1
|
Rosenthal KS, Mikecz K, Steiner HL, Glant TT, Finnegan A, Carambula RE, Zimmerman DH. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis. Expert Rev Vaccines 2015; 14:891-908. [PMID: 25787143 DOI: 10.1586/14760584.2015.1026330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions.
Collapse
|
2
|
Zhang L, Londono P, Yu L, Grimes S, Blackburn P, Gottlieb P, Eisenbarth GS. MAS-1 adjuvant immunotherapy generates robust Th2 type and regulatory immune responses providing long-term protection from diabetes in late-stage pre-diabetic NOD mice. Autoimmunity 2014; 47:341-50. [PMID: 24783965 DOI: 10.3109/08916934.2014.910768] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MAS-1, a nanoparticular, emulsion-based adjuvant, was evaluated for its ability to promote Th2 and regulatory immune responses and prevent type 1 diabetes progression when given alone or as antigen-specific immunotherapy (ASI) using insulin B chain (IBC; MER3101) and its analog B:9-23(19Ala) (MER3102). MAS-1 formulations were administered to NOD mice at age 9 and 13 weeks and followed through 52 weeks. MER3101 and MER3102 provided long-term protection with 60% and 73% of mice remaining diabetes-free at week 35, and 60% and 47% at week 52. MAS-1 adjuvant emulsion by itself also provided protection with 60% and 40% of mice diabetes-free at 35 and 52 weeks, respectively. Higher levels of interleukin (IL)-10 and IL-2 positive T cells were detected among splenocytes by week 15 in MER3101 and MER3102 immunized mice, whereas MAS-1 alone induced higher levels of IL-10-positive T cells. Diabetes-free 52-week-old mice expressed significant levels of antigen-specific IL-10-positive type 1 regulatory T cells and FoxP3-positive T cells when stimulated ex vivo with IBC. Antibodies targeting IBC and B:9-23(19Ala) induced by MER3101 and MER3102 were overwhelmingly Th2 type IgG1 and IgG2b isotypes. Splenocyte cultures from 52 week diabetes-free, MER3101-treated mice secreted significantly increased levels of IL-4 and IL-5 Th2 cytokines. Based on these pre-clinical results and its clinical safety profile, MAS-1 has the requisite qualities to be considered for use in prophylactic or early stage disease settings to augment ASI to prevent disease progression in type 1 diabetes.
Collapse
Affiliation(s)
- Li Zhang
- Barbara Davis Center for Childhood Diabetes, University of Colorado , Aurora, CO , USA and
| | | | | | | | | | | | | |
Collapse
|
3
|
Combination of monoclonal antibodies and DPP-IV inhibitors in the treatment of type 1 diabetes: a plausible treatment modality? Med Hypotheses 2014; 83:1-5. [PMID: 24810674 DOI: 10.1016/j.mehy.2014.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/12/2014] [Accepted: 04/14/2014] [Indexed: 01/10/2023]
Abstract
Regulatory T cells (Tregs) are crucial for the maintenance of immunological tolerance. Type 1 diabetes (T1D) occurs when the immune-regulatory mechanism fails. In fact, T1D is reversed by islet transplantation but is associated with hostile effects of persistent immune suppression. T1D is believed to be dependent on the activation of type-1 helper T (Th1) cells. Immune tolerance is liable for the activation of the Th1 cells. The important role of Th1 cells in pathology of T1D entails the depletion of CD4(+) T cells, which initiated the use of monoclonal antibodies (mAbs) against CD4(+) T cells to interfere with induction of T1D. Prevention of autoimmunity is not only a step forward for the treatment of T1D, but could also restore the β-cell mass. Glucagon-like peptide (GLP)-1 stimulates β-cell proliferation and also has anti-apoptotic effects on them. However, the potential use of GLP-1 as a possible method to restore pancreatic β-cells is limited due to rapid degradation by dipeptidyl peptidase (DPP)-IV. We hypothesize that treatment with combination of CD4 mAbs and DPP-IV inhibitors could prevent/reverse T1D. CD4 mAbs have the ability to induce immune tolerance, thereby arresting further progression of T1D; DPP-IV inhibitors have the capability to regenerate the β-cell mass. Consequently, the combination of CD4 mAbs and DPP-IV inhibitor could avoid or at least minimize the constraints of intensive subcutaneous insulin therapy. We presume that if this hypothesis proves correct, it may become one of the plausible therapeutic options for T1D.
