrying a W197A point mutation in the Zα domain, which inhibits Z-RNA binding, manifests AGS-like encephalopathy. These findings collectively suggest that Z-RNA binding by ADAR1 p150 is essential for proper RNA editing at certain sites, preventing aberrant MDA5 activation.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
- Correspondence: ; Tel.: +81-6-6879-3827
| |
Collapse
|
11
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
12
|
Henley JM, Nair JD, Seager R, Yucel BP, Woodhall G, Henley BS, Talandyte K, Needs HI, Wilkinson KA. Kainate and AMPA receptors in epilepsy: Cell biology, signalling pathways and possible crosstalk. Neuropharmacology 2021; 195:108569. [PMID: 33915142 DOI: 10.1016/j.neuropharm.2021.108569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Epilepsy is caused when rhythmic neuronal network activity escapes normal control mechanisms, resulting in seizures. There is an extensive and growing body of evidence that the onset and maintenance of epilepsy involves alterations in the trafficking, synaptic surface expression and signalling of kainate and AMPA receptors (KARs and AMPARs). The KAR subunit GluK2 and AMPAR subunit GluA2 are key determinants of the properties of their respective assembled receptors. Both subunits are subject to extensive protein interactions, RNA editing and post-translational modifications. In this review we focus on the cell biology of GluK2-containing KARs and GluA2-containing AMPARs and outline how their regulation and dysregulation is implicated in, and affected by, seizure activity. Further, we discuss role of KARs in regulating AMPAR surface expression and plasticity, and the relevance of this to epilepsy. This article is part of the special issue on 'Glutamate Receptors - Kainate receptors'.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK; Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Jithin D Nair
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Richard Seager
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Busra P Yucel
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Gavin Woodhall
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Benjamin S Henley
- Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Karolina Talandyte
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Hope I Needs
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
13
|
Bhakta S, Tsukahara T. Artificial RNA Editing with ADAR for Gene Therapy. Curr Gene Ther 2021; 20:44-54. [PMID: 32416688 DOI: 10.2174/1566523220666200516170137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Editing mutated genes is a potential way for the treatment of genetic diseases. G-to-A mutations are common in mammals and can be treated by adenosine-to-inosine (A-to-I) editing, a type of substitutional RNA editing. The molecular mechanism of A-to-I editing involves the hydrolytic deamination of adenosine to an inosine base; this reaction is mediated by RNA-specific deaminases, adenosine deaminases acting on RNA (ADARs), family protein. Here, we review recent findings regarding the application of ADARs to restoring the genetic code along with different approaches involved in the process of artificial RNA editing by ADAR. We have also addressed comparative studies of various isoforms of ADARs. Therefore, we will try to provide a detailed overview of the artificial RNA editing and the role of ADAR with a focus on the enzymatic site directed A-to-I editing.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan
| |
Collapse
|
14
|
Jang S, Yang E, Kim D, Kim H, Kim E. Clmp Regulates AMPA and Kainate Receptor Responses in the Neonatal Hippocampal CA3 and Kainate Seizure Susceptibility in Mice. Front Synaptic Neurosci 2021; 12:567075. [PMID: 33408624 PMCID: PMC7779639 DOI: 10.3389/fnsyn.2020.567075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/02/2020] [Indexed: 12/05/2022] Open
Abstract
Synaptic adhesion molecules regulate synapse development through trans-synaptic adhesion and assembly of diverse synaptic proteins. Many synaptic adhesion molecules positively regulate synapse development; some, however, exert negative regulation, although such cases are relatively rare. In addition, synaptic adhesion molecules regulate the amplitude of post-synaptic receptor responses, but whether adhesion molecules can regulate the kinetic properties of post-synaptic receptors remains unclear. Here we report that Clmp, a homophilic adhesion molecule of the Ig domain superfamily that is abundantly expressed in the brain, reaches peak expression at a neonatal stage (week 1) and associates with subunits of AMPA receptors (AMPARs) and kainate receptors (KARs). Clmp deletion in mice increased the frequency and amplitude of AMPAR-mediated miniature excitatory post-synaptic currents (mEPSCs) and the frequency, amplitude, and decay time constant of KAR-mediated mEPSCs in hippocampal CA3 neurons. Clmp deletion had minimal impacts on evoked excitatory synaptic currents at mossy fiber-CA3 synapses but increased extrasynaptic KAR, but not AMPAR, currents, suggesting that Clmp distinctly inhibits AMPAR and KAR responses. Behaviorally, Clmp deletion enhanced novel object recognition and susceptibility to kainate-induced seizures, without affecting contextual or auditory cued fear conditioning or pattern completion-based contextual fear conditioning. These results suggest that Clmp negatively regulates hippocampal excitatory synapse development and AMPAR and KAR responses in the neonatal hippocampal CA3 as well as object recognition and kainate seizure susceptibility in mice.
Collapse
Affiliation(s)
- Seil Jang
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Doyoun Kim
- Center for Drug Discovery Platform Research, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
15
|
Yang Y, Okada S, Sakurai M. Adenosine-to-inosine RNA editing in neurological development and disease. RNA Biol 2021; 18:999-1013. [PMID: 33393416 DOI: 10.1080/15476286.2020.1867797] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is one of the most prevalent post-transcriptional RNA modifications in metazoan. This reaction is catalysed by enzymes called adenosine deaminases acting on RNA (ADARs). RNA editing is involved in the regulation of protein function and gene expression. The numerous A-to-I editing sites have been identified in both coding and non-coding RNA transcripts. These editing sites are also found in various genes expressed in the central nervous system (CNS) and play an important role in neurological development and brain function. Aberrant regulation of RNA editing has been associated with the pathogenesis of neurological and psychiatric disorders, suggesting the physiological significance of RNA editing in the CNS. In this review, we discuss the current knowledge of editing on neurological disease and development.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Shunpei Okada
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Masayuki Sakurai
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| |
Collapse
|
16
|
Lundin E, Wu C, Widmark A, Behm M, Hjerling-Leffler J, Daniel C, Öhman M, Nilsson M. Spatiotemporal mapping of RNA editing in the developing mouse brain using in situ sequencing reveals regional and cell-type-specific regulation. BMC Biol 2020; 18:6. [PMID: 31937309 PMCID: PMC6961268 DOI: 10.1186/s12915-019-0736-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Background Adenosine-to-inosine (A-to-I) RNA editing is a process that contributes to the diversification of proteins that has been shown to be essential for neurotransmission and other neuronal functions. However, the spatiotemporal and diversification properties of RNA editing in the brain are largely unknown. Here, we applied in situ sequencing to distinguish between edited and unedited transcripts in distinct regions of the mouse brain at four developmental stages, and investigate the diversity of the RNA landscape. Results We analyzed RNA editing at codon-altering sites using in situ sequencing at single-cell resolution, in combination with the detection of individual ADAR enzymes and specific cell type marker transcripts. This approach revealed cell-type-specific regulation of RNA editing of a set of transcripts, and developmental and regional variation in editing levels for many of the targeted sites. We found increasing editing diversity throughout development, which arises through regional- and cell type-specific regulation of ADAR enzymes and target transcripts. Conclusions Our single-cell in situ sequencing method has proved useful to study the complex landscape of RNA editing and our results indicate that this complexity arises due to distinct mechanisms of regulating individual RNA editing sites, acting both regionally and in specific cell types. Electronic supplementary material The online version of this article (10.1186/s12915-019-0736-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elin Lundin
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden.
