1
|
Chen ZS, Peng SI, Leong LI, Gall-Duncan T, Wong NSJ, Li TH, Lin X, Wei Y, Koon AC, Huang J, Sun JKL, Turner C, Tippett L, Curtis MA, Faull RLM, Kwan KM, Chow HM, Ko H, Chan TF, Talbot K, Pearson CE, Chan HYE. Mutant huntingtin induces neuronal apoptosis via derepressing the non-canonical poly(A) polymerase PAPD5. Nat Commun 2025; 16:3307. [PMID: 40204699 PMCID: PMC11982267 DOI: 10.1038/s41467-025-58618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play crucial roles in post-transcriptional gene regulation. Poly(A) RNA polymerase D5 (PAPD5) catalyzes the addition of adenosine to the 3' end of miRNAs. In this study, we demonstrate that the Yin Yang 1 protein, a transcriptional repressor of PAPD5, is recruited to both RNA foci and protein aggregates, resulting in an upregulation of PAPD5 expression in Huntington's disease (HD). Additionally, we identify a subset of PAPD5-regulated miRNAs with increased adenylation and reduced expression in our disease model. We focus on miR-7-5p and find that its reduction causes the activation of the TAB2-mediated TAK1-MKK4-JNK pro-apoptotic pathway. This pathway is also activated in induced pluripotent stem cell-derived striatal neurons and post-mortem striatal tissues isolated from HD patients. In addition, we discover that a small molecule PAPD5 inhibitor, BCH001, can mitigate cell death and neurodegeneration in our disease models. This study highlights the importance of PAPD5-mediated miRNA dysfunction in HD pathogenesis and suggests a potential therapeutic direction for the disease.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shaohong Isaac Peng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lok I Leong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nathan Siu Jun Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz Ho Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuming Wei
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alex Chun Koon
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- School of Psychology, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Ko
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Qiu W, Hazard C, Li Y, Jin P, Zhou H. High-Sensitivity Fluorescence-Based Detection of Reverse Transcriptase Read-Through of GC-Rich Short Tandem Repeat RNA. Anal Chem 2025; 97:4111-4119. [PMID: 39945490 DOI: 10.1021/acs.analchem.4c06236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Short tandem repeat (STR) RNAs play a pivotal role in the pathology of STR expansion-associated disorders. However, disease-related STR sequences are often GC-rich (>66% GC), which makes sample preparation and detection challenging. GC-rich STR RNAs, particularly those composed entirely of GC (100% GC), frequently cause interruptions during reverse transcription. Additionally, the GC-rich STR DNA sequences generate low-yield and heterogeneous products when amplified via polymerase chain reaction. The lack of robust processivity of polymerases for GC-only STR poses major challenges in preparing samples and detecting such sequences with physiologically relevant lengths. Herein, we report the in vitro preparation of r(CGG)29 and r(G4C2)15 RNAs, which had repeat numbers relevant to the human FMR1 and C9ORF72 genes, respectively, and achieved high yield and homogeneity of the prepared GC-only STR RNAs. Using the prepared RNAs, a fluorescence-based detection platform is developed that uses reverse transcriptases (RTases) to identify read-through cDNA products with high sensitivity, requiring minimal RNA input. Further, we demonstrate the versatile applications of this detection platform and provide structural insights into the r(CGG)29 and r(G4C2)15 RNAs during RTase processing. The findings of this study will enhance our ability to characterize and target disease-relevant STR RNAs in vitro and pave the way for future efforts in the directed evolution of RTases aimed at improving the detection of endogenous-expanded GC-rich STR RNAs.
Collapse
Affiliation(s)
- Weiqi Qiu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Catherine Hazard
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Huiqing Zhou
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
3
|
Zhang Y, Liu X, Li Z, Li H, Miao Z, Wan B, Xu X. Advances on the Mechanisms and Therapeutic Strategies in Non-coding CGG Repeat Expansion Diseases. Mol Neurobiol 2024; 61:10722-10735. [PMID: 38780719 DOI: 10.1007/s12035-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Non-coding CGG repeat expansions within the 5' untranslated region are implicated in a range of neurological disorders, including fragile X-associated tremor/ataxia syndrome, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. This review outlined the general characteristics of diseases associated with non-coding CGG repeat expansions, detailing their clinical manifestations and neuroimaging patterns, which often overlap and indicate shared pathophysiological traits. We summarized the underlying molecular mechanisms of these disorders, providing new insights into the roles that DNA, RNA, and toxic proteins play. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies. These strategies include a range of approaches, such as antisense oligonucleotides, RNA interference, genomic DNA editing, small molecule interventions, and other treatments aimed at correcting the dysregulated processes inherent in these disorders. A deeper understanding of the shared mechanisms among non-coding CGG repeat expansion disorders may hold the potential to catalyze the development of innovative therapies, ultimately offering relief to individuals grappling with these debilitating neurological conditions.
Collapse
Affiliation(s)
- Yutong Zhang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xuan Liu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zeheng Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hao Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215124, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Bo Wan
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Xingshun Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China.
- The Institute of Neuroscience, Soochow University, Suzhou City, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
4
|
Pan F, Xu P, Roland C, Sagui C, Weninger K. Structural and Dynamical Properties of Nucleic Acid Hairpins Implicated in Trinucleotide Repeat Expansion Diseases. Biomolecules 2024; 14:1278. [PMID: 39456210 PMCID: PMC11505666 DOI: 10.3390/biom14101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders-known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)-which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single-molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| |
Collapse
|
5
|
Banerjee P, Mahendran TS, Wadsworth G, Singh A. Biomolecular condensates can enhance pathological RNA clustering. RESEARCH SQUARE 2024:rs.3.rs-4557520. [PMID: 39070659 PMCID: PMC11276000 DOI: 10.21203/rs.3.rs-4557520/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intracellular aggregation of repeat expanded RNA has been implicated in many neurological disorders. Here, we study the role of biomolecular condensates on irreversible RNA clustering. We find that physiologically relevant and disease-associated repeat RNAs spontaneously undergo an age-dependent percolation transition inside multi-component protein-nucleic acid condensates to form nanoscale clusters. Homotypic RNA clusters drive the emergence of multiphasic condensate structures with an RNA-rich solid core surrounded by an RNA-depleted fluid shell. The timescale of the RNA clustering, which drives a liquid-to-solid transition of biomolecular condensates, is determined by the sequence features, stability of RNA secondary structure, and repeat length. Importantly, G3BP1, the core scaffold of stress granules, introduces heterotypic buffering to homotypic RNA-RNA interactions and impedes intra-condensate RNA clustering in an ATP-independent manner. Our work suggests that biomolecular condensates can act as sites for RNA aggregation. It also highlights the functional role of RNA-binding proteins in suppressing aberrant RNA phase transitions.
Collapse
|
6
|
Kargar M, Hagerman RJ, Martínez-Cerdeño V. Neurodegeneration of White and Gray Matter in the Hippocampus with FXTAS. Int J Mol Sci 2023; 24:17266. [PMID: 38139097 PMCID: PMC10743470 DOI: 10.3390/ijms242417266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects older premutation carriers (55-200 CGG repeats) of the fragile X gene. Despite the high prevalence of the FXTAS disorder, neuropathology studies of individuals affected by FXTAS are limited. We performed hematoxylin and eosin (H&E) staining in the hippocampus of 26 FXTAS cases and analyzed the tissue microscopically. The major neuropathological characteristics were white matter disease, intranuclear inclusions in neurons and astrocytes, and neuron loss. Astrocytes contained more and larger inclusions than neurons. There was a negative correlation between age of death and CGG repeat length in cases over the age of 60. The number of astroglial inclusions (CA3 and dentate gyrus) and the number of CA3 neuronal inclusions increased with elevated CGG repeat length. In the two cases with a CGG repeat size less than 65, FXTAS intranuclear inclusions were not present in the hippocampus, while in the two cases with less than 70 (65-70) CGG repeat expansion, neurons and astrocytes with inclusions were occasionally identified in the CA1 sub-region. These findings add hippocampus neuropathology to the previously reported changes in other areas of the brain in FXTAS patients, with implications for understanding FXTAS pathogenesis.
Collapse
Affiliation(s)
- Maryam Kargar
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Randi J. Hagerman
- MIND Institute, UC Davis School of Medicine, Sacramento, CA 95817, USA;
| | - Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA 95817, USA;
| |
Collapse
|
7
|
Glineburg MR, Yildirim E, Gomez N, Li X, Pak J, Altheim C, Waksmacki J, McInerney G, Barmada SJ, Todd PK. Stress granule formation helps to mitigate neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566060. [PMID: 37986813 PMCID: PMC10659376 DOI: 10.1101/2023.11.07.566060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP (rin in Drosophila) and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades.
Collapse
Affiliation(s)
- M. Rebecca Glineburg
- Biological Sciences, Schmid College of Science and Technology, Chapman University, 450 N. Center St, Orange, CA 92866
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Evrim Yildirim
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Nicolas Gomez
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Xingli Li
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Jaclyn Pak
- Biological Sciences, Schmid College of Science and Technology, Chapman University, 450 N. Center St, Orange, CA 92866
| | - Christopher Altheim
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 4005 BSRB48109-2200, USA
- Veterans Affairs Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Fakharzadeh A, Qu J, Pan F, Sagui C, Roland C. Structure and Dynamics of DNA and RNA Double Helices Formed by d(CTG), d(GTC), r(CUG), and r(GUC) Trinucleotide Repeats and Associated DNA-RNA Hybrids. J Phys Chem B 2023; 127:7907-7924. [PMID: 37681731 PMCID: PMC10519205 DOI: 10.1021/acs.jpcb.3c03538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Indexed: 09/09/2023]
Abstract
Myotonic dystrophy type 1 is the most frequent form of muscular dystrophy in adults caused by an abnormal expansion of the CTG trinucleotide. Both the expanded DNA and the expanded CUG RNA transcript can fold into hairpins. Co-transcriptional formation of stable RNA·DNA hybrids can also enhance the instability of repeat tracts. We performed molecular dynamics simulations of homoduplexes associated with the disease, d(CTG)n and r(CUG)n, and their corresponding r(CAG)n:d(CTG)n and r(CUG)n:d(CAG)n hybrids that can form under bidirectional transcription and of non-pathological d(GTC)n and d(GUC)n homoduplexes. We characterized their conformations, stability, and dynamics and found that the U·U and T·T mismatches are dynamic, favoring anti-anti conformations inside the helical core, followed by anti-syn and syn-syn conformations. For DNA, the secondary minima in the non-expanding d(GTC)n helices are deeper, wider, and longer-lived than those in d(CTG)n, which constitutes another biophysical factor further differentiating the expanding and non-expanding sequences. The hybrid helices are closer to A-RNA, with the A-T and A-U pairs forming two stable Watson-Crick hydrogen bonds. The neutralizing ion distribution around the non-canonical pairs is also described.
