1
|
A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo. Nat Commun 2021; 12:4795. [PMID: 34373460 PMCID: PMC8352926 DOI: 10.1038/s41467-021-24690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission. We demonstrate that genetically targeted expression of the two HySyn components, a Hydra-derived neuropeptide and its receptor, creates de novo neuromodulatory transmission in a mammalian neuronal tissue culture model and functionally rewires a behavioral circuit in vivo in the nematode Caenorhabditis elegans. HySyn can interface with existing optogenetic, chemogenetic and pharmacological approaches to functionally probe synaptic transmission, dissect neuropeptide signaling, or achieve targeted modulation of specific neural circuits and behaviors. Engineering de novo synapse-like connections between neurons could enhance our understanding of neuronal circuits and how they generate behaviour. The authors present a two-component system that creates synthetic neuromodulatory connections to manipulate intracellular Ca2+ levels in in vivo neural circuits.
Collapse
|
2
|
Chen B, Hu R, Min Q, Li Y, Parkinson DB, Dun XP. FGF5 Regulates Schwann Cell Migration and Adhesion. Front Cell Neurosci 2020; 14:237. [PMID: 32848626 PMCID: PMC7417478 DOI: 10.3389/fncel.2020.00237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
The fibroblast growth factor (FGF) family polypeptides play key roles in promoting tissue regeneration and repair. FGF5 is strongly up-regulated in Schwann cells of the peripheral nervous system following injury; however, a role for FGF5 in peripheral nerve regeneration has not been shown up to now. In this report, we examined the expression of FGF5 and its receptors FGFR1-4 in Schwann cells of the mouse sciatic nerve following injury, and then measured the effects of FGF5 treatment upon cultured primary rat Schwann cells. By microarray and mRNA sequencing data analysis, RT-PCR, qPCR, western blotting and immunostaining, we show that FGF5 is highly up-regulated in Schwann cells of the mouse distal sciatic nerve following injury, and FGFR1 and FGFR2 are highly expressed in Schwann cells of the peripheral nerve both before and following injury. Using cultured primary rat Schwann cells, we show that FGF5 inhibits ERK1/2 MAP kinase activity but promotes rapid Schwann cell migration and adhesion via the upregulation of N-cadherin. Thus, FGF5 is an autocrine regulator of Schwann cells to regulate Schwann cell migration and adhesion.
Collapse
Affiliation(s)
- Bing Chen
- Department of Neurology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical School, Guangzhou, China
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Yankun Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Xin-Peng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China.,Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, United Kingdom.,The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
3
|
DeLaney K, Buchberger AR, Atkinson L, Gründer S, Mousley A, Li L. New techniques, applications and perspectives in neuropeptide research. ACTA ACUST UNITED AC 2018; 221:221/3/jeb151167. [PMID: 29439063 DOI: 10.1242/jeb.151167] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuropeptides are one of the most diverse classes of signaling molecules and have attracted great interest over the years owing to their roles in regulation of a wide range of physiological processes. However, there are unique challenges associated with neuropeptide studies stemming from the highly variable molecular sizes of the peptides, low in vivo concentrations, high degree of structural diversity and large number of isoforms. As a result, much effort has been focused on developing new techniques for studying neuropeptides, as well as novel applications directed towards learning more about these endogenous peptides. The areas of importance for neuropeptide studies include structure, localization within tissues, interaction with their receptors, including ion channels, and physiological function. Here, we discuss these aspects and the associated techniques, focusing on technologies that have demonstrated potential in advancing the field in recent years. Most identification and structural information has been gained by mass spectrometry, either alone or with confirmations from other techniques, such as nuclear magnetic resonance spectroscopy and other spectroscopic tools. While mass spectrometry and bioinformatic tools have proven to be the most powerful for large-scale analyses, they still rely heavily on complementary methods for confirmation. Localization within tissues, for example, can be probed by mass spectrometry imaging, immunohistochemistry and radioimmunoassays. Functional information has been gained primarily from behavioral studies coupled with tissue-specific assays, electrophysiology, mass spectrometry and optogenetic tools. Concerning the receptors for neuropeptides, the discovery of ion channels that are directly gated by neuropeptides opens up the possibility of developing a new generation of tools for neuroscience, which could be used to monitor neuropeptide release or to specifically change the membrane potential of neurons. It is expected that future neuropeptide research will involve the integration of complementary bioanalytical technologies and functional assays.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Amanda R Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Louise Atkinson
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Angela Mousley
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA .,School of Pharmacy, University of Wisconsin-Madison, 1450 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