| | - Chenglin Wu
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden
| | - Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mikaela Behm
- German Cancer Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mats Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden.
| |
Collapse
|
17
|
Stayte S, Laloli KJ, Rentsch P, Lowth A, Li KM, Pickford R, Vissel B. The kainate receptor antagonist UBP310 but not single deletion of GluK1, GluK2, or GluK3 subunits, inhibits MPTP-induced degeneration in the mouse midbrain. Exp Neurol 2020; 323:113062. [PMID: 31513786 DOI: 10.1016/j.expneurol.2019.113062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/20/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
The excitatory neurotransmitter glutamate is essential in basal ganglia motor circuits and has long been thought to contribute to cell death and degeneration in Parkinson's disease (PD). While previous research has shown a significant role of NMDA and AMPA receptors in both excitotoxicity and PD, the third class of ionotropic glutamate receptors, kainate receptors, have been less well studied. Given the expression of kainate receptor subunits GluK1-GluK3 in key PD-related brain regions, it has been suggested that GluK1-GluK3 may contribute to excitotoxic cell loss. Therefore the neuroprotective potential of the kainate receptor antagonist UBP310 in animal models of PD was investigated in this study. Stereological quantification revealed administration of UBP310 significantly increased survival of dopaminergic and total neuron populations in the substantia nigra pars compacta in the acute MPTP mouse model of PD. In contrast, UBP310 was unable to rescue MPTP-induced loss of dopamine levels or dopamine transporter expression in the striatum. Furthermore, deletion of GluK1, GluK2 or GluK3 had no effect on MPTP or UBP310-mediated effects across all measures. Interestingly, UBP310 did not attenuate cell loss in the midbrain induced by intrastriatal 6-OHDA toxicity. These results indicate UBP310 provides neuroprotection in the midbrain against MPTP neurotoxicity that is not dependent on specific kainate receptor subunits.
Collapse
Affiliation(s)
- Sandy Stayte
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, Australia; St Vincent's Centre for Applied Medical Research (AMR), Sydney, Darlinghurst, Australia; Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Kathryn J Laloli
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, Australia; St Vincent's Centre for Applied Medical Research (AMR), Sydney, Darlinghurst, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, Australia; St Vincent's Centre for Applied Medical Research (AMR), Sydney, Darlinghurst, Australia; Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Aimee Lowth
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Kong M Li
- Pharmacology Department, Bosch Institute, Sydney Medical School, The University of Sydney, Camperdown, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Kensington, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, Australia; St Vincent's Centre for Applied Medical Research (AMR), Sydney, Darlinghurst, Australia; Garvan Institute of Medical Research, Darlinghurst, Australia.
| |
Collapse
|
18
|
Petel Légaré V, Harji ZA, Rampal CJ, Allard-Chamard X, Rodríguez EC, Armstrong GAB. Augmentation of spinal cord glutamatergic synaptic currents in zebrafish primary motoneurons expressing mutant human TARDBP (TDP-43). Sci Rep 2019; 9:9122. [PMID: 31235725 PMCID: PMC6591224 DOI: 10.1038/s41598-019-45530-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Though there is compelling evidence that de-innervation of neuromuscular junctions (NMJ) occurs early in amyotrophic lateral sclerosis (ALS), defects arising at synapses in the spinal cord remain incompletely understood. To investigate spinal cord synaptic dysfunction, we took advantage of a zebrafish larval model and expressed either wild type human TARDBP (wtTARDBP) or the ALS-causing G348C variant (mutTARDBP). The larval zebrafish is ideally suited to examine synaptic connectivity between descending populations of neurons and spinal cord motoneurons as a fully intact spinal cord is preserved during experimentation. Here we provide evidence that the tail-beat motor pattern is reduced in both frequency and duration in larvae expressing mutTARDBP. In addition, we report that motor-related synaptic depolarizations in primary motoneurons of the spinal cord are shorter in duration and fewer action potentials are evoked in larvae expressing mutTARDBP. To more thoroughly examine spinal cord synaptic dysfunction in our ALS model, we isolated AMPA/kainate-mediated glutamatergic miniature excitatory post-synaptic currents in primary motoneurons and found that in addition to displaying a larger amplitude, the frequency of quantal events was higher in larvae expressing mutTARDBP when compared to larvae expressing wtTARDBP. In a final series of experiments, we optogenetically drove neuronal activity in the hindbrain and spinal cord population of descending ipsilateral glutamatergic interneurons (expressing Chx10) using the Gal4-UAS system and found that larvae expressing mutTARDBP displayed abnormal tail-beat patterns in response to optogenetic stimuli and augmented synaptic connectivity with motoneurons. These findings indicate that expression of mutTARDBP results in functionally altered glutamatergic synapses in the spinal cord.
Collapse
Affiliation(s)
- Virginie Petel Légaré
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Ziyaan A Harji
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Christian J Rampal
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Xavier Allard-Chamard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Esteban C Rodríguez
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada
| | - Gary A B Armstrong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
19
|
Gurung S, Evans AJ, Wilkinson KA, Henley JM. ADAR2-mediated Q/R editing of GluK2 regulates kainate receptor upscaling in response to suppression of synaptic activity. J Cell Sci 2018; 131:jcs222273. [PMID: 30559217 PMCID: PMC6307878 DOI: 10.1242/jcs.222273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Kainate receptors (KARs) regulate neuronal excitability and network function. Most KARs contain the subunit GluK2 (also known as GRIK2), and the properties of these receptors are determined in part by ADAR2 (also known as ADARB1)-mediated mRNA editing of GluK2, which changes a genomically encoded glutamine residue into an arginine residue (Q/R editing). Suppression of synaptic activity reduces ADAR2-dependent Q/R editing of GluK2 with a consequential increase in GluK2-containing KAR surface expression. However, the mechanism underlying this reduction in GluK2 editing has not been addressed. Here, we show that induction of KAR upscaling, a phenomenon in which surface expression of receptors is increased in response to a chronic decrease in synaptic activity, results in proteasomal degradation of ADAR2, which reduces GluK2 Q/R editing. Because KARs incorporating unedited GluK2(Q) assemble and exit the ER more efficiently, this leads to an upscaling of KAR surface expression. Consistent with this, we demonstrate that partial ADAR2 knockdown phenocopies and occludes KAR upscaling. Moreover, we show that although the AMPA receptor (AMPAR) subunit GluA2 (also known as GRIA2) also undergoes ADAR2-dependent Q/R editing, this process does not mediate AMPAR upscaling. These data demonstrate that activity-dependent regulation of ADAR2 proteostasis and GluK2 Q/R editing are key determinants of KAR, but not AMPAR, trafficking and upscaling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sonam Gurung
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Ashley J Evans
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
20
|
Jinnah H, Ulbricht RJ. Using mouse models to unlock the secrets of non-synonymous RNA editing. Methods 2018; 156:40-45. [PMID: 30827465 DOI: 10.1016/j.ymeth.2018.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 11/26/2022] Open
Abstract
The deamination of adenosine to inosine by RNA editing is a widespread post-transcriptional process that expands genetic diversity. Selective substitution of inosine for adenosine in pre-mRNA transcripts can alter splicing, mRNA stability, and the amino acid sequence of the encoded protein. The functional consequences of RNA editing-dependent amino acid substitution are known for only a handful of RNA editing substrates. Many of these studies began in heterologous mammalian expression systems; however, the gold-standard for determining the functional significance of transcript-specific re-coding A-to-I editing events is the generation of a mouse model that expresses only one RNA editing-dependent isoform. The frequency of site-specific RNA editing varies spatially, temporally, and in some diseases, therefore, determining the profile of RNA editing frequency is also an important element of research. Here we review the strengths and weaknesses of existing mouse models for the study of RNA editing, as well as methods for quantifying RNA editing frequencies in vivo. Importantly, we highlight opportunities for future RNA editing studies in mice, projecting that improvements in genome editing and high-throughput sequencing technologies will allow the field to excel in coming years.