Collapse
Affiliation(s)
- Ashkan Fakharzadeh
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Jing Qu
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Feng Pan
- Department
of Statistics, Florida State University, Tallahassee, Florida 32306, USA
| | - Celeste Sagui
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
10
|
Malik I, Tseng YJ, Wieland CM, Green KM, Zheng K, Calleja K, Todd PK. Dissecting the roles of EIF4G homologs reveals DAP5 as a modifier of CGG repeat-associated toxicity in a Drosophila model of FXTAS. Neurobiol Dis 2023; 184:106212. [PMID: 37352983 PMCID: PMC11149892 DOI: 10.1016/j.nbd.2023.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023] Open
Abstract
Neurodegeneration in Fragile X-associated tremor/ataxia syndrome (FXTAS) is caused by a CGG trinucleotide repeat expansion in the 5' UTR of FMR1. Expanded CGG repeat RNAs form stable secondary structures, which in turn support repeat-associated non-AUG (RAN) translation to produce toxic peptides. The parameters that impact RAN translation initiation efficiency are not well understood. Here we used a Drosophila melanogaster model of FXTAS to evaluate the role of the eIF4G family of eukaryotic translation initiation factors (EIF4G1, EIF4GII and EIF4G2/DAP5) in modulating RAN translation and CGG repeat-associated toxicity. DAP5 knockdown robustly suppressed CGG repeat-associated toxicity and inhibited RAN translation. Furthermore, knockdown of initiation factors that preferentially associate with DAP5 (such as EIF2β, EIF3F and EIF3G) also selectively suppressed CGG repeat-induced eye degeneration. In mammalian cellular reporter assays, DAP5 knockdown exhibited modest and cell-type specific effects on RAN translation. Taken together, these data support a role for DAP5 in CGG repeat associated toxicity possibly through modulation of RAN translation.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Yi-Ju Tseng
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Clare M Wieland
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn M Green
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Kristina Zheng
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Katyanne Calleja
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Svalina MN, Sullivan R, Restrepo D, Huntsman MM. From circuits to behavior: Amygdala dysfunction in fragile X syndrome. Front Integr Neurosci 2023; 17:1128529. [PMID: 36969493 PMCID: PMC10034113 DOI: 10.3389/fnint.2023.1128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a repeat expansion mutation in the promotor region of the FMR1 gene resulting in transcriptional silencing and loss of function of fragile X messenger ribonucleoprotein 1 protein (FMRP). FMRP has a well-defined role in the early development of the brain. Thus, loss of the FMRP has well-known consequences for normal cellular and synaptic development leading to a variety of neuropsychiatric disorders including an increased prevalence of amygdala-based disorders. Despite our detailed understanding of the pathophysiology of FXS, the precise cellular and circuit-level underpinnings of amygdala-based disorders is incompletely understood. In this review, we discuss the development of the amygdala, the role of neuromodulation in the critical period plasticity, and recent advances in our understanding of how synaptic and circuit-level changes in the basolateral amygdala contribute to the behavioral manifestations seen in FXS.
Collapse
Affiliation(s)
- Matthew N. Svalina
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Regina Sullivan
- Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, Child Study Center, New York University School of Medicine, New York, NY, United States
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Molly M. Huntsman
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Molly M. Huntsman,
| |
Collapse
|
12
|
Trajković J, Makevic V, Pesic M, Pavković-Lučić S, Milojevic S, Cvjetkovic S, Hagerman R, Budimirovic DB, Protic D. Drosophila melanogaster as a Model to Study Fragile X-Associated Disorders. Genes (Basel) 2022; 14:genes14010087. [PMID: 36672829 PMCID: PMC9859539 DOI: 10.3390/genes14010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Fragile X syndrome (FXS) is a global neurodevelopmental disorder caused by the expansion of CGG trinucleotide repeats (≥200) in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene. FXS is the hallmark of Fragile X-associated disorders (FXD) and the most common monogenic cause of inherited intellectual disability and autism spectrum disorder. There are several animal models used to study FXS. In the FXS model of Drosophila, the only ortholog of FMR1, dfmr1, is mutated so that its protein is missing. This model has several relevant phenotypes, including defects in the circadian output pathway, sleep problems, memory deficits in the conditioned courtship and olfactory conditioning paradigms, deficits in social interaction, and deficits in neuronal development. In addition to FXS, a model of another FXD, Fragile X-associated tremor/ataxia syndrome (FXTAS), has also been established in Drosophila. This review summarizes many years of research on FXD in Drosophila models.
Collapse
Affiliation(s)
- Jelena Trajković
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Vedrana Makevic
- Department of Pathophysiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Pesic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Sara Milojevic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Smiljana Cvjetkovic
- Department of Humanities, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
13
|
Hocking DR, Loesch DZ, Stimpson P, Tassone F, Atkinson A, Storey E. Relationships of Motor Changes with Cognitive and Neuropsychiatric Features in FMR1 Male Carriers Affected with Fragile X-Associated Tremor/Ataxia Syndrome. Brain Sci 2022; 12:brainsci12111549. [PMID: 36421873 PMCID: PMC9688438 DOI: 10.3390/brainsci12111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The premutation expansion of the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene on the X chromosome has been linked to a range of clinical and subclinical features. Nearly half of men with FMR1 premutation develop a neurodegenerative disorder; Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). In this syndrome, cognitive executive decline and psychiatric changes may co-occur with major motor features, and in this study, we explored the interrelationships between these three domains in a sample of adult males affected with FXTAS. A sample of 23 adult males aged between 48 and 80 years (mean = 62.3; SD = 8.8), carrying premutation expansions between 45 and 118 CGG repeats, and affected with FXTAS, were included in this study. We employed a battery of cognitive assessments, two standard motor rating scales, and two self-reported measures of psychiatric symptoms. When controlling for age and/or educational level, where appropriate, there were highly significant correlations between motor rating score for ICARS gait domain, and the scores representing global cognitive decline (ACE-III), processing speed (SDMT), immediate memory (Digit Span), and depression and anxiety scores derived from both SCL90 and DASS instruments. Remarkably, close relationships of UPDRS scores, representing the contribution of Parkinsonism to FXTAS phenotypes, were exclusive to psychiatric scores. Highly significant relationships between CGG repeat size and most scores for three phenotypic domains suggest a close tracking with genetic liability. These findings of relationships between a constellation of phenotypic domains in male PM carriers with FXTAS are reminiscent of other conditions associated with disruption to cerebro-cerebellar circuits.
Collapse
Affiliation(s)
- Darren R. Hocking
- Developmental Neuromotor & Cognition Lab, School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence:
| | - Danuta Z. Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia
| | - Paige Stimpson
- Psychology Department, Monash Health, Clayton, VIC 3068, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, M.I.N.D. Institute, School of Medicine, University of California Davis Medical Center, University of California, Davis, Davis, CA 95616, USA
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Alfred Hospital Campus, Monash University, Melbourne, VIC 3068, Australia
| |
Collapse
|
14
|
Wright SE, Rodriguez CM, Monroe J, Xing J, Krans A, Flores BN, Barsur V, Ivanova MI, Koutmou KS, Barmada SJ, Todd PK. CGG repeats trigger translational frameshifts that generate aggregation-prone chimeric proteins. Nucleic Acids Res 2022; 50:8674-8689. [PMID: 35904811 PMCID: PMC9410890 DOI: 10.1093/nar/gkac626] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
CGG repeat expansions in the FMR1 5’UTR cause the neurodegenerative disease Fragile X-associated tremor/ataxia syndrome (FXTAS). These repeats form stable RNA secondary structures that support aberrant translation in the absence of an AUG start codon (RAN translation), producing aggregate-prone peptides that accumulate within intranuclear neuronal inclusions and contribute to neurotoxicity. Here, we show that the most abundant RAN translation product, FMRpolyG, is markedly less toxic when generated from a construct with a non-repetitive alternating codon sequence in place of the CGG repeat. While exploring the mechanism of this differential toxicity, we observed a +1 translational frameshift within the CGG repeat from the arginine to glycine reading frame. Frameshifts occurred within the first few translated repeats and were triggered predominantly by RNA sequence and structural features. Short chimeric R/G peptides form aggregates distinct from those formed by either pure arginine or glycine, and these chimeras induce toxicity in cultured rodent neurons. Together, this work suggests that CGG repeats support translational frameshifting and that chimeric RAN translated peptides may contribute to CGG repeat-associated toxicity in FXTAS and related disorders.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 84305, USA
| | - Jeremy Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiazheng Xing
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Brittany N Flores
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Venkatesha Barsur
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.,VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
15
|
Baud A, Derbis M, Tutak K, Sobczak K. Partners in crime: Proteins implicated in
RNA
repeat expansion diseases. WIRES RNA 2022; 13:e1709. [PMID: 35229468 PMCID: PMC9539487 DOI: 10.1002/wrna.1709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Baud
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Magdalena Derbis
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Katarzyna Tutak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Krzysztof Sobczak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| |
Collapse
|
16
|
Kong HE, Lim J, Linsalata A, Kang Y, Malik I, Allen EG, Cao Y, Shubeck L, Johnston R, Huang Y, Gu Y, Guo X, Zwick ME, Qin Z, Wingo TS, Juncos J, Nelson DL, Epstein MP, Cutler DJ, Todd PK, Sherman SL, Warren ST, Jin P. Identification of PSMB5 as a genetic modifier of fragile X-associated tremor/ataxia syndrome. Proc Natl Acad Sci U S A 2022; 119:e2118124119. [PMID: 35617426 PMCID: PMC9295734 DOI: 10.1073/pnas.2118124119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/17/2022] [Indexed: 12/15/2022] Open
Abstract
Fragile X–associated tremor/ataxia syndrome (FXTAS) is a debilitating late-onset neurodegenerative disease in premutation carriers of the expanded CGG repeat in FMR1 that presents with a spectrum of neurological manifestations, such as gait ataxia, intention tremor, and parkinsonism [P. J. Hagerman, R. J. Hagerman, Ann. N. Y. Acad. Sci. 1338, 58–70 (2015); S. Jacquemont et al., JAMA 291, 460–469 (2004)]. Here, we performed whole-genome sequencing (WGS) on male premutation carriers (CGG55–200) and prioritized candidate variants to screen for candidate genetic modifiers using a Drosophila model of FXTAS. We found 18 genes that genetically modulate CGG-associated neurotoxicity in Drosophila, such as Prosbeta5 (PSMB5), pAbp (PABPC1L), e(y)1 (TAF9), and CG14231 (OSGEPL1). Among them, knockdown of Prosbeta5 (PSMB5) suppressed CGG-associated neurodegeneration in the fly as well as in N2A cells. Interestingly, an expression quantitative trait locus variant in PSMB5, PSMB5rs11543947-A, was found to be associated with decreased expression of PSMB5 and delayed onset of FXTAS in human FMR1 premutation carriers. Finally, we demonstrate evidence that PSMB5 knockdown results in suppression of CGG neurotoxicity via both the RAN translation and RNA-mediated toxicity mechanisms, thereby presenting a therapeutic strategy for FXTAS.