Collapse
|
4
|
Mayer CT, Tian L, Hesse C, Kühl AA, Swallow M, Kruse F, Thiele M, Gershwin ME, Liston A, Sparwasser T. Anti-CD4 treatment inhibits autoimmunity in scurfy mice through the attenuation of co-stimulatory signals. J Autoimmun 2013; 50:23-32. [PMID: 24075450 DOI: 10.1016/j.jaut.2013.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/27/2022]
Abstract
A major concept in autoimmunity is that disruption of Foxp3(+) regulatory T cells (Tregs) predisposes to breach of tolerance. This is exemplified by the Foxp3-linked disorder termed IPEX (immunodysregulation, polyendocrinopathy, enteropathy, X-linked) which affects newborn children. There has been considerable clinical interest in the role of non-depleting anti-CD4 antibodies as a means of upregulating the function of Foxp3(+) Tregs in order to control detrimental inflammatory responses such as transplant rejection. However, according to the paradigm of a Treg-dependent mechanism of action, the effectiveness of anti-CD4 antibodies as a therapy for human autoimmune diseases is unclear considering that Treg function might be intrinsically impaired. Specifically, anti-CD4 therapy is expected to fail in patients suffering from the IPEX syndrome due to the lack of functional Foxp3(+) Tregs. Taking advantage of natural Foxp3 mutant scurfy (sf) mice closely resembling the IPEX syndrome, and genetically engineered mice depleted of Foxp3(+) Tregs, we report here that anti-CD4 treatment induces tolerance independent of Foxp3(+) Tregs. This so far undefined mechanism is dependent on the recessive non-infectious tolerization of autoreactive T cells. Treg-independent tolerance alone is powerful enough to suppress both the onset and severity of autoimmunity and reduces clinically relevant autoantibody levels and liver fibrosis. Mechanistically, tolerance induction requires the concomitant activation of autoreactive T cells and is associated with the down-regulation of the co-stimulatory TNF-receptor superfamily members OX40 and CD30 sustaining CD4(+) T cell survival. In the light of ongoing clinical trials, our results highlight an unexpected potency of anti-CD4 antibodies for the treatment of autoimmune diseases. Particularly, CD4 blockade might represent a novel therapeutic option for the human IPEX syndrome.
Collapse
Affiliation(s)
- C T Mayer
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany(1)
| | - L Tian
- Autoimmune Genetics Laboratory, VIB, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium; Department of Immunology and Microbiology, University of Leuven, Leuven, Belgium
| | - C Hesse
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany(1)
| | - A A Kühl
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - M Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany(1)
| | - F Kruse
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany(1)
| | - M Thiele
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany(1)
| | - M E Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA
| | - A Liston
- Autoimmune Genetics Laboratory, VIB, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium; Department of Immunology and Microbiology, University of Leuven, Leuven, Belgium
| | - T Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany(1).