Collapse
Affiliation(s)
- Hussain Jinnah
- Vanderbilt University, Department of Pharmacology, 8140 Medical Research Building 3, Nashville, TN 37240-1104, United States.
| | - Randi J Ulbricht
- Missouri State University, Department of Biomedical Sciences, 901 South National Avenue, Springfield, MO 65897, United States.
| |
Collapse
|
21
|
Kuznetsova KG, Kliuchnikova AA, Ilina IU, Chernobrovkin AL, Novikova SE, Farafonova TE, Karpov DS, Ivanov MV, Goncharov AO, Ilgisonis EV, Voronko OE, Nasaev SS, Zgoda VG, Zubarev RA, Gorshkov MV, Moshkovskii SA. Proteogenomics of Adenosine-to-Inosine RNA Editing in the Fruit Fly. J Proteome Res 2018; 17:3889-3903. [DOI: 10.1021/acs.jproteome.8b00553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Anna A. Kliuchnikova
- Institute of Biomedical Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | | | | | | | - Dmitry S. Karpov
- Institute of Biomedical Chemistry, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mark V. Ivanov
- Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Anton O. Goncharov
- Institute of Biomedical Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | | | - Shamsudin S. Nasaev
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | - Roman A. Zubarev
- Karolinska Institutet, Stockholm, Sweden
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mikhail V. Gorshkov
- Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Sergei A. Moshkovskii
- Institute of Biomedical Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
22
|
Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-Inosine RNA Editing in Health and Disease. Antioxid Redox Signal 2018; 29:846-863. [PMID: 28762759 DOI: 10.1089/ars.2017.7295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Adenosine deamination in transcriptome results in the formation of inosine, a process that is called A-to-I RNA editing. Adenosine deamination is one of the more than 140 described RNA modifications. A-to-I RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes and is essential for life. Recent Advances: Accumulating evidence supports a critical role of RNA editing in all aspects of RNA metabolism, including mRNA stability, splicing, nuclear export, and localization, as well as in recoding of proteins. These advances have significantly enhanced the understanding of mechanisms involved in development and in homeostasis. Furthermore, recent studies have indicated that RNA editing may be critically involved in cancer, aging, neurological, autoimmune, or cardiovascular diseases. CRITICAL ISSUES This review summarizes recent and significant achievements in the field of A-to-I RNA editing and discusses the importance and translational value of this RNA modification for gene expression, cellular, and organ function, as well as for disease development. FUTURE DIRECTIONS Elucidation of the exact RNA editing-dependent mechanisms in a single-nucleotide level may pave the path toward the development of novel therapeutic strategies focusing on modulation of ADAR function in the disease context. Antioxid. Redox Signal. 29, 846-863.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Nikolaos Vlachogiannis
- 5 Rheumatology Unit, First Department of Propaedeutic Internal Medicine and Joint Rheumatology Academic Program, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Federica Francesca Lunella
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Marco Sachse
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Konstantinos Stellos
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| |
Collapse
|
23
|
Zaidan H, Ramaswami G, Barak M, Li JB, Gaisler-Salomon I. Pre-reproductive stress and fluoxetine treatment in rats affect offspring A-to-I RNA editing, gene expression and social behavior. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy021. [PMID: 30109132 PMCID: PMC6084559 DOI: 10.1093/eep/dvy021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 05/04/2023]
Abstract
Adenosine to inosine RNA editing is an epigenetic process that entails site-specific modifications in double-stranded RNA molecules, catalyzed by adenosine deaminases acting on RNA (ADARs). Using the multiplex microfluidic PCR and deep sequencing technique, we recently showed that exposing adolescent female rats to chronic unpredictable stress before reproduction affects editing in the prefrontal cortex and amygdala of their newborn offspring, particularly at the serotonin receptor 5-HT2c (encoded by Htr2c). Here, we used the same technique to determine whether post-stress, pre-reproductive maternal treatment with fluoxetine (5 mg/kg, 7 days) reverses the effects of stress on editing. We also examined the mRNA expression of ADAR enzymes in these regions, and asked whether social behavior in adult offspring would be altered by maternal exposure to stress and/or fluoxetine. Maternal treatment with fluoxetine altered Htr2c editing in offspring amygdala at birth, enhanced the expression of Htr2c mRNA and RNA editing enzymes in the prefrontal cortex, and reversed the effects of pre-reproductive stress on Htr2c editing in this region. Furthermore, maternal fluoxetine treatment enhanced differences in editing of glutamate receptors between offspring of control and stress-exposed rats, and led to enhanced social preference in adult offspring. Our findings indicate that pre-gestational fluoxetine treatment affects patterns of RNA editing and editing enzyme expression in neonatal offspring brain in a region-specific manner, in interaction with pre-reproductive stress. Overall, these findings imply that fluoxetine treatment affects serotonergic signaling in offspring brain even when treatment is discontinued before gestation, and its effects may depend upon prior exposure to stress.
Collapse
Affiliation(s)
- Hiba Zaidan
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Gokul Ramaswami
- Department of Genetics, Stanford University, Stanford, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Michal Barak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jin B Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
24
|
Exciting Times: New Advances Towards Understanding the Regulation and Roles of Kainate Receptors. Neurochem Res 2017; 44:572-584. [PMID: 29270706 PMCID: PMC6420428 DOI: 10.1007/s11064-017-2450-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Kainate receptors (KARs) are glutamate-gated ion channels that play fundamental roles in regulating neuronal excitability and network function in the brain. After being cloned in the 1990s, important progress has been made in understanding the mechanisms controlling the molecular and cellular properties of KARs, and the nature and extent of their regulation of wider neuronal activity. However, there have been significant recent advances towards understanding KAR trafficking through the secretory pathway, their precise synaptic positioning, and their roles in synaptic plasticity and disease. Here we provide an overview highlighting these new findings about the mechanisms controlling KARs and how KARs, in turn, regulate other proteins and pathways to influence synaptic function.
Collapse
|
25
|
Evans AJ, Gurung S, Wilkinson KA, Stephens DJ, Henley JM. Assembly, Secretory Pathway Trafficking, and Surface Delivery of Kainate Receptors Is Regulated by Neuronal Activity. Cell Rep 2017; 19:2613-2626. [PMID: 28636947 PMCID: PMC5489663 DOI: 10.1016/j.celrep.2017.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/17/2017] [Accepted: 05/25/2017] [Indexed: 01/03/2023] Open
Abstract
Ionotropic glutamate receptor (iGluR) trafficking and function underpin excitatory synaptic transmission and plasticity and shape neuronal networks. It is well established that the transcription, translation, and endocytosis/recycling of iGluRs are all regulated by neuronal activity, but much less is known about the activity dependence of iGluR transport through the secretory pathway. Here, we use the kainate receptor subunit GluK2 as a model iGluR cargo to show that the assembly, early secretory pathway trafficking, and surface delivery of iGluRs are all controlled by neuronal activity. We show that the delivery of de novo kainate receptors is differentially regulated by modulation of GluK2 Q/R editing, PKC phosphorylation, and PDZ ligand interactions. These findings reveal that, in addition to short-term regulation of iGluRs by recycling/endocytosis and long-term modulation by altered transcription/translation, the trafficking of iGluRs through the secretory pathway is under tight activity-dependent control to determine the numbers and properties of surface-expressed iGluRs.