Collapse
Affiliation(s)
- Ha Eun Kong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Junghwa Lim
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Alexander Linsalata
- Department of Neurology, University of Michigan, Veteran’s Affairs Medical Center, Ann Arbor, MI 48109
| | - Yunhee Kang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Indranil Malik
- Department of Neurology, University of Michigan, Veteran’s Affairs Medical Center, Ann Arbor, MI 48109
| | - Emily G. Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Yiqu Cao
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Lisa Shubeck
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Rich Johnston
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Yanting Huang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Yanghong Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Xiangxue Guo
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Michael E. Zwick
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Thomas S. Wingo
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322
| | - Jorge Juncos
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322
| | - David L. Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Michael P. Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - David J. Cutler
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Peter K. Todd
- Department of Neurology, University of Michigan, Veteran’s Affairs Medical Center, Ann Arbor, MI 48109
| | - Stephanie L. Sherman
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Stephen T. Warren
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA 30322
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322
| |
Collapse
|
17
|
Expression of FMRpolyG in Peripheral Blood Mononuclear Cells of Women with Fragile X Mental Retardation 1 Gene Premutation. Genes (Basel) 2022; 13:genes13030451. [PMID: 35328005 PMCID: PMC8951797 DOI: 10.3390/genes13030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) is characterized by oligo/amenorrhea and hypergonadotropic hypogonadism and is caused by the expansion of the CGG repeat in the 5′UTR of Fragile X Mental Retardation 1 (FMR1). Approximately 20% of women carrying an FMR1 premutation (PM) allele (55–200 CGG repeat) develop FXPOI. Repeat Associated Non-AUG (RAN)-translation dependent on the variable CGG-repeat length is thought to cause FXPOI, due to the production of a polyglycine-containing FMR1 protein, FMRpolyG. Peripheral blood monocyte cells (PBMCs) and granulosa cells (GCs) were collected to detect FMRpolyG and its cell type-specific expression in FMR1 PM carriers by immunofluorescence staining (IF), Western blotting (WB), and flow cytometric analysis (FACS). For the first time, FMRpolyG aggregates were detected as ubiquitin-positive inclusions in PBMCs from PM carriers, whereas only a weak signal without inclusions was detected in the controls. The expression pattern of FMRpolyG in GCs was comparable to that in the lymphocytes. We detected FMRpolyG as a 15- to 25-kDa protein in the PBMCs from two FMR1 PM carriers, with 124 and 81 CGG repeats. Flow cytometric analysis revealed that FMRpolyG was significantly higher in the T cells from PM carriers than in those from non-PM carriers. The detection of FMRpolyG aggregates in the peripheral blood and granulosa cells of PM carriers suggests that it may have a toxic potential and an immunological role in ovarian damage in the development of FXPOI.
Collapse
|
18
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
19
|
Nelson DL, Clark J, Garber K, Glover T, Hassold T, Jin P, Orr HT, Sherman SL, Zoghbi H, Warren KL. Stephen T. Warren, Ph.D. (1953-2021): A remembrance. Am J Hum Genet 2022; 109:3-11. [PMID: 34995503 DOI: 10.1016/j.ajhg.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- David L Nelson
- Jan and Dan Duncan Neurological Research Institute, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Janelle Clark
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kathryn Garber
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Thomas Glover
- Departments of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Terry Hassold
- School of Molecular Biosciences, Washington State University, Pullman, WA 99163, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Harry T Orr
- Institute of Translational Neuroscience, Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Huda Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
20
|
Zhong S, Lian Y, Luo W, Luo R, Wu X, Ji J, Ji Y, Ding J, Wang X. Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases. Acta Neuropathol 2021; 142:1003-1023. [PMID: 34694469 DOI: 10.1007/s00401-021-02375-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
Neuronal intranuclear inclusion disease (NIID) is neurodegenerative disease characterized by widespread inclusions. Despite the identification of GGC repeat expansion in 5'UTR of NOTCH2NLC gene in adult-onset NIIDs, its pathogenic mechanism remains unclear. Gain-of-function poly-amino-acid proteins generated by unconventional translation have been revealed in nucleotide repeat expansion disorders, inspiring us to explore the possibility of unconventional translation in NIID. Here we demonstrated that NOTCH2NLC 5'UTR triggers the translation of a polyglycine (polyG)-containing protein, N2NLCpolyG. N2NLCpolyG accumulates in p62-positive inclusions in cultured cells, mouse models, and NIID patient tissues with NOTCH2NLC GGC expansion. Translation of N2NLCpolyG is initiated by an upstream open reading frame (uORF) embedding the GGC repeats. N2NLCpolyG tends to aggregate with the increase of GGC repeat units, and displays phase separation properties. N2NLCpolyG aggregation impairs nuclear lamina and nucleocytoplasmic transport but does not necessarily cause acute death on neuronal cells. Our study suggests a similarity of pathogenic mechanisms between NIID and another GGC-repeat disease, fragile X-associated tremor ataxia syndrome. These findings expand our knowledge of protein gain-of-function in NIID, and further highlight evidence for a novel spectrum of diseases caused by aberrant polyG protein aggregation, namely the polyG diseases.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenyi Luo
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Department of The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Zhao X, Usdin K. (Dys)function Follows Form: Nucleic Acid Structure, Repeat Expansion, and Disease Pathology in FMR1 Disorders. Int J Mol Sci 2021; 22:ijms22179167. [PMID: 34502075 PMCID: PMC8431139 DOI: 10.3390/ijms22179167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5' UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| | - Karen Usdin
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| |
Collapse
|
22
|
Singh CR, Glineburg MR, Moore C, Tani N, Jaiswal R, Zou Y, Aube E, Gillaspie S, Thornton M, Cecil A, Hilgers M, Takasu A, Asano I, Asano M, Escalante CR, Nakamura A, Todd PK, Asano K. Human oncoprotein 5MP suppresses general and repeat-associated non-AUG translation via eIF3 by a common mechanism. Cell Rep 2021; 36:109376. [PMID: 34260931 PMCID: PMC8363759 DOI: 10.1016/j.celrep.2021.109376] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 11/15/2022] Open
Abstract
eIF5-mimic protein (5MP) is a translational regulatory protein that binds the small ribosomal subunit and modulates its activity. 5MP is proposed to reprogram non-AUG translation rates for oncogenes in cancer, but its role in controlling non-AUG initiated synthesis of deleterious repeat-peptide products, such as FMRpolyG observed in fragile-X-associated tremor ataxia syndrome (FXTAS), is unknown. Here, we show that 5MP can suppress both general and repeat-associated non-AUG (RAN) translation by a common mechanism in a manner dependent on its interaction with eIF3. Essentially, 5MP displaces eIF5 through the eIF3c subunit within the preinitiation complex (PIC), thereby increasing the accuracy of initiation. In Drosophila, 5MP/Kra represses neuronal toxicity and enhances the lifespan in an FXTAS disease model. These results implicate 5MP in protecting cells from unwanted byproducts of non-AUG translation in neurodegeneration.
Collapse
Affiliation(s)
- Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Chelsea Moore
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Naoki Tani
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Rahul Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Ye Zou
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Eric Aube
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sarah Gillaspie
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mackenzie Thornton
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ariana Cecil
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Madelyn Hilgers
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Azuma Takasu
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Izumi Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Masayo Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Carlos R Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Akira Nakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Ann Arbor VA Medical Center, Ann Arbor, MI 48105, USA
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA; Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
23
|
Kumutpongpanich T, Ogasawara M, Ozaki A, Ishiura H, Tsuji S, Minami N, Hayashi S, Noguchi S, Iida A, Nishino I, Mori-Yoshimura M, Oya Y, Ono K, Shimizu T, Kawata A, Shimohama S, Toyooka K, Endo K, Toru S, Sasaki O, Isahaya K, Takahashi MP, Iwasa K, Kira JI, Yamamoto T, Kawamoto M, Hamano T, Sugie K, Eura N, Shiota T, Koide M, Sekiya K, Kishi H, Hideyama T, Kawai S, Yanagimoto S, Sato H, Arahata H, Murayama S, Saito K, Hara H, Kanda T, Yaguchi H, Imai N, Kawagashira Y, Sanada M, Obara K, Kaido M, Furuta M, Kurashige T, Hara W, Kuzume D, Yamamoto M, Tsugawa J, Kishida H, Ishizuka N, Morimoto K, Tsuji Y, Tsuneyama A, Matsuno A, Sasaki R, Tamakoshi D, Abe E, Yamada S, Uzawa A. Clinicopathologic Features of Oculopharyngodistal Myopathy With LRP12 CGG Repeat Expansions Compared With Other Oculopharyngodistal Myopathy Subtypes. JAMA Neurol 2021; 78:853-863. [PMID: 34047774 DOI: 10.1001/jamaneurol.2021.1509] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Repeat expansion of CGG in LRP12 has been identified as the causative variation of oculopharyngodistal myopathy (OPDM). However, to our knowledge, the clinicopathologic features of OPDM with CGG repeat expansion in LRP12 (hereafter referred to as OPDM_LRP12) remain unknown. Objective To identify and characterize the clinicopathologic features of patients with OPDM_LRP12. Design, Setting, and Participants This case series included 208 patients with a clinical or clinicopathologic diagnosis of oculopharyngeal muscular dystrophy (OPDM) from January 1, 1978, to December 31, 2020. Patients with GCN repeat expansions in PABPN1 were excluded from the study. Repeat expansions of CGG in LRP12 were screened by repeat primed polymerase chain reaction and/or Southern blot. Main Outcomes and Measures Clinical information, muscle imaging data obtained by either computed tomography or magnetic resonance imaging, and muscle pathologic characteristics. Results Sixty-five Japanese patients with OPDM (40 men [62%]; mean [SD] age at onset, 41.0 [10.1] years) from 59 families with CGG repeat expansions in LRP12 were identified. This represents the most common OPDM subtype among all patients in Japan with genetically diagnosed OPDM. The expansions ranged from 85 to 289 repeats. A negative correlation was observed between the repeat size and the age at onset (r2 = 0.188, P = .001). The most common initial symptoms were ptosis and muscle weakness, present in 24 patients (37%). Limb muscle weakness was predominantly distal in 53 of 64 patients (83%), but 2 of 64 patients (3%) had predominantly proximal muscle weakness. Ptosis was observed in 62 of 64 patients (97%), and dysphagia or dysarthria was observed in 63 of 64 patients (98%). A total of 21 of 64 patients (33%) had asymmetric muscle weakness. Aspiration pneumonia was seen in 11 of 64 patients (17%), and 5 of 64 patients (8%) required mechanical ventilation. Seven of 64 patients (11%) developed cardiac abnormalities, and 5 of 64 patients (8%) developed neurologic abnormalities. Asymmetric muscle involvement was detected on computed tomography scans in 6 of 27 patients (22%) and on magnetic resonance imaging scans in 4 of 15 patients (27%), with the soleus and the medial head of the gastrocnemius being the worst affected. All 42 muscle biopsy samples showed rimmed vacuoles. Intranuclear tubulofilamentous inclusions were observed in only 1 of 5 patients. Conclusions and Relevance This study suggests that OPDM_LRP12 is the most frequent OPDM subtype in Japan and is characterized by oculopharyngeal weakness, distal myopathy that especially affects the soleus and gastrocnemius muscles, and rimmed vacuoles in muscle biopsy.