| |
Collapse
|
5
|
CD4 blockade directly inhibits mouse and human CD4(+) T cell functions independent of Foxp3(+) Tregs. J Autoimmun 2013; 47:73-82. [PMID: 24055067 DOI: 10.1016/j.jaut.2013.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 11/22/2022]
Abstract
CD4(+) helper T cells orchestrate protective immunity against pathogens, yet can also induce undesired pathologies including allergies, transplant rejection and autoimmunity. Non-depleting CD4-specific antibodies such as clone YTS177.9 were found to promote long-lasting T cell tolerance in animal models. Thus, CD4 blockade could represent a promising therapeutic approach for human autoimmune diseases. However, the mechanisms underlying anti-CD4-induced tolerance are incompletely resolved. Particularly, multiple immune cells express CD4 including Foxp3(+) regulatory T cells (Tregs) and dendritic cells (DCs), both controlling the activation of CD4(+)Foxp3(-) helper T cells. Utilizing mixed leukocyte reactions (MLRs) reflecting physiological interactions between T cells and DCs, we report that anti-CD4 treatment inhibits CD4(+)Foxp3(-) T cell proliferation in an IL-2-independent fashion. Notably, YTS177.9 binding induces a rapid internalization of CD4 on both CD4(+)Foxp3(-) T cells and Foxp3(+) Tregs. However, no expansion or activation of immunosuppressive CD4(+)Foxp3(+) Tregs was observed following anti-CD4 treatment. Additionally, cytokine production, maturation and T cell priming capacity of DCs are not affected by anti-CD4 exposure. In line with these data, the selective ablation of Foxp3(+) Tregs from MLRs by the use of diphtheria toxin (DT)-treated bacterial artificial chromosome (BAC)-transgenic DEREG mice completely fails to abrogate the suppressive activity of multiple anti-CD4 antibodies. Instead, tolerization is associated with the defective expression of various co-stimulatory receptors including OX40 and CD30, suggesting altered signaling through the TCR complex. Consistent with our findings in mice, anti-CD4 treatment renders human CD4(+) T cells tolerant in the absence of Tregs. Thus, our results establish that anti-CD4 antibodies can directly tolerize pathogenic CD4(+)Foxp3(-) helper T cells. This has important implications for the treatment of human inflammatory diseases.
Collapse
|
6
|
Bell TW, Demillo VG, Schols D, Vermeire K. Improving potencies and properties of CD4 down-modulating CADA analogs. Expert Opin Drug Discov 2011; 7:39-48. [PMID: 22468892 DOI: 10.1517/17460441.2012.643865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION CADA is a synthetic small molecule that inhibits HIV replication in cell cultures through down-modulating cell surface CD4 by inhibiting cotranslational translocation of nascent CD4 across the ER membrane in a signal sequence-specific manner. Analogs have been prepared mainly to increase potency and investigate the mechanism of action. AREAS COVERED This article reviews progress on discovery of more potent CADA analogs, including symmetrical and unsymmetrical compounds, as well as fluorescent derivatives. The article also discusses some properties of CADA and a more potent analog (KKD023) that are relevant to drug development, including aqueous solubility, permeability, metabolism and oral bioavailability. EXPERT OPINION Further studies on CADA analogs should focus on improving both potency and drug-like properties, and on elucidating the detailed mechanism of action. Solubility and permeability may be improved by reducing molecular weight, decreasing molecular flexibility and symmetry, or by a prodrug approach inducing active transport. Identifying the molecular mechanism of CD4 down-modulation may aid in assessing potential side effects of such immunomodulatory/anti-HIV drugs, and it could potentially lead to a general approach to designing drugs for specifically down-modulating other cell-surface proteins.
Collapse
Affiliation(s)
- Thomas W Bell
- University of Nevada, Department of Chemistry, Reno, Nevada 89557-0216, USA.
| | | | | | | |
Collapse
|
7
|
Demillo VG, Goulinet-Mateo F, Kim J, Schols D, Vermeire K, Bell TW. Unsymmetrical cyclotriazadisulfonamide (CADA) compounds as human CD4 receptor down-modulating agents. J Med Chem 2011; 54:5712-21. [PMID: 21800875 DOI: 10.1021/jm2002603] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclotriazadisulfonamide (CADA) inhibits HIV at submicromolar levels by specifically down-modulating cell-surface and intracellular CD4. The specific biomolecular target of CADA compounds is unknown, but previous studies led to an unsymmetrical binding model. To test this model, methods were developed for effective synthesis of diverse, unsymmetrical CADA compounds. A total of 13 new, unsymmetrical target compounds were synthesized, as well as one symmetrical analogue. The new compounds display a wide range of potency for CD4 down-modulation in CHO·CD4-YFP cells. VGD020 (IC(50) = 46 nM) is the most potent CADA compound discovered to date, and VGD029 (IC(50) = 730 nM) is the most potent fluorescent analogue. Structure-activity relationships are analyzed from the standpoint of additive or nonadditive energy effects of different substituents. They appear to be consistent with the zipper-type mechanism in which entropy costs are reduced for additional stabilizing interactions between the small molecule and its protein target.