Collapse
Affiliation(s)
- Ashley J Evans
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Sonam Gurung
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - David J Stephens
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
26
|
Turovskaya MV, Babaev AA, Zinchenko VP, Epifanova EA, Borisova EV, Tarabykin VS, Turovsky EA. Sip-1 mutations cause disturbances in the activity of NMDA- and AMPA-, but not kainate receptors of neurons in the cerebral cortex. Neurosci Lett 2017; 650:180-186. [PMID: 28455101 DOI: 10.1016/j.neulet.2017.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 11/30/2022]
Abstract
Smad-interacting protein-1 (Sip1) [Zinc finger homeobox (Zfhx1b), Zeb2] is a transcription factor implicated in the genesis of Mowat-Wilson syndrome (MWS) in humans. MWS is a rare genetic autosomal dominant disease caused by a mutation in the Sip1 gene (aka Zeb2 or Zfhx1b) mapped to 2q22.3 locus. MWS affects 1 in every 50-100 newborns worldwide. It is characterized by mental retardation, small stature, typical facial abnormalities as well as disturbances in the development of the cardio-vascular and renal systems as well as some other organs. Sip1 mutations cause abnormal neurogenesis in the brain during development as well as susceptibility to epileptic seizures. In the current study we investigated the role of the Sip1 gene in the activity of NMDA-, AMPA- and KA- receptors. We showed that a particular Sip1 mutation in the mouse causes changes in the activity of both NMDA- and AMPA- receptors in the neocortical neurons in vitro. We demonstrate that neocortical neurons that have only one copy of Sip1 (heterozygous, Sip1fI/wt), are more sensitive to both NMDA- and AMPA- receptors agonists as compared to wild type neurons (Sip1wt/wt). This is reflected in higher amplitudes of agonist induced Ca2+ signals as well as a lower half maximal effective concentration (ЕC50). In contrast, neurons from homozygous Sip1 mice (Sip1fI/fI), demonstrate higher resistance to these respective receptor agonists. This is reflected in lower amplitudes of Ca2+-responses and so a higher concentration of receptor activators is required for activation.
Collapse
Affiliation(s)
- Maria V Turovskaya
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia; Institute of Cell Biophysics, Russian Academy of Sciences, Russia
| | - Alexei A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | | | - Ekaterina A Epifanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Ekaterina V Borisova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Victor S Tarabykin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Egor A Turovsky
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia; Institute of Cell Biophysics, Russian Academy of Sciences, Russia.
| |
Collapse
|
27
|
Filippini A, Bonini D, La Via L, Barbon A. The Good and the Bad of Glutamate Receptor RNA Editing. Mol Neurobiol 2016; 54:6795-6805. [DOI: 10.1007/s12035-016-0201-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022]
|
28
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
29
|
Chen H, Xu G, Du H, Yi M, Li C. Integrative analysis of gene expression associated with epilepsy in human epilepsy and animal models. Mol Med Rep 2016; 13:4920-6. [PMID: 27081788 DOI: 10.3892/mmr.2016.5122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 03/21/2016] [Indexed: 11/05/2022] Open
Abstract
Epilepsy is a severe neuropsychiatric disorder, the cause of which remains to be elucidated. Genome‑wide association studies, DNA microarrays and proteomes have been widely applied to identify the candidate genes involved in epileptogenesis, and integrative analyses are often capable of extracting more detailed biological information from the data. In the present study, a total number of 1,065 genes in different animal models were collected to construct an epilepsy candidate gene database. Further analyses suggested that the response to organic substances, the intracellular signaling cascade and neurological system processes were significantly enriched biological processes, and the mitogen-activated protein kinase pathway was identified as a putative epileptogenic signaling pathway. In addition, the five key genes, growth factor receptor bound 2, amyloid β (A4) precursor protein, transforming growth factor‑β, vascular endothelial growth factor and cyclin‑dependent kinase inhibitor 1, were identified as being critical as central nodes in the protein networks. Reverse transcription‑quantitative polymerase chain reaction analysis revealed that these genes were all upregulated at the mRNA level in the epileptic loci compared with the resection margin of tissue samples from the same patients diagnosed with epilepsy. The data mining performed in the present study thus was shown to be a useful tool, which may contribute to obtaining further information on epileptic disorders and delineating the molecular mechanism of the associated genes.
Collapse
Affiliation(s)
- Hengling Chen
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South‑Central University for Nationalities, Wuhan, Hubei 430074, P.R. China
| | - Guozheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Hao Du
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Minhan Yi
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Chenhong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South‑Central University for Nationalities, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
30
|
Han L, Howe JR, Pickering DS. Neto2 Influences on Kainate Receptor Pharmacology and Function. Basic Clin Pharmacol Toxicol 2016; 119:141-8. [PMID: 26928870 DOI: 10.1111/bcpt.12575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/24/2016] [Indexed: 01/17/2023]
Abstract
Neuropilin tolloid-like protein 2 (Neto2) is an auxiliary subunit of kainate receptors (KARs). It specifically regulates KARs, for example slows desensitization and deactivation, increases the rate of recovery from desensitization, promotes modal gating and increases agonist sensitivity. Although the mechanism of Neto2 modulation is still unclear, gain-of-function results from the characterization of GluK1-GluA2 chimeras indicate that the GluK1 sequences included in these chimeras (part or all of the TMD and part of the linkers between the TMDs and LBD) play a key role in Neto2 modulation of KAR. In addition, GluK2 M3-S2 linkers and the D1-D1 dimer interface were also recently identified to be important for Neto2 modulation, and some studies suggested that Neto2's N-terminal regions, LDLa domain and the C-terminal regions are important for its modulation of KARs. Although more studies are needed to confirm the roles of these domains and to identify all the domains and residues essential for KAR modulation, these results facilitate our understanding of Neto2 modulation at the structural level, which could potentially aid the development of novel therapies for the treatment of diseases that are associated with KARs, for example epilepsies, non-syndromic autosomal recessive mental retardation, schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Liwei Han
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James R Howe
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Khermesh K, D'Erchia AM, Barak M, Annese A, Wachtel C, Levanon EY, Picardi E, Eisenberg E. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease. RNA (NEW YORK, N.Y.) 2016; 22:290-302. [PMID: 26655226 PMCID: PMC4712678 DOI: 10.1261/rna.054627.115] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/18/2015] [Indexed: 05/20/2023]
Abstract
Adenosine to inosine (A-to-I) RNA editing, catalyzed by the ADAR enzyme family, acts on dsRNA structures within pre-mRNA molecules. Editing of the coding part of the mRNA may lead to recoding, amino acid substitution in the resulting protein, possibly modifying its biochemical and biophysical properties. Altered RNA editing patterns have been observed in various neurological pathologies. Here, we present a comprehensive study of recoding by RNA editing in Alzheimer's disease (AD), the most common cause of irreversible dementia. We have used a targeted resequencing approach supplemented by a microfluidic-based high-throughput PCR coupled with next-generation sequencing to accurately quantify A-to-I RNA editing levels in a preselected set of target sites, mostly located within the coding sequence of synaptic genes. Overall, editing levels decreased in AD patients' brain tissues, mainly in the hippocampus and to a lesser degree in the temporal and frontal lobes. Differential RNA editing levels were observed in 35 target sites within 22 genes. These results may shed light on a possible association between the neurodegenerative processes typical for AD and deficient RNA editing.