Collapse
Affiliation(s)
- Theerawat Kumutpongpanich
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Masashi Ogasawara
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ayami Ozaki
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, The University of Tokyo Hospital, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, The University of Tokyo Hospital, Tokyo, Japan
| | - Narihiro Minami
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shinichiro Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Aritoshi Iida
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Shun Shimohama
- Department of Neurology, Sapporo Medical University, Sapporo, Japan
| | - Keiko Toyooka
- Department of Neurology, Osaka Toneyama Medical Center, Osaka, Japan
| | - Kaoru Endo
- Department of Neurology, Tohoku University School of Medicine, Miyagi, Japan
| | - Shuta Toru
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Oga Sasaki
- Division of Neurology, Department of Internal Medicine, St Marianna University School of Medicine, Kanagawa, Japan
| | - Kenji Isahaya
- Division of Neurology, Department of Internal Medicine, St Marianna University School of Medicine, Kanagawa, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuo Iwasa
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuya Yamamoto
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michi Kawamoto
- Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Tadanori Hamano
- Second Department of Internal Medicine, Division of Neurology, Department of Aging and Dementia, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Nobuyuki Eura
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Tomo Shiota
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Mizuho Koide
- Department of Neurology, Chiba-East National Hospital, Chiba, Japan
| | - Kanako Sekiya
- Department of Neurology, Niigata City General Hospital, Niigata, Japan
| | - Hideaki Kishi
- Department of Neurology, Asahikawa Medical Center, Asahikawa, Japan
| | - Takuto Hideyama
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Shigeru Kawai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Satoshi Yanagimoto
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroyasu Sato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hajime Arahata
- Department of Neurology, National Hospital Organization Omuta National Hospital, Omuta, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital, Institute of Gerontology, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Hideo Hara
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroshi Yaguchi
- Department of Neurology, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Noboru Imai
- Department of Neurology, Japanese Red Cross Shizuoka Hospital, Shizuoka, Japan
| | | | - Mitsuru Sanada
- Department of Neurology, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Kazuki Obara
- Department of Neurology, Anjo Kosei Hospital, Aichi, Japan
| | - Misako Kaido
- Department of Neurology, Sakai City Medical Center, Osaka, Japan
| | - Minori Furuta
- Department of Neurology, Gunma University, Maebashi, Japan
| | - Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Center, Chugoku Cancer Center, Kure, Japan
| | - Wataru Hara
- Department of Neurology, Saitama Medical Center, Saitama, Japan
| | - Daisuke Kuzume
- Department of Neurology, Chikamori Hospital, Kochi, Japan
| | | | - Jun Tsugawa
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Hitaru Kishida
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Naoki Ishizuka
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yukio Tsuji
- Department of Neurology, Kobe University, Kobe, Japan
| | - Atsuko Tsuneyama
- Department of Neurology, Narita Red Cross Hospital, Chiba, Japan
| | - Atsuhiro Matsuno
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryo Sasaki
- Department of Neurology, Okayama University, Okayama, Japan
| | | | - Erika Abe
- Department of Neurology, National Hospital Organization Akita Hospital, Akita, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
24
|
Storey E, Bui MQ, Stimpson P, Tassone F, Atkinson A, Loesch DZ. Relationships between motor scores and cognitive functioning in FMR1 female premutation X carriers indicate early involvement of cerebello-cerebral pathways. CEREBELLUM & ATAXIAS 2021; 8:15. [PMID: 34116720 PMCID: PMC8196444 DOI: 10.1186/s40673-021-00138-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/28/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Smaller expansions of CGG trinucleotide repeats in the FMR1 X-linked gene termed 'premutation' lead to a neurodegenerative disorder: Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) in nearly half of aged carrier males, and 8-16% females. Core features include intention tremor, ataxia, and cognitive decline, and white matter lesions especially in cerebellar and periventricular locations. A 'toxic' role of elevated and expanded FMR1 mRNA has been linked to the pathogenesis of this disorder. The emerging issue concerns the trajectory of the neurodegenerative changes: is the pathogenetic effect confined to overt clinical manifestations? Here we explore the relationships between motor and cognitive scale scores in a sample of 57 asymptomatic adult female premutation carriers of broad age range. METHODS Three motor scale scores (ICARS-for tremor/ataxia, UPDRS-for parkinsonism, and Clinical Tremor) were related to 11 cognitive tests using Spearman's rank correlations. Robust regression, applied in relationships between all phenotypic measures, and genetic molecular and demographic data, identified age and educational levels as common correlates of these measures, which were then incorporated as confounders in correlation analysis. RESULTS Cognitive tests demonstrating significant correlations with motor scores were those assessing non-verbal reasoning on Matrix Reasoning (p-values from 0.006 to 0.011), and sequencing and alteration on Trails-B (p-values from 0.008 to 0.001). Those showing significant correlations with two motor scores-ICARS and Clinical Tremor- were psychomotor speed on Symbol Digit Modalities (p-values from 0.014 to 0.02) and working memory on Digit Span Backwards (p-values from 0.024 to 0.011). CONCLUSIONS Subtle motor impairments correlating with cognitive, particularly executive, deficits may occur in female premutation carriers not meeting diagnostic criteria for FXTAS. This pattern of cognitive deficits is consistent with those seen in other cerebellar disorders. Our results provide evidence that more than one category of clinical manifestation reflecting cerebellar changes - motor and cognitive - may be simultaneously affected by premutation carriage across a broad age range in asymptomatic carriers.
Collapse
Affiliation(s)
- Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, 5th Floor, Centre Block, Alfred Hospital Campus, Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Minh Q Bui
- Centre for Molecular, Environmental, Genetic and Analytic, Epidemiology, University of Melbourne, Parkville, Victoria, Australia
| | - Paige Stimpson
- Wellness and Recovery Centre, Monash Medical Centre, Clayton, Victoria, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Davis, California, USA
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Melbourne, Bundoora, Victoria, Australia
| | - Danuta Z Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, Bundoora, Victoria, Australia
| |
Collapse
|
25
|
Shelly KE, Candelaria NR, Li Z, Allen EG, Jin P, Nelson DL. Ectopic expression of CGG-repeats alters ovarian response to gonadotropins and leads to infertility in a murine FMR1 premutation model. Hum Mol Genet 2021; 30:923-938. [PMID: 33856019 PMCID: PMC8165648 DOI: 10.1093/hmg/ddab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 01/03/2023] Open
Abstract
Women heterozygous for an expansion of CGG repeats in the 5'UTR of FMR1 risk developing fragile X-associated primary ovarian insufficiency (FXPOI) and/or tremor and ataxia syndrome (FXTAS). We show that expanded CGGs, independent of FMR1, are sufficient to drive ovarian insufficiency and that expression of CGG-containing mRNAs alone or in conjunction with a polyglycine-containing peptide translated from these RNAs contribute to dysfunction. Heterozygous females from two mouse lines expressing either CGG RNA-only (RNA-only) or CGG RNA and the polyglycine product FMRpolyG (FMRpolyG+RNA) were used to assess ovarian function in aging animals. The expression of FMRpolyG+RNA led to early cessation of breeding, ovulation and transcriptomic changes affecting cholesterol and steroid hormone biosynthesis. Females expressing CGG RNA-only did not exhibit decreased progeny during natural breeding, but their ovarian transcriptomes were enriched for alterations in cholesterol and lipid biosynthesis. The enrichment of CGG RNA-only ovaries for differentially expressed genes related to cholesterol processing provided a link to the ovarian cysts observed in both CGG-expressing lines. Early changes in transcriptome profiles led us to measure ovarian function in prepubertal females that revealed deficiencies in ovulatory responses to gonadotropins. These include impairments in cumulus expansion and resumption of oocyte meiosis, as well as reduced ovulated oocyte number. Cumulatively, we demonstrated the sufficiency of ectopically expressed CGG repeats to lead to ovarian insufficiency and that co-expression of CGG-RNA and FMRpolyG lead to premature cessation of breeding. However, the expression of CGG RNA-alone was sufficient to lead to ovarian dysfunction by impairing responses to hormonal stimulation.