Collapse
Affiliation(s)
- Violeta G Demillo
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, USA
| | | | | | | | | | | |
Collapse
|
8
|
Fousteri G, Chan JR, Zheng Y, Whiting C, Dave A, Bresson D, Croft M, von Herrath M. Virtual optimization of nasal insulin therapy predicts immunization frequency to be crucial for diabetes protection. Diabetes 2010; 59:3148-58. [PMID: 20864513 PMCID: PMC2992777 DOI: 10.2337/db10-0561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Development of antigen-specific strategies to treat or prevent type 1 diabetes has been slow and difficult because of the lack of experimental tools and defined biomarkers that account for the underlying therapeutic mechanisms. RESEARCH DESIGN AND METHODS The type 1 diabetes PhysioLab platform, a large-scale mathematical model of disease pathogenesis in the nonobese diabetic (NOD) mouse, was used to investigate the possible mechanisms underlying the efficacy of nasal insulin B:9-23 peptide therapy. The experimental aim was to evaluate the impact of dose, frequency of administration, and age at treatment on Treg induction and optimal therapeutic outcome. RESULTS In virtual NOD mice, treatment efficacy was predicted to depend primarily on the immunization frequency and stage of the disease and to a lesser extent on the dose. Whereas low-frequency immunization protected from diabetes atrributed to Treg and interleukin (IL)-10 induction in the pancreas 1-2 weeks after treatment, high-frequency immunization failed. These predictions were confirmed with wet-lab approaches, where only low-frequency immunization started at an early disease stage in the NOD mouse resulted in significant protection from diabetes by inducing IL-10 and Treg. CONCLUSIONS Here, the advantage of applying computer modeling in optimizing the therapeutic efficacy of nasal insulin immunotherapy was confirmed. In silico modeling was able to streamline the experimental design and to identify the particular time frame at which biomarkers associated with protection in live NODs were induced. These results support the development and application of humanized platforms for the design of clinical trials (i.e., for the ongoing nasal insulin prevention studies).
Collapse
Affiliation(s)
- Georgia Fousteri
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Jason R. Chan
- Entelos, Foster City, California
- Corresponding authors: Jason R. Chan, , and Matthias von Herrath,
| | | | | | - Amy Dave
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Damien Bresson
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Michael Croft
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Matthias von Herrath
- Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California
- Corresponding authors: Jason R. Chan, , and Matthias von Herrath,
| |
Collapse
|
9
|
Meagher C, Beilke J, Arreaza G, Mi QS, Chen W, Salojin K, Horst N, Cruikshank WW, Delovitch TL. Neutralization of interleukin-16 protects nonobese diabetic mice from autoimmune type 1 diabetes by a CCL4-dependent mechanism. Diabetes 2010; 59:2862-71. [PMID: 20693344 PMCID: PMC2963545 DOI: 10.2337/db09-0131] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The progressive infiltration of pancreatic islets by lymphocytes is mandatory for development of autoimmune type 1 diabetes. This inflammatory process is mediated by several mediators that are potential therapeutic targets to arrest development of type 1 diabetes. In this study, we investigate the role of one of these mediators, interleukin-16 (IL-16), in the pathogenesis of type 1 diabetes in NOD mice. RESEARCH DESIGN AND METHODS At different stages of progression of type 1 diabetes, we characterized IL-16 in islets using GEArray technology and immunoblot analysis and also quantitated IL-16 activity in cell migration assays. IL-16 expression was localized in islets by immunofluorescence and confocal imaging. In vivo neutralization studies were performed to assess the role of IL-16 in the pathogenesis of type 1 diabetes. RESULTS The increased expression of IL-16 in islets correlated with the development of invasive insulitis. IL-16 immunoreactivity was found in islet infiltrating T-cells, B-cells, NK-cells, and dendritic cells, and within an insulitic lesion, IL-16 was derived from infiltrating cells. CD4(+) and CD8(+) T-cells as well as B220(+) B-cells were identified as sources of secreted IL-16. Blockade of IL-16 in vivo protected against type 1 diabetes by interfering with recruitment of CD4(+) T-cells to the pancreas, and this protection required the activity of the chemokine CCL4. CONCLUSIONS IL-16 production by leukocytes in islets augments the severity of insulitis during the onset of type 1 diabetes. IL-16 and CCL4 appear to function as counterregulatory proteins during disease development. Neutralization of IL-16 may represent a novel therapy for the prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Craig Meagher