Collapse
Affiliation(s)
- Khen Khermesh
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 59002, Israel
| | - Anna Maria D'Erchia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, 70126, Italy Institute of Biomembranes and Bioenergetics, National Research Council, Bari, 70126, Italy
| | - Michal Barak
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 59002, Israel
| | - Anita Annese
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Chaim Wachtel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 59002, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 59002, Israel
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, 70126, Italy Institute of Biomembranes and Bioenergetics, National Research Council, Bari, 70126, Italy
| | - Eli Eisenberg
- Sagol School of Neuroscience and Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
32
|
RNA Editing: A Contributor to Neuronal Dynamics in the Mammalian Brain. Trends Genet 2016; 32:165-175. [PMID: 26803450 DOI: 10.1016/j.tig.2015.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023]
Abstract
Post-transcriptional RNA modification by adenosine to inosine (A-to-I) editing expands the functional output of many important neuronally expressed genes. The mechanism provides flexibility in the proteome by expanding the variety of isoforms, and is a requisite for neuronal function. Indeed, targets for editing include key mediators of synaptic transmission with an overall significant effect on neuronal signaling. In addition, editing influences splice-site choice and miRNA targeting capacity, and thereby regulates neuronal gene expression. Editing efficiency at most of these sites increases during neuronal differentiation and brain maturation in a spatiotemporal manner. This editing-induced dynamics in the transcriptome is essential for normal brain development, and we are only beginning to understand its role in neuronal function. In this review we discuss the impact of RNA editing in the brain, with special emphasis on the physiological consequences for neuronal development and plasticity.
Collapse
|
33
|
Kliuchnikova A, Kuznetsova K, Moshkovskii S. ADAR-mediated messenger RNA editing: analysis at the proteome level. ACTA ACUST UNITED AC 2016; 62:510-519. [DOI: 10.18097/pbmc20166205510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Post-transcriptional RNA editing by RNA specific adenosine deaminases (ADAR) was discovered more than two decades ago. It provides additional regulation of animal and human transcriptome. In most cases, it occurs in nervous tissue, where, as a result of the reaction, adenosine is converted to inosine in particular sites of RNA. In case of messenger RNA, during translation, inosine is recognized as guanine leading to amino acid substitutions. Those substitutions are shown to affect substantially the function of proteins, e.g. subunits of the glutamate receptor. Nevertheless, most of the works on RNA editing use analysis of nucleic acids, even those which deal with a coding RNA. In this review, we propose the use of shotgun proteomics based on high resolution liquid chromatography and mass spectrometry for investigation of the effects of RNA editing at the protein level. Recently developed methods of big data processing allow combining the results of various omics techniques, being referred to as proteogenomics. The proposed proteogenomic approach for the analysis of RNA editing at the protein level will directly conduct a qualitative and quantitative analysis of protein edited sequences in the scale of whole proteome.
Collapse
Affiliation(s)
| | | | - S.A. Moshkovskii
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
34
|
Brande-Eilat N, Golumbic YN, Zaidan H, Gaisler-Salomon I. Acquisition of conditioned fear is followed by region-specific changes in RNA editing of glutamate receptors. Stress 2015; 18:309-18. [PMID: 26383032 DOI: 10.3109/10253890.2015.1073254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification process that can affect synaptic function. Transcripts encoding the kainate GRIK1 and AMPA GluA2 glutamate receptor subunits undergo editing that leads to a glycine/arginine (Q/R) exchange and reduced Ca(2+) permeability. We hypothesized that editing at these sites could be experience-dependent, temporally dynamic and region-specific. We trained C57/Bl6 mice in trace and contextual fear conditioning protocols, and examined editing levels at GRIK1 and GluA2 Q/R sites in the amygdala (CeA) and hippocampus (CA1 and CA3), at two time points after training. We also examined experience-dependent changes in the expression of RNA editing enzymes and editing targets. Animals trained in the trace fear conditioning protocol exhibited a transient increase in unedited GRIK1 RNA in the amygdala, and their learning efficiency correlated with unedited RNA levels in CA1. In line with previous reports, GluA2 RNA editing levels were nearly 100%. Additionally, we observed experience-dependent changes in mRNA expression of the RNA editing enzymes ADAR2 and ADAR1 in amygdala and hippocampus, and a learning-dependent increase in the alternatively spliced inactive form of ADAR2 in the amygdala. Since unedited transcripts code for Ca(2+)-permeable receptor subunits, these findings suggest that RNA editing at Q/R sites of glutamate receptors plays an important role in experience-dependent synaptic modification processes.
Collapse
Affiliation(s)
- Noa Brande-Eilat
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Yaela N Golumbic
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Hiba Zaidan
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Inna Gaisler-Salomon
- a Psychology Department , University of Haifa , Haifa , Israel and
- b Department of Psychiatry , Columbia University , New York , NY , USA
| |
Collapse
|
35
|
Crépel V, Mulle C. Physiopathology of kainate receptors in epilepsy. Curr Opin Pharmacol 2014; 20:83-8. [PMID: 25506747 DOI: 10.1016/j.coph.2014.11.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Kainate receptors (KARs) are tetrameric ionotropic glutamate receptors composed of the combinations of five subunits GluK1-GluK5. KARs are structurally related to AMPA receptors but they serve quite distinct functions by regulating the activity of synaptic circuits at presynaptic and postsynaptic sites, through either ionotropic or metabotropic actions. Although kainate is a potent neurotoxin known to induce acute seizures through activation of KARs, the actual role of KARs in the clinically-relevant chronic phase of temporal lobe epilepsy (TLE) has long been elusive. Recent evidences have described pathophysiological mechanisms of heteromeric GluK2/GluK5 KARs in generating recurrent seizures in chronic epilepsy. The role of the other major subunit GluK1 in epileptogenic activity is still a matter of debate. This review will present the current knowledge on the subtype-specific pharmacology of KARs and highlight recent results linking KARs to epileptic conditions.
Collapse
Affiliation(s)
- Valérie Crépel
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, France; University of Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
36
|
Peret A, Christie LA, Ouedraogo DW, Gorlewicz A, Epsztein J, Mulle C, Crépel V. Contribution of aberrant GluK2-containing kainate receptors to chronic seizures in temporal lobe epilepsy. Cell Rep 2014; 8:347-54. [PMID: 25043179 DOI: 10.1016/j.celrep.2014.06.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 05/08/2014] [Accepted: 06/19/2014] [Indexed: 02/01/2023] Open
Abstract
Kainate is a potent neurotoxin known to induce acute seizures. However, whether kainate receptors (KARs) play any role in the pathophysiology of temporal lobe epilepsy (TLE) is not known. In TLE, recurrent mossy fiber (rMF) axons form abnormal excitatory synapses onto other dentate granule cells that operate via KARs. The present study explores the pathophysiological implications of KARs in generating recurrent seizures in chronic epilepsy. In an in vitro model of TLE, seizure-like activity was minimized in mice lacking the GluK2 subunit, which is a main component of aberrant synaptic KARs at rMF synapses. In vivo, the frequency of interictal spikes and ictal discharges was strongly reduced in GluK2(-/-) mice or in the presence of a GluK2/GluK5 receptor antagonist. Our data show that aberrant GluK2-containing KARs play a major role in the chronic seizures that characterize TLE and thus constitute a promising antiepileptic target.