Collapse
Affiliation(s)
- Katharine E Shelly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholes R Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Trevino CE, Rounds JC, Charen K, Shubeck L, Hipp HS, Spencer JB, Johnston HR, Cutler DJ, Zwick ME, Epstein MP, Murray A, Macpherson JN, Mila M, Rodriguez-Revenga L, Berry-Kravis E, Hall DA, Leehey MA, Liu Y, Welt C, Warren ST, Sherman SL, Jin P, Allen EG. Identifying susceptibility genes for primary ovarian insufficiency on the high-risk genetic background of a fragile X premutation. Fertil Steril 2021; 116:843-854. [PMID: 34016428 PMCID: PMC8494118 DOI: 10.1016/j.fertnstert.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To identify modifying genes that explains the risk of fragile X-associated primary ovarian insufficiency (FXPOI). DESIGN Gene-based, case/control association study, followed by a functional screen of highly ranked genes using a Drosophila model. SETTING Participants were recruited from academic and clinical settings. PATIENT(S) Women with a premutation (PM) who experienced FXPOI at the age of 35 years or younger (n = 63) and women with a PM who experienced menopause at the age of 50 years or older (n = 51) provided clinical information and a deoxyribonucleic acid sample for whole genome sequencing. The functional screen was on the basis of Drosophila TRiP lines. INTERVENTION(S) Clinical information and a DNA sample were collected for whole genome sequencing. MAIN OUTCOME MEASURES A polygenic risk score derived from common variants associated with natural age at menopause was calculated and associated with the risk of FXPOI. Genes associated with the risk of FXPOI were identified on the basis of the P-value from gene-based association test and an altered level of fecundity when knocked down in the Drosophila PM model. RESULTS The polygenic risk score on the basis of common variants associated with natural age at menopause explained approximately 8% of the variance in the risk of FXPOI. Further, SUMO1 and KRR1 were identified as possible modifying genes associated with the risk of FXPOI on the basis of an untargeted gene analysis of rare variants. CONCLUSIONS In addition to the large genetic effect of a PM on ovarian function, the additive effects of common variants associated with natural age at menopause and the effect of rare modifying variants appear to play a role in FXPOI risk.
Collapse
Affiliation(s)
| | | | - Krista Charen
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Lisa Shubeck
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Heather S Hipp
- Department of Gynecology and Obstetrics, Emory University, Atlanta, Georgia
| | - Jessica B Spencer
- Department of Gynecology and Obstetrics, Emory University, Atlanta, Georgia
| | | | - Dave J Cutler
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Michael E Zwick
- Department of Human Genetics, Emory University, Atlanta, Georgia; Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Anna Murray
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - James N Macpherson
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, United Kingdom
| | - Montserrat Mila
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, Illinois
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University, Chicago, Illinois
| | - Maureen A Leehey
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado
| | - Ying Liu
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado
| | - Corrine Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Stephen T Warren
- Department of Human Genetics, Emory University, Atlanta, Georgia; Department of Pediatrics, Emory University, Atlanta, Georgia; Department of Biochemistry, Emory University, Atlanta, Georgia
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University, Atlanta, Georgia; Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Emily G Allen
- Department of Human Genetics, Emory University, Atlanta, Georgia.
| |
Collapse
|
27
|
Xu K, Li Y, Allen EG, Jin P. Therapeutic Development for CGG Repeat Expansion-Associated Neurodegeneration. Front Cell Neurosci 2021; 15:655568. [PMID: 34054431 PMCID: PMC8149615 DOI: 10.3389/fncel.2021.655568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding repeat expansions, such as CGG, GGC, CUG, CCUG, and GGGGCC, have been shown to be involved in many human diseases, particularly neurological disorders. Of the diverse pathogenic mechanisms proposed in these neurodegenerative diseases, dysregulated RNA metabolism has emerged as an important contributor. Expanded repeat RNAs that form particular structures aggregate to form RNA foci, sequestering various RNA binding proteins and consequently altering RNA splicing, transport, and other downstream biological processes. One of these repeat expansion-associated diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), is caused by a CGG repeat expansion in the 5'UTR region of the fragile X mental retardation 1 (FMR1) gene. Moreover, recent studies have revealed abnormal GGC repeat expansion within the 5'UTR region of the NOTCH2NLC gene in both essential tremor (ET) and neuronal intranuclear inclusion disease (NIID). These CGG repeat expansion-associated diseases share genetic, pathological, and clinical features. Identification of the similarities at the molecular level could lead to a better understanding of the disease mechanisms as well as developing novel therapeutic strategies. Here, we highlight our current understanding of the molecular pathogenesis of CGG repeat expansion-associated diseases and discuss potential therapeutic interventions for these neurological disorders.
Collapse
Affiliation(s)
- Keqin Xu
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yujing Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
28
|
Ajjugal Y, Kolimi N, Rathinavelan T. Secondary structural choice of DNA and RNA associated with CGG/CCG trinucleotide repeat expansion rationalizes the RNA misprocessing in FXTAS. Sci Rep 2021; 11:8163. [PMID: 33854084 PMCID: PMC8046799 DOI: 10.1038/s41598-021-87097-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
CGG tandem repeat expansion in the 5'-untranslated region of the fragile X mental retardation-1 (FMR1) gene leads to unusual nucleic acid conformations, hence causing genetic instabilities. We show that the number of G…G (in CGG repeat) or C…C (in CCG repeat) mismatches (other than A…T, T…A, C…G and G…C canonical base pairs) dictates the secondary structural choice of the sense and antisense strands of the FMR1 gene and their corresponding transcripts in fragile X-associated tremor/ataxia syndrome (FXTAS). The circular dichroism (CD) spectra and electrophoretic mobility shift assay (EMSA) reveal that CGG DNA (sense strand of the FMR1 gene) and its transcript favor a quadruplex structure. CD, EMSA and molecular dynamics (MD) simulations also show that more than four C…C mismatches cannot be accommodated in the RNA duplex consisting of the CCG repeat (antisense transcript); instead, it favors an i-motif conformational intermediate. Such a preference for unusual secondary structures provides a convincing justification for the RNA foci formation due to the sequestration of RNA-binding proteins to the bidirectional transcripts and the repeat-associated non-AUG translation that are observed in FXTAS. The results presented here also suggest that small molecule modulators that can destabilize FMR1 CGG DNA and RNA quadruplex structures could be promising candidates for treating FXTAS.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | - Narendar Kolimi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | | |
Collapse
|
29
|
Jhan CR, Satange R, Wang SC, Zeng JY, Horng YC, Jin P, Neidle S, Hou MH. Targeting the ALS/FTD-associated A-DNA kink with anthracene-based metal complex causes DNA backbone straightening and groove contraction. Nucleic Acids Res 2021; 49:9526-9538. [PMID: 33836081 PMCID: PMC8450080 DOI: 10.1093/nar/gkab227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA–DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA–DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a ‘hot-spot’ for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA.
Collapse
Affiliation(s)
- Cyong-Ru Jhan
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Roshan Satange
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.,Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Shun-Ching Wang
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Jing-Yi Zeng
- Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen Neidle
- The School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Ming-Hon Hou
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.,Institute of Genomics and Bioinformatics; National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
30
|
Bhat SA, Yousuf A, Mushtaq Z, Kumar V, Qurashi A. Fragile X Premutation rCGG Repeats Impair Synaptic Growth and Synaptic Transmission at Drosophila larval Neuromuscular Junction. Hum Mol Genet 2021; 30:1677-1692. [PMID: 33772546 DOI: 10.1093/hmg/ddab087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disease that develops in some premutation (PM) carriers of the FMR1 gene with alleles bearing 55-200 CGG repeats. The discovery of a broad spectrum of clinical and cell developmental abnormalities among PM carriers with or without FXTAS and in model systems suggests that neurodegeneration seen in FXTAS could be the inevitable end-result of pathophysiological processes set during early development. Hence, it is imperative to trace early PM-induced pathological abnormalities. Previous studies have shown that transgenic Drosophila carrying PM-length CGG repeats are sufficient to cause neurodegeneration. Here, we used the same transgenic model to understand the effect of CGG repeats on the structure and function of the developing nervous system. We show that presynaptic expression of CGG repeats restricts synaptic growth, reduces the number of synaptic boutons, leads to aberrant presynaptic varicosities, and impairs synaptic transmission at the larval neuromuscular junctions. The postsynaptic analysis shows that both glutamate receptors and subsynaptic reticulum proteins were normal. However, a high percentage of boutons show a reduced density of Bruchpilot protein, a key component of presynaptic active zones required for vesicle release. The electrophysiological analysis shows a significant reduction in quantal content, a measure of total synaptic vesicles released per excitation potential. Together, these findings suggest that synapse perturbation caused by rCGG repeats mediates presynaptically during larval NMJ development. We also suggest that the stress-activated c-Jun N-terminal kinase protein Basket and CIDE-N protein Drep-2 positively mediate Bruchpilot active zone defects caused by rCGG repeats.
Collapse
Affiliation(s)
- Sajad A Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| | - Aadil Yousuf
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| | - Zeeshan Mushtaq
- Laboratory of Neurogenetics, IISER-Bhopal, Bhopal, MP, 462066, India
| | - Vimlesh Kumar
- Laboratory of Neurogenetics, IISER-Bhopal, Bhopal, MP, 462066, India
| | - Abrar Qurashi
- Department of Biotechnology, University of Kashmir, Srinagar, JK, 190006, India
| |
Collapse
|
31
|
Loesch DZ, Tassone F, Atkinson A, Stimpson P, Trost N, Pountney DL, Storey E. Differential Progression of Motor Dysfunction Between Male and Female Fragile X Premutation Carriers Reveals Novel Aspects of Sex-Specific Neural Involvement. Front Mol Biosci 2021; 7:577246. [PMID: 33511153 PMCID: PMC7835843 DOI: 10.3389/fmolb.2020.577246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Expansions of the CGG repeat in the non-coding segment of the FMR1 X-linked gene are associated with a variety of phenotypic changes. Large expansions (>200 repeats), which cause a severe neurodevelopmental disorder, the fragile x syndrome (FXS), are transmitted from the mothers carrying smaller, unstable expansions ranging from 55 to 200 repeats, termed the fragile X premutation. Female carriers of this premutation may themselves experience a wide range of clinical problems throughout their lifespan, the most severe being the late onset neurodegenerative condition called "Fragile X-Associated Tremor Ataxia Syndrome" (FXTAS), occurring between 8 and 16% of these carriers. Male premutation carriers, although they do not transmit expanded alleles to their daughters, have a much higher risk (40-50%) of developing FXTAS. Although this disorder is more prevalent and severe in male than female carriers, specific sex differences in clinical manifestations and progress of the FXTAS spectrum have been poorly documented. Here we compare the pattern and rate of progression (per year) in three motor scales including tremor/ataxia (ICARS), tremor (Clinical Tremor Rating scale, CRST), and parkinsonism (UPDRS), and in several cognitive and psychiatric tests scores, between 13 female and 9 male carriers initially having at least one of the motor scores ≥10. Moreover, we document the differences in each of the clinical and cognitive measures between the cross-sectional samples of 21 female and 24 male premutation carriers of comparable ages with FXTAS spectrum disorder (FSD), that is, who manifest one or more features of FXTAS. The results of progression assessment showed that it was more than twice the rate in male than in female carriers for the ICARS-both gait ataxia and kinetic tremor domains and twice as high in males on the CRST scale. In contrast, sex difference was negligible for the rate of progress in UPDRS, and all the cognitive measures. The overall psychiatric pathology score (SCL-90), as well as Anxiety and Obsessive/Compulsive domain scores, showed a significant increase only in the female sample. The pattern of sex differences for progression in motor scores was consistent with the results of comparison between larger, cross-sectional samples of male and female carriers affected with the FSD. These results were in concert with sex-specific distribution of MRI T2 white matter hyperintensities: all males, but no females, showed the middle cerebellar peduncle white matter hyperintensities (MCP sign), although the distribution and severity of these hyperintensities in the other brain regions were not dissimilar between the two sexes. In conclusion, the magnitude and specific pattern of sex differences in manifestations and progression of clinically recorded changes in motor performance and MRI lesion distribution support, on clinical grounds, the possibility of certain sex-limited factor(s) which, beyond the predictable effect of the second, normal FMR1 alleles in female premutation carriers, may have neuroprotective effects, specifically concerning the cerebellar circuitry.