4
|
Opioid receptor-dependent sex differences in synaptic plasticity in the hippocampal mossy fiber pathway of the adult rat. J Neurosci 2015; 35:1723-38. [PMID: 25632146 DOI: 10.1523/jneurosci.0820-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mossy fiber (MF) pathway is critical to hippocampal function and influenced by gonadal hormones. Physiological data are limited, so we asked whether basal transmission and long-term potentiation (LTP) differed in slices of adult male and female rats. The results showed small sex differences in basal transmission but striking sex differences in opioid receptor sensitivity and LTP. When slices were made from females on proestrous morning, when serum levels of 17β-estradiol peak, the nonspecific opioid receptor antagonist naloxone (1 μm) enhanced MF transmission but there was no effect in males, suggesting preferential opioid receptor-dependent inhibition in females when 17β-estradiol levels are elevated. The μ-opioid receptor (MOR) antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP; 300 nm) had a similar effect but the δ-opioid receptor (DOR) antagonist naltrindole (NTI; 1 μm) did not, implicating MORs in female MF transmission. The GABAB receptor antagonist saclofen (200 μm) occluded effects of CTOP but the GABAA receptor antagonist bicuculline (10 μm) did not. For LTP, a low-frequency (LF) protocol was used because higher frequencies elicited hyperexcitability in females. Proestrous females exhibited LF-LTP but males did not, suggesting a lower threshold for synaptic plasticity when 17β-estradiol is elevated. NTI blocked LF-LTP in proestrous females, but CTOP did not. Electron microscopy revealed more DOR-labeled spines of pyramidal cells in proestrous females than males. Therefore, we suggest that increased postsynaptic DORs mediate LF-LTP in proestrous females. The results show strong MOR regulation of MF transmission only in females and identify a novel DOR-dependent form of MF LTP specific to proestrus.
Collapse
|
5
|
Lemieux GA, Cunningham KA, Lin L, Mayer F, Werb Z, Ashrafi K. Kynurenic acid is a nutritional cue that enables behavioral plasticity. Cell 2015; 160:119-31. [PMID: 25594177 PMCID: PMC4334586 DOI: 10.1016/j.cell.2014.12.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/16/2014] [Accepted: 12/11/2014] [Indexed: 12/27/2022]
Abstract
The kynurenine pathway of tryptophan metabolism is involved in the pathogenesis of several brain diseases, but its physiological functions remain unclear. We report that kynurenic acid, a metabolite in this pathway, functions as a regulator of food-dependent behavioral plasticity in C. elegans. The experience of fasting in C. elegans alters a variety of behaviors, including feeding rate, when food is encountered post-fast. Levels of neurally produced kynurenic acid are depleted by fasting, leading to activation of NMDA-receptor-expressing interneurons and initiation of a neuropeptide-y-like signaling axis that promotes elevated feeding through enhanced serotonin release when animals re-encounter food. Upon refeeding, kynurenic acid levels are eventually replenished, ending the elevated feeding period. Because tryptophan is an essential amino acid, these findings suggest that a physiological role of kynurenic acid is in directly linking metabolism to activity of NMDA and serotonergic circuits, which regulate a broad range of behaviors and physiologies.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Katherine A Cunningham
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Lin Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Fahima Mayer
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA.
| |
Collapse
|
6
|
Neuropeptide y gates a stress-induced, long-lasting plasticity in the sympathetic nervous system. J Neurosci 2013; 33:12705-17. [PMID: 23904607 DOI: 10.1523/jneurosci.3132-12.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute stress evokes the fight-or-flight reflex, which via release of the catecholamine hormones affects the function of every major organ. Although the reflex is transient, it has lasting consequences that produce an exaggerated response when stress is reexperienced. How this change is encoded is not known. We investigated whether the reflex affects the adrenal component of the sympathetic nervous system, a major branch of the stress response. Mice were briefly exposed to the cold-water forced swim test (FST) which evoked an increase in circulating catecholamines. Although this hormonal response was transient, the FST led to a long-lasting increase in the catecholamine secretory capacity measured amperometrically from chromaffin cells and in the expression of tyrosine hydroxylase. A variety of approaches indicate that these changes are regulated postsynaptically by neuropeptide Y (NPY), an adrenal cotransmitter. Using immunohistochemistry, RT-PCR, and NPY(GFP) BAC mice, we find that NPY is synthesized by all chromaffin cells. Stress failed to increase secretory capacity in NPY knock-out mice. Genetic or pharmacological interference with NPY and Y1 (but not Y2 or Y5) receptor signaling attenuated the stress-induced change in tyrosine hydroxylase expression. These results indicate that, under basal conditions, adrenal signaling is tonically inhibited by NPY, but stress overrides this autocrine negative feedback loop. Because acute stress leads to a lasting increase in secretory capacity in vivo but does not alter sympathetic tone, these postsynaptic changes appear to be an adaptive response. We conclude that the sympathetic limb of the stress response exhibits an activity-dependent form of long-lasting plasticity.