Collapse
Affiliation(s)
- Angélique Peret
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - Louisa A Christie
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - David W Ouedraogo
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - Adam Gorlewicz
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, 33000 Bordeaux, France
| | - Jérôme Epsztein
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, 33000 Bordeaux, France
| | - Valérie Crépel
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France.
| |
Collapse
|
37
|
Abstract
Glutamate receptors are ligand-gated ion channels that mediate fast excitatory synaptic transmission throughout the central nervous system. Functional receptors are homo- or heteromeric tetramers with each subunit contributing a re-entrant pore loop that dips into the membrane from the cytoplasmic side. The pore loops form a narrow constriction near their apex with a wide vestibule toward the cytoplasm and an aqueous central cavity facing the extracellular solution. This article focuses on the pore region, reviewing how structural differences among glutamate receptor subtypes determine their distinct functional properties.
Collapse
Affiliation(s)
- James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
38
|
Caracciolo L, Fumagalli F, Carelli S, Madaschi L, La Via L, Bonini D, Fiorentini C, Barlati S, Gorio A, Barbon A. Kainate receptor RNA editing is markedly altered by acute spinal cord injury. J Mol Neurosci 2013; 51:903-10. [PMID: 23979837 DOI: 10.1007/s12031-013-0098-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/12/2013] [Indexed: 11/24/2022]
Abstract
We have previously observed changes in the RNA editing of AMPA receptors after acute spinal cord injury (SCI); this implies that post-transcriptional modifications are capable of affecting the physiological properties of glutamate receptor channels and related signal transduction in this neurodegenerative condition. Here, we report that the editing of the ionotropic KAR is markedly decreased at both GluK1 and GluK2 Q/R sites in the epicenter of the lesion and with distinct magnitude and kinetics also in the caudal and rostral portions of the injured cord. These effects are persistent, being observed as late as 30 days after lesioning. In addition, also the I/V and Y/C sites of GluK2 were severely affected after SCI. These findings add novel information to the relevance of editing of glutamate receptors following acute SCI, thus expanding the recently emerged role of post-transcriptional mechanisms under these experimental conditions.
Collapse
Affiliation(s)
- Luca Caracciolo
- Division of Biology and Genetics, Department of Molecular and Translational Medicine and National Institute of Neuroscience, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Morris GP, Clark IA, Zinn R, Vissel B. Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 2013; 105:40-53. [PMID: 23850597 DOI: 10.1016/j.nlm.2013.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/25/2022]
Abstract
We focus on emerging roles for microglia in synaptic plasticity, cognition and disease. We outline evidence that ramified microglia, traditionally thought to be functionally "resting" (i.e. quiescent) in the normal brain, in fact are highly dynamic and plastic. Ramified microglia continually and rapidly extend processes, contact synapses in an activity and experience dependent manner, and play a functionally dynamic role in synaptic plasticity, possibly through release of cytokines and growth factors. Ramified microglial also contribute to structural plasticity through the elimination of synapses via phagocytic mechanisms, which is necessary for normal cognition. Microglia have numerous mechanisms to monitor neuronal activity and numerous mechanisms also exist to prevent them transitioning to an activated state, which involves retraction of their surveying processes. Based on the evidence, we suggest that maintaining the ramified state of microglia is essential for normal synaptic and structural plasticity that supports cognition. Further, we propose that change of their ramified morphology and function, as occurs in inflammation associated with numerous neurological disorders such as Alzheimer's and Parkinson's disease, disrupts their intricate and essential synaptic functions. In turn altered microglia function could cause synaptic dysfunction and excess synapse loss early in disease, initiating a range of pathologies that follow. We conclude that the future of learning and memory research depends on an understanding of the role of non-neuronal cells and that this should include using sophisticated molecular, cellular, physiological and behavioural approaches combined with imaging to causally link the role of microglia to brain function and disease including Alzheimer's and Parkinson's disease and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gary P Morris
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
40
|
Abstract
Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc. Antagonism of the CP-AMPARs reduces cravings. It is necessary to pursue further exploration of the AMPA receptor subunit composition and variations at the level of the NAc for a better understanding of glutamatergic plastic changes. It is known that cocaine and morphine are able to induce changes in dendritic spine morphology by modifying actin cycling. These changes include an initial increase in spine head diameter and increases in AMPA receptor expression, followed by a second stage of spine head diameter retraction and reduction of the AMPA receptors' expression in spines. Besides glutamate and dopamine, other factors, like brain-derived neurotrophic factor (BDNF), can influence NAc activity and induce changes in dendritic spine density. BDNF also induces drug-related behaviors like self-administration and relapse. Neither apoptosis nor neurogenesis plays a relevant role in the neurobiological processes subjacent to cocaine addiction in adults (rodent or human). Different therapeutic drugs like N-acetylcysteine (NAC), modafinil, acamprosate, and topiramate have been tested in preclinical and/or clinical models for alleviating drug relapse. Moreover, these therapeutic drugs target the glutamatergic circuitry between the PFC and the NAc. NAC and acamprosate have shown inconsistent results in clinical trials. Modafinil and topiramate have shown some success, but more clinical trials are necessary. Based on the current review findings, it could be recommendable to explore therapeutic approaches that include synergism between different drugs and neurotransmitter systems. The discrepancy in the results of some therapeutic drugs between preclinical versus clinical trials for alleviating relapse or drug dependence could be linked to the scarce exploration of preclinical models that mimic polydrug abuse patterns, for example, cocaine plus alcohol. At the clinical level, the pattern of polydrug consumption is a phenomenon of considerable frequency. Finally, as a complement at the end, an updated summary is included about the role of glutamate in other neuropsychiatric disorders (for example, mood disorders, schizophrenia, and others).