Collapse
Affiliation(s)
- Danuta Z. Loesch
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California Davis Medical Center, Davis, CA, United States
| | - Anna Atkinson
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Paige Stimpson
- Wellness and Recovery Centre, Monash Medical Centre, Clayton, VIC, Australia
| | - Nicholas Trost
- Medical Imaging Department, St Vincent's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Dean L. Pountney
- Neurodegeneration Research Group, School of Medical Science, Griffith University, Gold Coast Campus, Southport, NC, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Loesch DZ, Kemp BE, Bui MQ, Fisher PR, Allan CY, Sanislav O, Ngoei KRW, Atkinson A, Tassone F, Annesley SJ, Storey E. Cellular Bioenergetics and AMPK and TORC1 Signalling in Blood Lymphoblasts Are Biomarkers of Clinical Status in FMR1 Premutation Carriers. Front Psychiatry 2021; 12:747268. [PMID: 34880790 PMCID: PMC8645580 DOI: 10.3389/fpsyt.2021.747268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder affecting carriers of premutation alleles (PM) of the X-linked FMR1 gene, which contain CGG repeat expansions of 55-200 range in a non-coding region. This late-onset disorder is characterised by the presence of tremor/ataxia and cognitive decline, associated with the white matter lesions throughout the brain, especially involving the middle cerebellar peduncles. Nearly half of older male and ~ 20% of female PM carriers develop FXTAS. While there is evidence for mitochondrial dysfunction in neural and some peripheral tissues from FXTAS patients (though less obvious in the non-FXTAS PM carriers), the results from peripheral blood mononuclear cells (PBMC) are still controversial. Motor, cognitive, and neuropsychiatric impairments were correlated with measures of mitochondrial and non-mitochondrial respiratory activity, AMPK, and TORC1 cellular stress-sensing protein kinases, and CGG repeat size, in a sample of adult FXTAS male and female carriers. Moreover, the levels of these cellular measures, all derived from Epstein- Barr virus (EBV)- transformed and easily accessible blood lymphoblasts, were compared between the FXTAS (N = 23) and non-FXTAS (n = 30) subgroups, and with baseline data from 33 healthy non-carriers. A significant hyperactivity of cellular bioenergetics components as compared with the baseline data, more marked in the non-FXTAS PMs, was negatively correlated with repeat numbers at the lower end of the CGG-PM distribution. Significant associations of these components with motor impairment measures, including tremor-ataxia and parkinsonism, and neuropsychiatric changes, were prevalent in the FXTAS subgroup. Moreover, a striking elevation of AMPK activity, and a decrease in TORC1 levels, especially in the non-FXTAS carriers, were related to the size of CGG expansion. The bioenergetics changes in blood lymphoblasts are biomarkers of the clinical status of FMR1 carriers. The relationship between these changes and neurological involvement in the affected carriers suggests that brain bioenergetic alterations are reflected in this peripheral tissue. A possible neuroprotective role of stress sensing kinase, AMPK, in PM carriers, should be addressed in future longitudinal studies. A decreased level of TORC1-the mechanistic target of the rapamycin complex, suggests a possible future approach to therapy in FXTAS.
Collapse
Affiliation(s)
- Danuta Z Loesch
- School of Psychology and Public Health, La Trobe University, Bundoora, VA, Australia
| | - Bruce E Kemp
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VA, Australia.,St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, VA, Australia
| | - Minh Q Bui
- Centre for Molecular, Environmental, Genetic and Analytic, Epidemiology, University of Melbourne, Parkville, VA, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Claire Y Allan
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Oana Sanislav
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Kevin R W Ngoei
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, VA, Australia
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Bundoora, VA, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine M.I.N.D. Institute, University of California Davis Medical Center, Davis, Sacramento, CA, United States
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
34
|
Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet 2020; 22:185-198. [PMID: 33235359 DOI: 10.1038/s41576-020-00302-y] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
RNA-binding proteins (RBPs) are critical effectors of gene expression, and as such their malfunction underlies the origin of many diseases. RBPs can recognize hundreds of transcripts and form extensive regulatory networks that help to maintain cell homeostasis. System-wide unbiased identification of RBPs has increased the number of recognized RBPs into the four-digit range and revealed new paradigms: from the prevalence of structurally disordered RNA-binding regions with roles in the formation of membraneless organelles to unsuspected and potentially pervasive connections between intermediary metabolism and RNA regulation. Together with an increasingly detailed understanding of molecular mechanisms of RBP function, these insights are facilitating the development of new therapies to treat malignancies. Here, we provide an overview of RBPs involved in human genetic disorders, both Mendelian and somatic, and discuss emerging aspects in the field with emphasis on molecular mechanisms of disease and therapeutic interventions.
Collapse
Affiliation(s)
- Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain. .,University Pompeu Fabra (UPF), Barcelona, Spain.
| | - Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Juan Valcárcel
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,University Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | |
Collapse
|
35
|
Cao Y, Peng Y, Kong HE, Allen EG, Jin P. Metabolic Alterations in FMR1 Premutation Carriers. Front Mol Biosci 2020; 7:571092. [PMID: 33195417 PMCID: PMC7531624 DOI: 10.3389/fmolb.2020.571092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
FMR1 gene premutation carriers are at risk of developing Fragile X-associated tremor/ataxia syndrome (FXTAS) and Fragile X-associated primary ovarian insufficiency (FXPOI) in adulthood. Currently the development of biomarkers and effective treatments in FMR1 premutations is still in its infancy. Recent metabolic studies have shown novel findings in asymptomatic FMR1 premutation carriers and FXTAS, which provide promising insight through identification of potential biomarkers and therapeutic pathways. Here we review the latest advancements of the metabolic alterations found in asymptomatic FMR1 premutation carriers and FXTAS, along with our perspective for future studies in this emerging field.
Collapse
Affiliation(s)
- Yiqu Cao
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ha Eun Kong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
36
|
Neddylation activity modulates the neurodegeneration associated with fragile X associated tremor/ataxia syndrome (FXTAS) through regulating Sima. Neurobiol Dis 2020; 143:105013. [PMID: 32653676 DOI: 10.1016/j.nbd.2020.105013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022] Open
Abstract
Fragile X associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by expansion of CGG repeats in the 5' UTR of the fragile X mental retardation 1 (FMR1) gene. Using the well-established FXTAS Drosophila model, we performed a high-throughput chemical screen using 3200 small molecules. NSC363998 was identified to suppress the neurodegeneration caused by riboCGG (rCGG) repeats. Three predicted targets of a NSC363998 derivative are isopeptidases in the neddylation pathway and could modulate the neurotoxicity caused by the rCGG repeats. Decreasing levels of neddylation resulted in enhancing neurodegeneration phenotypes, while up-regulation could rescue the phenotypes. Furthermore, known neddylation substrates, Cul3 and Vhl, and their downstream target, Sima, were found to modulate rCGG90-dependent neurotoxicity. Our results suggest that altered neddylation activity can modulate the rCGG repeat-mediated toxicity by regulating Sima protein levels, which could serve as a potential therapeutic target for FXTAS.
Collapse
|
37
|
Haify SN, Botta-Orfila T, Hukema RK, Tartaglia GG. In silico, in vitro, and in vivo Approaches to Identify Molecular Players in Fragile X Tremor and Ataxia Syndrome. Front Mol Biosci 2020; 7:31. [PMID: 32219099 PMCID: PMC7078329 DOI: 10.3389/fmolb.2020.00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative monogenetic disorder affecting carriers of premutation (PM) forms of the FMR1 gene, resulting in a progressive development of tremors, ataxia, and neuropsychological problems. This highly disabling disease is quite common in the general population with an estimation of about 20 million PM carriers worldwide. The chances of developing FXTAS increase dramatically with age, with about 45% of male carriers over the age of 50 being affected. Both the gene and pathogenic trigger, a mutant expansion of CGG RNA, causing FXTAS are known. This makes it an interesting disease to develop targeted therapeutic interventions for. Yet, no such interventions are available at this moment. Here we discuss in silico, in vitro, and in vivo approaches and how they have been used to identify the molecular determinants of FXTAS pathology. These approaches have yielded substantial information about FXTAS pathology and, consequently, many markers have emerged to play a key role in understanding the disease mechanism. Integration of the different approaches is expected to provide crucial information about the value of these markers as either therapeutic target or biomarker, essential to monitor therapeutic interventions in the future.