Collapse
|
7
|
Voltage-gated Ca2+ influx and mitochondrial Ca2+ initiate secretion from Aplysia neuroendocrine cells. Neuroscience 2013; 250:755-72. [PMID: 23876326 DOI: 10.1016/j.neuroscience.2013.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/14/2023]
Abstract
Neuroendocrine secretion often requires prolonged voltage-gated Ca(2+) entry; however, the ability of Ca(2+) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in Aplysia by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca(2+) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. The response was similar for step durations of ≥ 50 ms, but fell off sharply with shorter stimuli. The capacitance change was attenuated by replacing external Ca(2+) with Ba(2+), blocking Ca(2+) channels, buffering intracellular Ca(2+) with EGTA, disrupting synaptic protein recycling, or genetic knock-down of ELH. Regarding intracellular stores, liberating mitochondrial Ca(2+) with the protonophore, carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP), brought about an EGTA-sensitive elevation of capacitance. Conversely, no change was observed to Ca(2+) released from the endoplasmic reticulum or acidic stores. Prior exposure to FCCP lessened the train-induced capacitance increase, suggesting overlap in the pool of releasable vesicles. Employing GTP-γ-S to interfere with endocytosis delayed recovery (presumed membrane retrieval) of the capacitance change following FCCP, but not the train. Finally, secretion was correlated with reproductive behavior, in that neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca(2+), either from influx or stores, and may reflect the all-or-none nature of reproduction.
Collapse
|
8
|
Abstract
Neuropeptides are found in many mammalian CNS neurons where they play key roles in modulating neuronal activity. In contrast to amino acid transmitter release at the synapse, neuropeptide release is not restricted to the synaptic specialization, and after release, a neuropeptide may diffuse some distance to exert its action through a G protein-coupled receptor. Some neuropeptides such as hypocretin/orexin are synthesized only in single regions of the brain, and the neurons releasing these peptides probably have similar functional roles. Other peptides such as neuropeptide Y (NPY) are synthesized throughout the brain, and neurons that synthesize the peptide in one region have no anatomical or functional connection with NPY neurons in other brain regions. Here, I review converging data revealing a complex interaction between slow-acting neuromodulator peptides and fast-acting amino acid transmitters in the control of energy homeostasis, drug addiction, mood and motivation, sleep-wake states, and neuroendocrine regulation.
Collapse
|
9
|
Rodriguez-Diaz R, Dando R, Huang YA, Berggren PO, Roper SD, Caicedo A. Real-time detection of acetylcholine release from the human endocrine pancreas. Nat Protoc 2012; 7:1015-23. [PMID: 22555241 DOI: 10.1038/nprot.2012.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurons, sensory cells and endocrine cells secrete neurotransmitters and hormones to communicate with other cells and to coordinate organ and system function. Validation that a substance is used as an extracellular signaling molecule by a given cell requires a direct demonstration of its secretion. In this protocol we describe the use of biosensor cells to detect neurotransmitter release from endocrine cells in real-time. Chinese hamster ovary cells expressing the muscarinic acetylcholine (ACh) receptor M3 were used as ACh biosensors to record ACh release from human pancreatic islets. We show how ACh biosensors loaded with the Ca(2+) indicator Fura-2 and pressed against isolated human pancreatic islets allow the detection of ACh release. The biosensor approach is simple; the Ca(2+) signal generated in the biosensor cell reflects the presence (release) of a neurotransmitter. The technique is versatile because biosensor cells expressing a variety of receptors can be used in many applications. The protocol takes ∼3 h.
Collapse
Affiliation(s)
- Rayner Rodriguez-Diaz
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
10
|
Whim MD. Pancreatic beta cells synthesize neuropeptide Y and can rapidly release peptide co-transmitters. PLoS One 2011; 6:e19478. [PMID: 21559341 PMCID: PMC3084883 DOI: 10.1371/journal.pone.0019478] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 04/07/2011] [Indexed: 01/09/2023] Open
Abstract
Background In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. Methodology/Principal Findings NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. Conclusions These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time.
Collapse
Affiliation(s)
- Matthew D Whim
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America.
| |
Collapse
|
11
|
Abstract
Hypothalamic dopamine neurons inhibit pituitary prolactin secretion. In this issue of Neuron, Lyons et al. provide evidence for a novel model, whereby the excitatory neuropeptide TRH depolarizes gap-junction-coupled dopamine neurons, leading to a shift in the population pattern of action potentials from phasic burst firing to regular tonic firing, hypothetically reducing dopamine release while increasing total spike number.