Collapse
Affiliation(s)
- Gabriel C Quintero
- Florida State University - Panama, Clayton, Panama ; Medical University of South Carolina, Charleston, South Carolina, USA ; Smithsonian Tropical Research Institute, Ancon, Republic of Panama
| |
Collapse
|
41
|
Eifler T, Chan D, Beal PA. A screening protocol for identification of functional mutants of RNA editing adenosine deaminases. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2012; 4:357-69. [PMID: 23788559 PMCID: PMC3690185 DOI: 10.1002/9780470559277.ch120139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic screens can be used to evaluate a spectrum of mutations and thereby infer the function of particular residues within a protein. The Adenosine Deaminase Acting on RNA (ADAR) family of RNA-editing enzymes selectively deaminate adenosines (A) in double-helical RNA, generating inosine (I). The protocol described here exploits the editing activity of ADAR2 in a yeast-based screen by inserting an editing substrate sequence with a stop codon incorporated at the editing site upstream from the sequence encoding the reporter α-galactosidase. A-to-I editing changes the stop codon to a tryptophan codon, allowing normal expression of the reporter. This technique is particularly well-suited for screening ADAR and ADAR substrate mutant libraries for editing activity. Curr. Protoc. Chem. Biol. 4:357-369 © 2012 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Tristan Eifler
- Department of Chemistry, University of California, Davis
| | - Dalen Chan
- Department of Chemistry, University of California, Davis
| | - Peter A. Beal
- Department of Chemistry, University of California, Davis
| |
Collapse
|
42
|
Zhu H, Urban DJ, Blashka J, McPheeters MT, Kroeze WK, Mieczkowski P, Overholser JC, Jurjus GJ, Dieter L, Mahajan GJ, Rajkowska G, Wang Z, Sullivan PF, Stockmeier CA, Roth BL. Quantitative analysis of focused a-to-I RNA editing sites by ultra-high-throughput sequencing in psychiatric disorders. PLoS One 2012; 7:e43227. [PMID: 22912834 PMCID: PMC3422315 DOI: 10.1371/journal.pone.0043227] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/18/2012] [Indexed: 12/01/2022] Open
Abstract
A-to-I RNA editing is a post-transcriptional modification of single nucleotides in RNA by adenosine deamination, which thereby diversifies the gene products encoded in the genome. Thousands of potential RNA editing sites have been identified by recent studies (e.g. see Li et al, Science 2009); however, only a handful of these sites have been independently confirmed. Here, we systematically and quantitatively examined 109 putative coding region A-to-I RNA editing sites in three sets of normal human brain samples by ultra-high-throughput sequencing (uHTS). Forty of 109 putative sites, including 25 previously confirmed sites, were validated as truly edited in our brain samples, suggesting an overestimation of A-to-I RNA editing in these putative sites by Li et al (2009). To evaluate RNA editing in human disease, we analyzed 29 of the confirmed sites in subjects with major depressive disorder and schizophrenia using uHTS. In striking contrast to many prior studies, we did not find significant alterations in the frequency of RNA editing at any of the editing sites in samples from these patients, including within the 5HT2C serotonin receptor (HTR2C). Our results indicate that uHTS is a fast, quantitative and high-throughput method to assess RNA editing in human physiology and disease and that many prior studies of RNA editing may overestimate both the extent and disease-related variability of RNA editing at the sites we examined in the human brain.
Collapse
Affiliation(s)
- Hu Zhu
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina, United States of America
| | - Daniel J. Urban
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina, United States of America
| | - Jared Blashka
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina, United States of America
| | - Matthew T. McPheeters
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina, United States of America
| | - Wesley K. Kroeze
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina, United States of America
| | - Piotr Mieczkowski
- Department of Genetics, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - James C. Overholser
- Department of Psychology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - George J. Jurjus
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Psychiatry, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Lesa Dieter
- Department of Psychology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gouri J. Mahajan
- Center for Psychiatric Neuroscience, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Grazyna Rajkowska
- Center for Psychiatric Neuroscience, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Zefeng Wang
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina, United States of America
| | - Patrick F. Sullivan
- Department of Genetics, School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Craig A. Stockmeier
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Psychiatric Neuroscience, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
43
|
Mizrahi RA, Phelps KJ, Ching AY, Beal PA. Nucleoside analog studies indicate mechanistic differences between RNA-editing adenosine deaminases. Nucleic Acids Res 2012; 40:9825-35. [PMID: 22885375 PMCID: PMC3479202 DOI: 10.1093/nar/gks752] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Adenosine deaminases acting on RNA (ADAR1 and ADAR2) are human RNA-editing adenosine deaminases responsible for the conversion of adenosine to inosine at specific locations in cellular RNAs. Since inosine is recognized during translation as guanosine, this often results in the expression of protein sequences different from those encoded in the genome. While our knowledge of the ADAR2 structure and catalytic mechanism has grown over the years, our knowledge of ADAR1 has lagged. This is due, at least in part, to the lack of well defined, small RNA substrates useful for mechanistic studies of ADAR1. Here, we describe an ADAR1 substrate RNA that can be prepared by a combination of chemical synthesis and enzymatic ligation. Incorporation of adenosine analogs into this RNA and analysis of the rate of ADAR1 catalyzed deamination revealed similarities and differences in the way the ADARs recognize the edited nucleotide. Importantly, ADAR1 is more dependent than ADAR2 on the presence of N7 in the edited base. This difference between ADAR1 and ADAR2 appears to be dependent on the identity of a single amino acid residue near the active site. Thus, this work provides an important starting point in defining mechanistic differences between two functionally distinct human RNA editing ADARs.
Collapse
Affiliation(s)
- Rena A Mizrahi
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
44
|
Lyddon R, Navarrett S, Dracheva S. Ionotropic glutamate receptor mRNA editing in the prefrontal cortex: no alterations in schizophrenia or bipolar disorder. J Psychiatry Neurosci 2012; 37:267-72. [PMID: 22469055 PMCID: PMC3380098 DOI: 10.1503/jpn.110107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dysfunction of glutamate neurotransmission has been implicated in the pathology of schizophrenia and bipolar disorder, and one mechanism by which glutamate signalling can be altered is through RNA editing of ionotropic glutamate receptors (iGluRs). The objectives of the present study were to evaluate the editing status of iGluRs in the human prefrontal cortex, determine whether iGluR editing is associated with psychiatric disease or suicide and evaluate a potential association between editing and alternative splicing in the α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) iGluR subunits' pre-mRNA. METHODS We studied specimens derived from patients with antemortem diagnoses of bipolar disorder (n = 31) or schizophrenia (n = 34) who died by suicide or other causes, and from psychiatrically healthy controls (n = 34) who died from causes other than suicide. The RNA editing at all 8 editing sites within AMPA (GluA2-4 subunits) and kainate (GluK1-2 subunits) iGluRs was analyzed using a novel real-time quantitative polymerase chain reaction assay. RESULTS No differences in editing were detected among schizophrenia, bipolar or control groups or between suicide completers and patients who died from causes other than suicide. The editing efficiency was significantly higher in the flop than in the flip splicoforms of GluA3-4 AMPA subunits (all p < 0.001). LIMITATIONS The study is limited by the near absence of specimens from medicationnaive psychiatric patients and considerable variation in medication regimens among individuals, both of which introduce considerable uncertainty into the analysis of potential medication effects. CONCLUSION We found that iGluR RNA editing status was not associated with bipolar disorder, schizophrenia or suicide. Differences in editing between flip and flop splicoforms suggest that glutamate sensitivity of receptors containing GluA3 and/or GluA4 flop subunits is moderated as a result of increased editing.
Collapse
Affiliation(s)
| | | | - Stella Dracheva
- Correspondence to: S. Dracheva, Psychiatry Research (4F-02), Bronx VA Medical Center, 130 West Kingsbridge Rd., Bronx NY 10468;
| |
Collapse
|
45
|
Kawamoto EM, Vivar C, Camandola S. Physiology and pathology of calcium signaling in the brain. Front Pharmacol 2012; 3:61. [PMID: 22518105 PMCID: PMC3325487 DOI: 10.3389/fphar.2012.00061] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/26/2012] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca(2+)) plays fundamental and diversified roles in neuronal plasticity. As second messenger of many signaling pathways, Ca(2+) as been shown to regulate neuronal gene expression, energy production, membrane excitability, synaptogenesis, synaptic transmission, and other processes underlying learning and memory and cell survival. The flexibility of Ca(2+) signaling is achieved by modifying cytosolic Ca(2+) concentrations via regulated opening of plasma membrane and subcellular Ca(2+) sensitive channels. The spatiotemporal patterns of intracellular Ca(2+) signals, and the ultimate cellular biological outcome, are also dependent upon termination mechanism, such as Ca(2+) buffering, extracellular extrusion, and intra-organelle sequestration. Because of the central role played by Ca(2+) in neuronal physiology, it is not surprising that even modest impairments of Ca(2+) homeostasis result in profound functional alterations. Despite their heterogeneous etiology neurodegenerative disorders, as well as the healthy aging process, are all characterized by disruption of Ca(2+) homeostasis and signaling. In this review we provide an overview of the main types of neuronal Ca(2+) channels and their role in neuronal plasticity. We will also discuss the participation of Ca(2+) signaling in neuronal aging and degeneration.