Collapse
Affiliation(s)
- Saif N Haify
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Teresa Botta-Orfila
- Biological Fluids Bank of the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biology 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
38
|
Suardi GAM, Haddad LA. FMRP ribonucleoprotein complexes and RNA homeostasis. ADVANCES IN GENETICS 2020; 105:95-136. [PMID: 32560791 DOI: 10.1016/bs.adgen.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Fragile Mental Retardation 1 gene (FMR1), at Xq27.3, encodes the fragile mental retardation protein (FMRP), and displays in its 5'-untranslated region a series of polymorphic CGG triplet repeats that may undergo dynamic mutation. Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability among men, and is most frequently due to FMR1 full mutation and consequent transcription repression. FMR1 premutations may associate with at least two other clinical conditions, named fragile X-associated primary ovarian insufficiency (FXPOI) and tremor and ataxia syndrome (FXTAS). While FXPOI and FXTAS appear to be mediated by FMR1 mRNA accumulation, relative reduction of FMRP, and triplet repeat translation, FXS is due to the lack of the RNA-binding protein FMRP. Besides its function as mRNA translation repressor in neuronal and stem/progenitor cells, RNA editing roles have been assigned to FMRP. In this review, we provide a brief description of FMR1 transcribed microsatellite and associated clinical disorders, and discuss FMRP molecular roles in ribonucleoprotein complex assembly and trafficking, as well as aspects of RNA homeostasis affected in FXS cells.
Collapse
Affiliation(s)
- Gabriela Aparecida Marcondes Suardi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Amaral Haddad
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
39
|
Swinnen B, Robberecht W, Van Den Bosch L. RNA toxicity in non-coding repeat expansion disorders. EMBO J 2020; 39:e101112. [PMID: 31721251 PMCID: PMC6939197 DOI: 10.15252/embj.2018101112] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Several neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia (SCA) are caused by non-coding nucleotide repeat expansions. Different pathogenic mechanisms may underlie these non-coding repeat expansion disorders. While gain-of-function mechanisms, such as toxicity associated with expression of repeat RNA or toxicity associated with repeat-associated non-ATG (RAN) products, are most frequently connected with these disorders, loss-of-function mechanisms have also been implicated. We review the different pathways that have been linked to non-coding repeat expansion disorders such as C9ORF72-linked ALS/frontotemporal dementia (FTD), myotonic dystrophy, fragile X tremor/ataxia syndrome (FXTAS), SCA, and Huntington's disease-like 2. We discuss modes of RNA toxicity focusing on the identity and the interacting partners of the toxic RNA species. Using the C9ORF72 ALS/FTD paradigm, we further explore the efforts and different methods used to disentangle RNA vs. RAN toxicity. Overall, we conclude that there is ample evidence for a role of RNA toxicity in non-coding repeat expansion diseases.
Collapse
Affiliation(s)
- Bart Swinnen
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Wim Robberecht
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Ludo Van Den Bosch
- Department of NeurosciencesExperimental NeurologyLeuven Brain Institute (LBI)KU Leuven – University of LeuvenLeuvenBelgium
- Laboratory of NeurobiologyVIB, Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
40
|
Krans A, Skariah G, Zhang Y, Bayly B, Todd PK. Neuropathology of RAN translation proteins in fragile X-associated tremor/ataxia syndrome. Acta Neuropathol Commun 2019; 7:152. [PMID: 31665086 PMCID: PMC6821001 DOI: 10.1186/s40478-019-0782-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
CGG repeat expansions in FMR1 cause the neurodegenerative disorder Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). Ubiquitinated neuronal intranuclear inclusions (NIIs) are the neuropathological hallmark of FXTAS. Both sense strand derived CGG repeats and antisense strand derived CCG repeats support non-AUG initiated (RAN) translation of homopolymeric proteins in potentially 6 different reading frames. However, the relative abundance of these proteins in FXTAS brains and their co-localization with each other and NIIs is lacking. Here we describe rater-blinded assessment of immunohistochemical and immunofluorescence staining with newly generated antibodies to different CGG RAN translation products in FXTAS and control brains as well as co-staining with ubiquitin, p62/SQSTM1, and ubiquilin 2. We find that both FMRpolyG and a second CGG repeat derived RAN translation product, FMRpolyA, accumulate in aggregates in FXTAS brains. FMRpolyG is a near-obligate component of both ubiquitin-positive and p62-positive NIIs in FXTAS, with occurrence of aggregates in 20% of all hippocampal neurons and > 90% of all inclusions. A subset of these inclusions also stain positive for the ALS/FTD associated protein ubiquilin 2. Ubiquitinated inclusions and FMRpolyG+ aggregates are rarer in cortex and cerebellum. Intriguingly, FMRpolyG staining is also visible in control neuronal nuclei. In contrast to FMRpolyG, staining for FMRpolyA and CCG antisense derived RAN translation products were less abundant and less frequent components of ubiquitinated inclusions. In conclusion, RAN translated FMRpolyG is a common component of ubiquitin and p62 positive inclusions in FXTAS patient brains.
Collapse
Affiliation(s)
- Amy Krans
- University of Michigan Medical School, Ann Arbor, USA
- Ann Arbor VA Medical Center, Ann Arbor, MI, USA
| | - Geena Skariah
- University of Michigan Medical School, Ann Arbor, USA
| | - Yuan Zhang
- University of Michigan Medical School, Ann Arbor, USA
| | - Bryana Bayly
- University of Michigan Medical School, Ann Arbor, USA
| | - Peter K Todd
- University of Michigan Medical School, Ann Arbor, USA.
- Ann Arbor VA Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Linsalata AE, He F, Malik AM, Glineburg MR, Green KM, Natla S, Flores BN, Krans A, Archbold HC, Fedak SJ, Barmada SJ, Todd PK. DDX3X and specific initiation factors modulate FMR1 repeat-associated non-AUG-initiated translation. EMBO Rep 2019; 20:e47498. [PMID: 31347257 PMCID: PMC6726903 DOI: 10.15252/embr.201847498] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
A CGG trinucleotide repeat expansion in the 5' UTR of FMR1 causes the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). This repeat supports a non-canonical mode of protein synthesis known as repeat-associated, non-AUG (RAN) translation. The mechanism underlying RAN translation at CGG repeats remains unclear. To identify modifiers of RAN translation and potential therapeutic targets, we performed a candidate-based screen of eukaryotic initiation factors and RNA helicases in cell-based assays and a Drosophila melanogaster model of FXTAS. We identified multiple modifiers of toxicity and RAN translation from an expanded CGG repeat in the context of the FMR1 5'UTR. These include the DEAD-box RNA helicase belle/DDX3X, the helicase accessory factors EIF4B/4H, and the start codon selectivity factors EIF1 and EIF5. Disrupting belle/DDX3X selectively inhibited FMR1 RAN translation in Drosophila in vivo and cultured human cells, and mitigated repeat-induced toxicity in Drosophila and primary rodent neurons. These findings implicate RNA secondary structure and start codon fidelity as critical elements mediating FMR1 RAN translation and identify potential targets for treating repeat-associated neurodegeneration.
Collapse
Affiliation(s)
- Alexander E Linsalata
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Fang He
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Department of Biological and Health SciencesTexas A&M University, KingsvilleKingsvilleTXUSA
| | - Ahmed M Malik
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMIUSA
| | | | - Katelyn M Green
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Sam Natla
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Brittany N Flores
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Amy Krans
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | | | | | - Sami J Barmada
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Peter K Todd
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Ann Arbor VA Medical CenterAnn ArborMIUSA
| |
Collapse
|
42
|
Loesch DZ, Tassone F, Mellick GD, Horne M, Rubio JP, Bui MQ, Francis D, Storey E. Evidence for the role of FMR1 gray zone alleles as a risk factor for parkinsonism in females. Mov Disord 2019; 33:1178-1181. [PMID: 30153395 DOI: 10.1002/mds.27420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022] Open
Abstract
Background and Objective There is convincing evidence that small CGG expansion (41-54 repeats): FMR1 "gray zone" alleles (GZ) contribute to the risk of parkinsonism in males, but there is insufficient corresponding data in females. This study intends to fill this gap. Methods We screened whole-blood-derived DNA from a cohort of 601 females diagnosed with idiopathic PD, and from dry Guthrie blood spots from a local sample of 1,005 female newborns (population controls), for the size of the FMR1 CGG repeat using a PCR technique. Results We found a significant excess (8.2%) of GZ carriers compared with 5.2% in the control sample, with a P value of 0.009 for the difference in proportions. Conclusion FMR1 gray zone alleles are a significant risk factor for parkinsonism in females. These population data and occasional reports of FXTAS-like or parkinsonian manifestations in carriers suggest possible mechanisms whereby the effects of these alleles synergize with the existing pathologies underpinning parkinsonism. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Danuta Z Loesch
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Flora Tassone
- UC Davis MIND Institute, Sacramento, California, USA
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Malcolm Horne
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Justin P Rubio
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, VIC, Australia
| | - Minh Q Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, VIC, Australia
| | - David Francis
- Victorian Clinical Genetic Services, Melbourne, VIC, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Melbourne, VIC, Australia
| |
Collapse
|
43
|
Pan F, Zhang Y, Man VH, Roland C, Sagui C. E-motif formed by extrahelical cytosine bases in DNA homoduplexes of trinucleotide and hexanucleotide repeats. Nucleic Acids Res 2019; 46:942-955. [PMID: 29190385 PMCID: PMC5778509 DOI: 10.1093/nar/gkx1186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/13/2017] [Indexed: 12/01/2022] Open
Abstract
Atypical DNA secondary structures play an important role in expandable trinucleotide repeat (TR) and hexanucleotide repeat (HR) diseases. The cytosine mismatches in C-rich homoduplexes and hairpin stems are weakly bonded; experiments show that for certain sequences these may flip out of the helix core, forming an unusual structure termed an ‘e-motif’. We have performed molecular dynamics simulations of C-rich TR and HR DNA homoduplexes in order to characterize the conformations, stability and dynamics of formation of the e-motif, where the mismatched cytosines symmetrically flip out in the minor groove, pointing their base moieties towards the 5′-direction in each strand. TRs have two non-equivalent reading frames, (GCC)n and (CCG)n; while HRs have three: (CCCGGC)n, (CGGCCC)n, (CCCCGG)n. We define three types of pseudo basepair steps related to the mismatches and show that the e-motif is only stable in (GCC)n and (CCCGGC)n homoduplexes due to the favorable stacking of pseudo GpC steps (whose nature depends on whether TRs or HRs are involved) and the formation of hydrogen bonds between the mismatched cytosine at position i and the cytosine (TRs) or guanine (HRs) at position i − 2 along the same strand. We also characterize the extended e-motif, where all mismatched cytosines are extruded, their extra-helical stacking additionally stabilizing the homoduplexes.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Yuan Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA
| |
Collapse
|
44
|
Hoem G, Bowitz Larsen K, Øvervatn A, Brech A, Lamark T, Sjøttem E, Johansen T. The FMRpolyGlycine Protein Mediates Aggregate Formation and Toxicity Independent of the CGG mRNA Hairpin in a Cellular Model for FXTAS. Front Genet 2019; 10:249. [PMID: 30984240 PMCID: PMC6447689 DOI: 10.3389/fgene.2019.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/05/2019] [Indexed: 11/13/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG-repeat expansion in the 5' UTR of the FMR1 gene on the X-chromosome. Both elevated levels of the expanded FMR1 mRNA and aberrant expression of a polyglycine protein (FMRpolyG) from the CGG-repeat region are hypothesized to trigger the pathogenesis of FXTAS. While increased expression of FMRpolyG leads to higher toxicity in FXTAS models, the pathogenic effect of this protein has only been studied in the presence of CGG-containing mRNA. Here we present a model that allows measurement of the effect of FMRpolyG-expression without co-expression of the corresponding CGG mRNA hairpin. This allows direct comparison of the effect of the FMRpolyG protein per se, vs. that of the FMRpolyG protein together with the CGG mRNA hairpin. Our results show that expression of the FMRpolyG, in the absence of any CGG mRNA, is sufficient to cause reduced cell viability, lamin ring disruption and aggregate formation. Furthermore, we found FMRpolyG to be a long-lived protein degraded primarily by the ubiquitin-proteasome-system. Together, our data indicate that accumulation of FMRpolyG protein per se may play a major role in the development of FXTAS.