Collapse
|
12
|
Zhang X, Bao L, Ma GQ. Sorting of neuropeptides and neuropeptide receptors into secretory pathways. Prog Neurobiol 2009; 90:276-83. [PMID: 19853638 DOI: 10.1016/j.pneurobio.2009.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 08/11/2009] [Accepted: 10/09/2009] [Indexed: 01/07/2023]
Abstract
There are two major secretory pathways in neurons, the regulated pathway and the constitutive pathway. Neuropeptides and other regulated secretory proteins are known to be sorted into large dense-core vesicles of the regulated pathway in the trans-Golgi network and are secreted upon stimulus-induced increases in intracellular Ca(2+). The newly synthesized cell surface receptors are usually sorted into microvesicles of the constitutive pathway and inserted into the plasma membrane by spontaneous exocytosis. Small-diameter sensory neurons in dorsal root ganglia and pheochromocytoma cells express neuropeptides (e.g., substance P) and several neuropeptide receptors including opioid receptors. The mu-opioid receptors are delivered to the cell surface through the constitutive pathway, whereas another type of opioid receptor, the delta-opioid receptor, is often found in the membrane of large dense-core vesicles and can be inserted into the plasma membrane when exocytosis occurs. Recent studies show that sequences with opposite electrical polarity within the prohormones of substance P are essential for their sorting into large dense-core vesicles. Moreover, the delta-opioid receptor is sorted into large dense-core vesicles by its interaction with protachykinin, a prohormone of substance P. These findings provide insight into the molecular mechanisms that determine the sorting and trafficking of neuropeptides and neuropeptide receptors in neurons.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | | | | |
Collapse
|
13
|
Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neurosci Res 2009; 65:11-22. [PMID: 19523993 DOI: 10.1016/j.neures.2009.06.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/01/2009] [Accepted: 06/03/2009] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and other members of the protein family of neurotrophins have been implicated in a multitude of processes that are important for neuronal development and synaptic plasticity in the rodent central nervous system. In comparison to the wealth of information available with respect to the biological functions of neurotrophins, our knowledge regarding the processes that govern synaptic secretion of neurotrophins is scarce. Using live cell imaging of GFP-tagged neurotrophins in primary neurons, immunocytochemical detection of endogenous BDNF in fixed cells, and by blocking the action of endogenously released BDNF by means of TrkB receptor bodies in living neurons, several studies in recent years have allowed to better understand the time course and the mechanisms of synaptic secretion of neurotrophins. This review will summarize the current knowledge regarding the intracellular processing of proneurotrophins, the targeting of neurotrophin vesicles to axons and dendrites, and the mechanisms of activity-dependent secretion of BDNF at synapses. Since these processes are known to be cell type dependent, special emphasis is given to observations gained from experiments in primary neurons.
Collapse
|
14
|
Hirasawa H, Puopolo M, Raviola E. Extrasynaptic release of GABA by retinal dopaminergic neurons. J Neurophysiol 2009; 102:146-58. [PMID: 19403749 DOI: 10.1152/jn.00130.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA release by dopaminergic amacrine (DA) cells of the mouse retina was detected by measuring Cl- currents generated by isolated perikarya in response to their own neurotransmitter. The possibility that the Cl- currents were caused by GABA release from synaptic endings that had survived the dissociation of the retina was ruled out by examining confocal Z series of the surface of dissociated tyrosine hydroxylase-positive perikarya after staining with antibodies to pre and postsynaptic markers. GABA release was caused by exocytosis because 1) the current events were transient on the millisecond time scale and thus resembled miniature synaptic currents; 2) they were abolished by treatment with a blocker of the vesicular proton pump, bafilomycin A1; and 3) their frequency was controlled by the intracellular Ca2+ concentration. Because DA cell perikarya do not contain presynaptic active zones, release was by necessity extrasynaptic. A range of depolarizing stimuli caused GABA exocytosis, showing that extrasynaptic release of GABA is controlled by DA cell electrical activity. With all modalities of stimulation, including long-lasting square pulses, segments of pacemaker activity delivered by the action-potential-clamp method and high-frequency trains of ramps, discharge of GABAergic currents exhibited considerable variability in latency and duration, suggesting that coupling between Ca2+ influx and transmitter exocytosis is extremely loose in comparison with the synapse. Paracrine signaling based on extrasynaptic release of GABA by DA cells and other GABAergic amacrines may participate in controlling the excitability of the neuronal processes that interact synaptically in the inner plexiform layer.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Mitchell GC, Wang Q, Ramamoorthy P, Whim MD. A common single nucleotide polymorphism alters the synthesis and secretion of neuropeptide Y. J Neurosci 2008; 28:14428-34. [PMID: 19118176 PMCID: PMC2664626 DOI: 10.1523/jneurosci.0343-08.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 10/18/2008] [Accepted: 11/14/2008] [Indexed: 01/23/2023] Open