Collapse
Affiliation(s)
- Elisa Mitiko Kawamoto
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Carmen Vivar
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| |
Collapse
|
46
|
Wright A, Vissel B. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Front Mol Neurosci 2012; 5:34. [PMID: 22514516 PMCID: PMC3324117 DOI: 10.3389/fnmol.2012.00034] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 02/29/2012] [Indexed: 11/13/2022] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are comprised of different combinations of GluA1–GluA4 (also known asGluR1–GluR4 and GluR-A to GluR-D) subunits. The GluA2 subunit is subject to RNA editing by the ADAR2 enzyme, which converts a codon for glutamine (Gln; Q), present in the GluA2 gene, to a codon for arginine (Arg; R) found in the mRNA. AMPA receptors are calcium (Ca2+)-permeable if they contain the unedited GluA2(Q) subunit or if they lack the GluA2 subunit. While most AMPA receptors in the brain contain the edited GluA2(R) subunit and are therefore Ca2+-impermeable, recent evidence suggests that Ca2+-permeable AMPA receptors are important in synaptic plasticity, learning, and disease. Strong evidence supports the notion that Ca2+-permeable AMPA receptors are usually GluA2-lacking AMPA receptors, with little evidence to date for a significant role of unedited GluA2 in normal brain function. However, recent detailed studies suggest that Ca2+-permeable AMPA receptors containing unedited GluA2 do in fact occur in neurons and can contribute to excitotoxic cell loss, even where it was previously thought that there was no unedited GluA2.This review provides an update on the role of GluA2 RNA editing in the healthy and diseased brain and summarizes recent insights into the mechanisms that control this process. We suggest that further studies of the role of unedited GluA2 in normal brain function and disease are warranted, and that GluA2 editing should be considered as a possible contributing factor when Ca2+-permeable AMPA receptors are observed.
Collapse
Affiliation(s)
- Amanda Wright
- Neurodegenerative Disorders Laboratory, Neuroscience Department, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | |
Collapse
|
47
|
Barbon A, Barlati S. Glutamate receptor RNA editing in health and disease. BIOCHEMISTRY (MOSCOW) 2012; 76:882-9. [PMID: 22022961 DOI: 10.1134/s0006297911080037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RNA editing is a post-transcriptional process with an important role in gene modification. This editing process involves site-selective deamination of adenosine into inosine in the pre-mRNA, leading to the alteration of translation codons and splicing sites in nuclear transcripts, thereby enabling functionally distinct proteins to arise from a single gene. One important instance is the neuron editing of the ionotropic glutamate receptors (iGluRs). GluRs play a key role in excitatory synaptic transmission and plasticity in the central nervous system (CNS); their channel properties are largely dictated by the subunit composition of the tetrameric receptors. AMPA/kainate channels are assembled from GluA1-4 AMPA or GluK1-5 kainate receptor subunits. In particular, three of the four AMPA and two of the five kainate receptor subunits are subject to RNA editing. The editing positions have been named on the basis of the amino acid substitutions, such as the Q/R site in AMPA GluA2; the Q/R site in GluK1 and GluK2; the R/G site in GluA2, GluA3, and GluA4; and the I/V and Y/C sites in GluK2. These amino acid changes lead to profound alterations of the channel properties. This paper reviews the most relevant data showing the importance of glutamate receptor RNA editing in finely tuning glutamatergic neurotransmission in the normal CNS and following alterations of the editing process in association with disease phenotypes. Overall, these data indicate that a highly regulated process of glutamate receptor editing is of key importance in the proper function of neuronal cells and in their ability to adapt and modulate synaptic function.
Collapse
Affiliation(s)
- A Barbon
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia, 25123, Italy
| | | |
Collapse
|
48
|
González-González IM, Konopacki FA, Rocca DL, Doherty AJ, Jaafari N, Wilkinson KA, Henley JM. Kainate receptor trafficking. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Li B, Zhang S, Zhang H, Hertz L, Peng L. Fluoxetine affects GluK2 editing, glutamate-evoked Ca(2+) influx and extracellular signal-regulated kinase phosphorylation in mouse astrocytes. J Psychiatry Neurosci 2011; 36:322-38. [PMID: 21320410 PMCID: PMC3163648 DOI: 10.1503/jpn.100094] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We sought to study the effects of chronic exposure to fluoxetine - a selective serotonin reuptake inhibitor (SSRI) and specific 5-HT(2B) receptor agonist in astrocytes - on the expression of kainate receptors (GluK1-5) in cultured astrocytes and in intact brains in mice and on GluK2 editing by adenosine deaminase acting on RNA (ADAR), as well as the ensuing effects of fluoxetine on glutamate-mediated Ca(2+) influx and extracellular signal-regulated kinase (ERK)(1/2) phosphorylation in astrocytes. METHODS We performed reverse transcription-polymerase chain reaction (PCR) to assess mRNA expression. We analyzed RNA editing with amplification refractory mutation system PCR and complementary DNA sequencing. Protein expression and ERK phosphorylation were assessed using Western blots. We studied gene silencing with specific small interfering RNAs (siRNA), and we studied intracellular Ca(2+) using fluorometry. RESULTS All GluK subunits were present in the brain in vivo, and GluK2-5 subunits were present in cultured astrocytes. Fluoxetine upregulated GluK2 and ADAR2. Enhanced GluK2 editing by fluoxetine abolished glutamate-mediated increases in intra cellular Ca(2+) and ERK(1/2) phosphorylation. Enhanced editing of GluK2 was prevented by siRNA against the 5-HT(2B) receptor or ADAR2. LIMITATIONS Limitations of our study include the use of an in vitro system, but our cultured cells in many respects behave like in vivo astrocytes. CONCLUSION Fluoxetine alters astrocytic glutamatergic function.
Collapse
Affiliation(s)
| | | | | | | | - Liang Peng
- Correspondence to: Prof. L. Peng, College of Basic Medical Sciences, China Medical University, No. 92 Beier Rd., Heping District, Shenyang, China;
| |
Collapse
|
50
|
Contractor A, Mulle C, Swanson GT. Kainate receptors coming of age: milestones of two decades of research. Trends Neurosci 2011; 34:154-63. [PMID: 21256604 PMCID: PMC3051042 DOI: 10.1016/j.tins.2010.12.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/16/2010] [Accepted: 12/18/2010] [Indexed: 11/18/2022]
Abstract
Two decades have passed since the first report of the cloning of a kainate-type glutamate receptor (KAR) subunit. The intervening years have seen a rapid growth in our understanding of the biophysical properties and function of KARs in the brain. This research has led to an appreciation that KARs play very distinct roles at synapses relative to other members of the glutamate-gated ion channel receptor family, despite structural and functional commonalities. The surprisingly diverse and complex nature of KAR signaling underlies their unique impact upon neuronal networks through their direct and indirect effects on synaptic transmission, and their prominent role in regulating cell excitability. This review pieces together highlights from the two decades of research subsequent to the cloning of the first subunit, and provides an overview of our current understanding of the role of KARs in the CNS and their potential importance to neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | |
Collapse
|