Collapse
Affiliation(s)
- Gry Hoem
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Aud Øvervatn
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
45
|
Kong HE, Lim J, Zhang F, Huang L, Gu Y, Nelson DL, Allen EG, Jin P. Metabolic pathways modulate the neuronal toxicity associated with fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 2019; 28:980-991. [PMID: 30476102 PMCID: PMC6400045 DOI: 10.1093/hmg/ddy410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder that affects premutation carriers (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene. Much remains unknown regarding the metabolic alterations associated with FXTAS, especially in the brain, and the most affected region, the cerebellum. Investigating the metabolic changes in FXTAS will aid in the identification of biomarkers as well as in understanding the pathogenesis of disease. To identify the metabolic alterations associated with FXTAS, we took advantage of our FXTAS mouse model that expresses 90 CGG repeats in cerebellar Purkinje neurons and exhibits the key phenotypic features of FXTAS. We performed untargeted global metabolic profiling of age-matched control and FXTAS mice cerebella at 16-20 weeks and 55 weeks. Out of 506 metabolites measured in cerebellum, we identified 186 metabolites that demonstrate significant perturbations due to the (CGG)90 repeat (P<0.05) and found that these differences increase dramatically with age. To identify key metabolic changes in FXTAS pathogenesis, we performed a genetic screen using a Drosophila model of FXTAS. Out of 28 genes that we tested in the fly, 8 genes showed significant enhanced neuronal toxicity associated with CGG repeats, such as Schlank (ceramide synthase), Sk2 (sphingosine kinase) and Ras (IMP dehydrogenase). By combining metabolic profiling with a Drosophila genetic screen to identify genetic modifiers of FXTAS, we demonstrate an effective method for functional validation of high-throughput metabolic data and show that sphingolipid and purine metabolism are significantly perturbed in FXTAS pathogenesis.
Collapse
Affiliation(s)
- Ha Eun Kong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| | - Junghwa Lim
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| | - Feiran Zhang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| | - Luoxiu Huang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| | - Yanghong Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
46
|
Gohel D, Sripada L, Prajapati P, Singh K, Roy M, Kotadia D, Tassone F, Charlet-Berguerand N, Singh R. FMRpolyG alters mitochondrial transcripts level and respiratory chain complex assembly in Fragile X associated tremor/ataxia syndrome [FXTAS]. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1379-1388. [PMID: 30771487 DOI: 10.1016/j.bbadis.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by an expansion of 55 to 200 CGG repeats (premutation) in FMR1. These CGG repeats are Repeat Associated non-ATG (RAN) translated into a small and pathogenic protein, FMRpolyG. The cellular and molecular mechanisms of FMRpolyG toxicity are unclear. Various mitochondrial dysfunctions have been observed in FXTAS patients and animal models. However, the causes of these mitochondrial alterations are not well understood. In the current study, we investigated interaction of FMRpolyG with mitochondria and its role in modulating mitochondrial functions. Beside nuclear inclusions, FMRpolyG also formed small cytosolic aggregates that interact with mitochondria both in cell and mouse model of FXTAS. Importantly, expression of FMRpolyG reduces ATP levels, mitochondrial transmembrane potential, mitochondrial supercomplexes assemblies and activities and expression of mitochondrial DNA encoded transcripts in cell and animal model of FXTAS, as well as in FXTAS patient brain tissues. Overall, these results suggest that FMRpolyG alters mitochondrial functions, bioenergetics and initiates cell death. The further study in this direction will help to establish the role of mitochondria in FXTAS conditions.
Collapse
Affiliation(s)
- Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Lakshmi Sripada
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Paresh Prajapati
- SCoBIRC Department of Neuroscience, University of Kentucky, 741S. Limestone, BBSRB, Lexington, KY 40536, USA
| | - Kritarth Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Darshan Kotadia
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, CA 95817, USA
| | - Nicolas Charlet-Berguerand
- Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université of Strasbourg, 67400 Illkirch, France
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
47
|
Abstract
Individuals carrying an FMR1 expansion between 55 and 200 CGG repeats, are at risk of developing the Fragile X-associated tremor/ataxia syndrome (FXTAS), a late onset neurodegenerative disorder characterized by cerebellar gait ataxia, intentional tremor, neuropathy, parkinsonism, cognitive decline, and psychological disorders, such as anxiety and depression. In addition, brain atrophy, white matter disease, and hyperintensities of the middle cerebellar peduncles can also be present. The neuropathological distinct feature of FXTAS is represented by the presence of eosinophilic intranuclear inclusions in neurons and astrocytes throughout the brain and in other tissues. In this chapter, protocols for available diagnostic tools, in both humans and mice, the clinical features and the basic molecular mechanisms leading to FXTAS and the animal models proposed to study this disorder are discussed.
Collapse
|
48
|
Wang Q, Peng S, Hu Y, Wong CH, Kwan KM, Chan HYE, Zuo Z. Efficient brain uptake and distribution of an expanded CAG RNA inhibitor DB213 via intranasal administration. Eur J Pharm Sci 2018; 127:240-251. [PMID: 30391403 DOI: 10.1016/j.ejps.2018.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
DB213 is an expanded CAG RNA inhibitor targeting polyglutamine diseases. This current study aims to investigate biopharmaceutic characteristics of DB213 as well as its brain uptake and distribution in C57 wild type mice, R6/2 Huntington's disease mice and Sprague-Dawley (SD) rats via intranasal administration. The biopharmaceutic characteristics of DB213 were investigated in vitro using Calu-3/MDCK/HEK293 cell lines and brain slices for its membrane transport, equilibrium dialysis for its plasma protein/brain tissue bindings and liver/brain microsomes incubation for its enzyme kinetics profiles. In vivo study of DB213 brain distribution was conducted in rats via intravenous and intranasal routes at 50 mg/kg followed by its brain uptake evaluation in mice at 25 mg/kg via intranasal route. In vitro membrane transport studies found that DB213 not only had a limited passive diffusion with a Papp (a→b) value of 1.75 × 10-6 cm/s in Calu-3 cell monolayer model but also was substrate of MRP2, MRP3, and amino acid transporter. Furthermore, DB213 demonstrated higher binding towards brain homogenate (80%) than plasma (10%) with limited metabolism in liver and brain. After intranasal administration of DB213, both olfactory bulb and trigeminal nerve served as its entry points to reach brain as demonstrated in rats while efficient brain uptake was observed in mice. In summary, limited nasal epithelium permeability and MRP2/MRP3 mediated efflux transport of DB213 could be overcome by its influx transport via amino acid transporter and minimal liver and brain metabolism, which further contribute to its rapid brain uptake and distribution in mice and rats.
Collapse
Affiliation(s)
- Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Shaohong Peng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yue Hu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - H Y Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
49
|
Glineburg MR, Todd PK, Charlet-Berguerand N, Sellier C. Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in Fragile X Tremor Ataxia Syndrome. Brain Res 2018; 1693:43-54. [PMID: 29453961 PMCID: PMC6010627 DOI: 10.1016/j.brainres.2018.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 11/11/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset inherited neurodegenerative disorder characterized by progressive intention tremor, gait ataxia and dementia associated with mild brain atrophy. The cause of FXTAS is a premutation expansion, of 55 to 200 CGG repeats localized within the 5'UTR of FMR1. These repeats are transcribed in the sense and antisense directions into mutants RNAs, which have increased expression in FXTAS. Furthermore, CGG sense and CCG antisense expanded repeats are translated into novel proteins despite their localization in putatively non-coding regions of the transcript. Here we focus on two proposed disease mechanisms for FXTAS: 1) RNA gain-of-function, whereby the mutant RNAs bind specific proteins and preclude their normal functions, and 2) repeat-associated non-AUG (RAN) translation, whereby translation through the CGG or CCG repeats leads to the production of toxic homopolypeptides, which in turn interfere with a variety of cellular functions. Here, we analyze the data generated to date on both of these potential molecular mechanisms and lay out a path forward for determining which factors drive FXTAS pathogenicity.
Collapse
Affiliation(s)
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Veteran's Affairs Medical Center, Ann Arbor, MI 48105, USA
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, University of Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
50
|
Ueyama M, Nagai Y. Repeat Expansion Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:63-78. [PMID: 29951815 DOI: 10.1007/978-981-13-0529-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Repeat expansion disorders are a group of inherited neuromuscular diseases, which are caused by expansion mutations of repeat sequences in the disease-causing genes. Repeat expansion disorders include a class of diseases caused by repeat expansions in the coding region of the genes, producing mutant proteins with amino acid repeats, mostly the polyglutamine (polyQ) diseases, and another class of diseases caused by repeat expansions in the noncoding regions, producing aberrant RNA with expanded repeats, which are called noncoding repeat expansion diseases. A variety of Drosophila disease models have been established for both types of diseases, and they have made significant contributions toward elucidating the molecular mechanisms of and developing therapies for these neuromuscular diseases.
Collapse
Affiliation(s)
- Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|