Abstract
A single nucleotide polymorphism (SNP) in the neuropeptide Y gene has been associated with elevated serum lipid levels and cardiovascular disease. The polymorphism (T1128C) changes the seventh amino acid in the prohormone from leucine to proline. It has been speculated this alters neuropeptide Y (NPY) synthesis, trafficking, or secretion. We tested this hypothesis by expressing the mutant and wild-type prohormones in CNS neurons and endocrine cells. Synthesis and trafficking were followed using immunocytochemistry and fluorescent protein-tagged fusion constructs. Mutant prohormone was synthesized and entered the regulated secretory pathway. When expressed in endocrine cells, wild-type and mutant proteins were found in the same large dense core granules. However, the T1128C polymorphism altered the degree of copackaging, and, on average, individual granules contained more mutant prohormone. This was not attributable to codon bias but to the change in prohormone sequence. Global prohormone targeting was normal, because in hippocampal neurons, the polarized distribution of the mutant prohormone was indistinguishable from the wild-type. When secretion was measured from chromaffin cells, brief depolarizations triggered peptide secretion, confirming the entry of the mutant prohormone into the regulated secretory pathway. However, cells that expressed the mutant protein had increased levels of peptide secretion. We conclude that the T1128C polymorphism alters the packaging and secretion of NPY. In contrast to SNPs in other prohormones, we could not find a phenotype until the prohormone was tracked at the single granule level. These results are consistent with studies showing the T1128C polymorphism has pleiotropic effects.
Collapse
|
16
|
Ramamoorthy P, Whim MD. Trafficking and fusion of neuropeptide Y-containing dense-core granules in astrocytes. J Neurosci 2008; 28:13815-27. [PMID: 19091972 PMCID: PMC2635891 DOI: 10.1523/jneurosci.5361-07.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/23/2008] [Accepted: 11/05/2008] [Indexed: 11/21/2022] Open
Abstract
It is becoming clear that astrocytes are active participants in synaptic functioning and exhibit properties, such as the secretion of classical transmitters, previously thought to be exclusively neuronal. Whether these similarities extend to the release of neuropeptides, the other major class of transmitters, is less clear. Here we show that cortical astrocytes can synthesize both native and foreign neuropeptides and can secrete them in a stimulation-dependent manner. Reverse transcription-PCR and mass spectrometry indicate that cortical astrocytes contain neuropeptide Y (NPY), a widespread neuronal transmitter. Immunocytochemical studies reveal NPY-immunoreactive (IR) puncta that colocalize with markers of the regulated secretory pathway. These NPY-IR puncta are distinct from the synaptic-like vesicles that contain classical transmitters, and the two types of organelles are differentially distributed. After activation of metabotropic glutamate receptors and the release of calcium from intracellular stores, the NPY-IR puncta fuse with the cell membrane, and the peptide-containing dense cores are displayed. To determine whether peptide secretion subsequently occurred, exocytosis was monitored from astrocytes expressing NPY-red fluorescent protein (RFP). In live cells, after activation of glutamate receptors, the intensity of the NPY-RFP-labeled puncta declined in a step-like manner indicating a regulated release of the granular contents. Because NPY is a widespread and potent regulator of synaptic transmission, these results suggest that astrocytes could play a role in the peptidergic modulation of synaptic signaling in the CNS.
Collapse
Affiliation(s)
- Prabhu Ramamoorthy
- Department of Biology, Pennsylvania State University, State College, Pennsylvania 16802
| | - Matthew D. Whim
- Department of Biology, Pennsylvania State University, State College, Pennsylvania 16802
| |
Collapse
|
17
|
Abstract
Adrenal chromaffin cells are an important part of the neuroendocrine system and under stressful conditions release catecholamines into the blood, thus regulating many physiological processes. In addition to the catecholamines, chromaffin cells also synthesize a range of peptides, including neuropeptide Y. Although the catecholamines and peptides are both contained within dense core granules, whether they are copackaged is less clear. Here, I investigate whether a single dense core granule can be loaded with both types of transmitter molecules. Using amperometry and FMRFamide tagging, I simultaneously measure the secretion of the catecholamines and a neuropeptide from mouse chromaffin cells in vitro. I find that fusion of a single dense core granule releases both types of transmitters into the extracellular space. Significant amounts of peptide escape from a fusing granule in 1-2 ms: almost as rapidly as the catecholamines. This suggests that the kinetics of peptide secretion might not be as sluggish as sometimes thought.
Collapse
Affiliation(s)
- Matthew D Whim
- Department of Biology, Pennsylvania State University, State College, Pennsylvania 16802, USA.
| |
Collapse
|
18
|
Lingueglia E, Deval E, Lazdunski M. FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides. Peptides 2006; 27:1138-52. [PMID: 16516345 DOI: 10.1016/j.peptides.2005.06.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/22/2005] [Indexed: 12/13/2022]
Abstract
FMRFamide and related peptides typically exert their action through G-protein coupled receptors. However, two ionotropic receptors for these peptides have recently been identified. They are both members of the epithelial amiloride-sensitive Na+ channel and degenerin (ENaC/DEG) family of ion channels. The invertebrate FMRFamide-gated Na+ channel (FaNaC) is a neuronal Na+-selective channel which is directly gated by micromolar concentrations of FMRFamide and related tetrapeptides. Its response is fast and partially desensitizing, and FaNaC has been proposed to participate in peptidergic neurotransmission. On the other hand, mammalian acid-sensing ion channels (ASICs) are not gated but are directly modulated by FMRFamide and related mammalian peptides like NPFF and NPSF. ASICs are activated by external protons and are therefore extracellular pH sensors. They are expressed both in the central and peripheral nervous system and appear to be involved in many physiological and pathophysiological processes such as hippocampal long-term potentiation and defects in learning and memory, acquired fear-related behavior, retinal function, brain ischemia, pain sensation in ischemia and inflammation, taste perception, hearing functions, and mechanoperception. The potentiation of ASIC activity by endogenous RFamide neuropeptides probably participates in the response to noxious acidosis in sensory and central neurons. Available data also raises the possibility of the existence of still unknown FMRFamide related endogenous peptides acting as direct agonists for ASICs.
Collapse
Affiliation(s)
- Eric Lingueglia
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-Université de Nice-Sophia Antipolis UMR 6097, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France.
| | | | | |
Collapse
|
19
|
Tsitolovsky LE. Protection from neuronal damage evoked by a motivational excitation is a driving force of intentional actions. ACTA ACUST UNITED AC 2005; 49:566-94. [PMID: 16269320 DOI: 10.1016/j.brainresrev.2005.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/16/2004] [Accepted: 02/25/2005] [Indexed: 01/13/2023]
Abstract
Motivation may be understood as an organism's subjective attitude to its current physiological state, which somehow modulates generation of actions until the organism attains an optimal state. How does this subjective attitude arise and how does it modulate generation of actions? Diverse lines of evidence suggest that elemental motivational states (hunger, thirst, fear, drug-dependence, etc.) arise as the result of metabolic disturbances and are related to transient injury, while rewards (food, water, avoidance, drugs, etc.) are associated with the recovery of specific neurons. Just as motivation and the very life of an organism depend on homeostasis, i.e., maintenance of optimum performance, so a neuron's behavior depends on neuronal (i.e., ion) homeostasis. During motivational excitation, the conventional properties of a neuron, such as maintenance of membrane potential and spike generation, are disturbed. Instrumental actions may originate as a consequence of the compensational recovery of neuronal excitability after the excitotoxic damage induced by a motivation. When the extent of neuronal actions is proportional to a metabolic disturbance, the neuron theoretically may choose a beneficial behavior even, if at each instant, it acts by chance. Homeostasis supposedly may be directed to anticipating compensation of the factors that lead to a disturbance of the homeostasis and, as a result, participates in the plasticity of motivational behavior. Following this line of thought, I suggest that voluntary actions arise from the interaction between endogenous compensational mechanisms and excitotoxic damage of specific neurons, and thus anticipate the exogenous compensation evoked by a reward.
Collapse
Affiliation(s)
- Lev E Tsitolovsky
- Department of Life Science, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
20
|
Baraban SC. Neuropeptide Y and epilepsy: recent progress, prospects and controversies. Neuropeptides 2004; 38:261-5. [PMID: 15337378 DOI: 10.1016/j.npep.2004.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 04/24/2004] [Indexed: 10/26/2022]
Abstract
Neuropeptide Y (NPY), a 36 amino-acid member of the pancreatic polypeptide family, has received considerable attention in recent years as an endogenous modulator of epileptic activity. Prominently expressed in brain regions involved in seizure generation and propagation, NPY can exert powerful effects on synaptic transmission. Here, we discuss the anti-epileptic actions of NPY and receptor subtypes responsible.
Collapse
Affiliation(s)
- S C Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
21
|
Braun M, Wendt A, Birnir B, Broman J, Eliasson L, Galvanovskis J, Gromada J, Mulder H, Rorsman P. Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic beta-cells. ACTA ACUST UNITED AC 2004; 123:191-204. [PMID: 14769845 PMCID: PMC2217446 DOI: 10.1085/jgp.200308966] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have explored whether γ-aminobutyric acid (GABA) is released by regulated exocytosis of GABA-containing synaptic-like microvesicles (SLMVs) in insulin-releasing rat pancreatic β-cells. To this end, β-cells were engineered to express GABAA-receptor Cl−-channels at high density using adenoviral infection. Electron microscopy indicated that the average diameter of the SLMVs is 90 nm, that every β-cell contains ∼3,500 such vesicles, and that insulin-containing large dense core vesicles exclude GABA. Quantal release of GABA, seen as rapidly activating and deactivating Cl−-currents, was observed during membrane depolarizations from −70 mV to voltages beyond −40 mV or when Ca2+ was dialysed into the cell interior. Depolarization-evoked GABA release was suppressed when Ca2+ entry was inhibited using Cd2+. Analysis of the kinetics of GABA release revealed that GABA-containing vesicles can be divided into a readily releasable pool and a reserve pool. Simultaneous measurements of GABA release and cell capacitance indicated that exocytosis of SLMVs contributes ∼1% of the capacitance signal. Mathematical analysis of the release events suggests that every SLMV contains 0.36 amol of GABA. We conclude that there are two parallel pathways of exocytosis in pancreatic β-cells and that release of GABA may accordingly be temporally and spatially separated from insulin secretion. This provides a basis for paracrine GABAergic signaling within the islet.
Collapse
Affiliation(s)
- Matthias Braun
- Department of Physiological Sciences, Lund University, BMC B11 SE-22184 Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Target-specific neuropeptide Y-ergic synaptic inhibition and its network consequences within the mammalian thalamus. J Neurosci 2003. [PMID: 14573544 DOI: 10.1523/jneurosci.23-29-09639.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptides are commonly colocalized with classical neurotransmitters, yet there is little evidence for peptidergic neurotransmission in the mammalian CNS. We performed whole-cell patch-clamp recording from rodent thalamic brain slices and repetitively stimulated corticothalamic fibers to strongly activate NPY-containing GABAergic reticular thalamic (RT) neurons. This resulted in long-lasting (approximately 10 sec) feedforward slow IPSPs (sIPSPs) in RT cells, which were mimicked and blocked by NPY1 (Y1) receptor agonists and antagonists, respectively, and were present in wild-type mice but absent in NPY-/- mice. NPYergic sIPSPs were mediated via G-proteins and G-protein-activated, inwardly rectifying potassium channels, as evidenced by sensitivity to GDP-beta-S and 0.1 mm Ba2+. In rat RT neurons, NPYergic sIPSPs were also present but were surprisingly absent in the major synaptic targets of RT, thalamic relay neurons, where instead robust GABA(B) IPSPs occurred. In vitro oscillatory network responses in rat thalamus were suppressed and augmented by Y1 agonists and antagonists, respectively. These findings provide evidence for segregation of postsynaptic actions between two targets of RT cells and support a role for endogenously released NPY within RT in the regulation of oscillatory thalamic responses relevant to sleep and epilepsy.
Collapse
|
23
|
Abstract
The proteins of the mammalian neurotrophin family (nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5)) were originally identified as neuronal survival factors. During the last decade, evidence has accumulated implicating them (especially BDNF) in addition in the regulation of synaptic transmission and synaptogenesis in the CNS. However, a detailed understanding of the secretion of neurotrophins from neurons is required to delineate their role in regulating synaptic function. Some crucial questions that need to be addressed include the sites of neurotrophin secretion (i.e. axonal versus dendritic; synaptic versus extrasynaptic) and the neuronal and synaptic activity patterns that trigger the release of neurotrophins. In this article, we review the current knowledge in the field of neurotrophin secretion, focussing on activity-dependent synaptic release of BDNF. The modality and the site of neurotrophin secretion are dependent on the processing and subsequent targeting of the neurotrophin precursor molecules. Therefore, the available data regarding formation and trafficking of neurotrophins in the secreting neurons are critically reviewed. In addition, we discuss existing evidence that the characteristics of neurotrophin secretion are similar (but not identical) to those of other neuropeptides. Finally, since BDNF has been proposed to play a critical role as an intercellular synaptic messenger in long-term potentiation (LTP) in the hippocampus, we try to reconcile this possible role of BDNF in LTP with the recently described features of synaptic BDNF secretion.
Collapse
Affiliation(s)
- Volkmar Lessmann
- Department of Physiology and Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, Mainz 55128, Germany.
| | | | | |
Collapse
|
24
|
Bao L, Jin SX, Zhang C, Wang LH, Xu ZZ, Zhang FX, Wang LC, Ning FS, Cai HJ, Guan JS, Xiao HS, Xu ZQD, He C, Hökfelt T, Zhou Z, Zhang X. Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion. Neuron 2003; 37:121-33. [PMID: 12526778 DOI: 10.1016/s0896-6273(02)01103-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we describe a novel mechanism for plasma membrane insertion of the delta opioid receptor (DOR). In small dorsal root ganglion neurons, only low levels of DORs are present on the cell surface, in contrast to high levels of intracellular DORs mainly associated with vesicles containing calcitonin gene-related peptide (CGRP). Activation of surface DORs caused Ca(2+) release from IP(3)-sensitive stores and Ca(2+) entry, resulting in a slow and long-lasting exocytosis, DOR insertion, and CGRP release. In contrast, membrane depolarization or activation of vanilloid and P2Y(1) receptors induced a rapid DOR insertion. Thus, DOR activation induces a Ca(2+)-dependent insertion of DORs that is coupled to a release of excitatory neuropeptides, suggesting that treatment of inflammatory pain should include blockade of DORs.
Collapse
MESH Headings
- Animals
- Calcitonin Gene-Related Peptide/metabolism
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Exocytosis/drug effects
- Exocytosis/physiology
- Fluorescent Antibody Technique
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Microscopy, Electron
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Neuropeptides/metabolism
- Nociceptors/drug effects
- Nociceptors/metabolism
- Nociceptors/ultrastructure
- PC12 Cells
- Pain/metabolism
- Pain/physiopathology
- Rats
- Receptors, Drug/drug effects
- Receptors, Drug/metabolism
- Receptors, Neurotransmitter/drug effects
- Receptors, Neurotransmitter/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Secretory Vesicles/metabolism
- Secretory Vesicles/ultrastructure
Collapse
Affiliation(s)
- Lan Bao
- Laboratory of Sensory System, Institute of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thévenod F. Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol Cell Physiol 2002; 283:C651-72. [PMID: 12176723 DOI: 10.1152/ajpcell.00600.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated secretion in exocrine and neuroendocrine cells occurs through exocytosis of secretory granules and the subsequent release of stored small molecules and proteins. The introduction of biophysical techniques with high temporal and spatial resolution, and the identification of Ca(2+)-dependent and -independent "docking" and "fusion" proteins, has greatly enhanced our understanding of exocytosis. The cloning of families of ion channel proteins, including intracellular ion channels, has also revived interest in the role of secretory granule ion channels in exocytotic secretion. Thus secretory granules of pancreatic acinar cell express a ClC-2 Cl(-) channel, a HCO-permeable member of the CLCA Ca(2+)-dependent anion channel family, and a KCNQ1 K(+) channel. Evidence suggests that these channels may facilitate the release of digestive enzymes and/or prevent exocytosed granules from collapsing during "kiss and run" recycling. In pancreatic beta-cells, a granular ClC-3 Cl(-) channel provides a shunt pathway for a vacuolar-type H(+)-ATPase. Acidification "primes" the granules for Ca(2+)-dependent exocytosis and release of insulin. In summary, secretory granules are equipped with specific sets of ion channels, which modulate regulated exocytosis and the release of macromolecules. These channels could represent excellent targets for therapeutic interventions to control exocytotic secretion in relevant diseases, such as pancreatitis, cystic fibrosis, or diabetes mellitus.
Collapse
Affiliation(s)
- Frank Thévenod
- School of Biological Sciences, University of Manchester, United Kingdom.
| |
Collapse
|
26
|
Whim MD. Measuring peptide secretion using the FMRFamide tagging technique. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pl12. [PMID: 12165655 DOI: 10.1126/stke.2002.144.pl12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Peptides are transmitters produced by a wide variety of neurons and neuroendocrine cells. They mediate a remarkable range of physiological processes. To better understand the roles played by peptides, a number of methods have been developed that can monitor their secretion. Although each has particular strengths, they cannot rapidly detect the secretion of chemically defined peptides. However, a recently developed approach termed "FMRFamide-tagging" may be useful in this regard. A genetically encoded electrophysiological tag is attached to the peptide prohormone of interest. The "tagged" prohormone together with an ionotropic receptor that binds the tag are expressed in the cell type under investigation. Secretion of the tag (and the co-secreted peptide of interest) are revealed by rapid inward membrane currents that are due to the activation of the tag receptor. In this manner, peptide secretion can be followed on a millisecond time scale. This protocol gives the details of the approach and its potential application to a range of cell types.
Collapse
Affiliation(s)
- Matthew D Whim
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|