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
| | - Josh Beilke
- Department of Immunology, University of California, San Francisco, California
| | - Guillermo Arreaza
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
| | - Qing-Sheng Mi
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
| | - Wei Chen
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
| | - Konstantin Salojin
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
| | - Noah Horst
- Department of Immunology, University of California, San Francisco, California
| | | | - Terry L. Delovitch
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, London, Ontario, Canada
- Corresponding author: Terry L. Delovitch,
| |
Collapse
|
10
|
Shen X, Wang Y, Gao F, Ren F, Busuttil RW, Kupiec-Weglinski JW, Zhai Y. CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/reperfusion injury. Hepatology 2009; 50:1537-46. [PMID: 19670423 PMCID: PMC2805281 DOI: 10.1002/hep.23153] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Although the role of CD4 T cells in tissue inflammation and organ injury resulting from ischemia and reperfusion injury (IRI) has been well documented, it remains unclear how CD4 T cells are activated and function in the absence of a specific antigen (Ag). We used a murine liver warm IRI model to determine first whether de novo Ag-specific CD4 T cell activation was required and then what its functional mechanism was. The critical role of CD4 T cells in liver immune activation against ischemia and reperfusion (IR) was confirmed in CD4 knockout mice and CD4 depleted wild-type mice. Interestingly, the inhibition of CD4 T cell activation without target cell depletion failed to protect livers against IRI, and this suggested that T cells function in liver IRI without Ag-specific de novo activation. To dissect the T cell functional mechanism, we found that CD154 blockade, but not interferon gamma (IFN-gamma) neutralization, inhibited local immune activation and protected livers from IRI. Furthermore, agonist anti-CD40 antibodies restored liver IRI in otherwise protected CD4-deficient hosts. Finally, fluorescence-activated cell sorting analysis of liver CD4 T cells revealed the selective infiltration of effector cells, which constitutively expressed a higher level of CD154 in comparison with their peripheral counterparts. IR triggered a significant liver increase in CD40 expression but not CD154 expression, and macrophages responded to toll-like receptor 4 and type I IFN stimulation to up-regulate CD40 expression. CONCLUSION These novel findings provide evidence that CD4 T cells function in liver IRI via CD154 without de novo Ag-specific activation, and innate immunity-induced CD40 up-regulation may trigger the engagement of CD154-CD40 to facilitate tissue inflammation and injury.
Collapse
Affiliation(s)
- Xiuda Shen
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA
| | - Yue Wang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA
| | - Feng Gao
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA
| | - Feng Ren
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA
| |
Collapse
|
11
|
Hasler P. Biological therapies directed against cells in autoimmune disease. ACTA ACUST UNITED AC 2006; 27:443-56. [PMID: 16738955 DOI: 10.1007/s00281-006-0013-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
Among the cells of the immune system involved in the pathogenesis of autoimmune disease, T cells have received the most attention. The central role of these cells in several animal models of autoimmune diseases and in human disease counterparts has provided the rationale for specific therapeutic targeting of T cell subsets, especially CD4 T cells. So far, the applicability of this approach has not been clearly evident in clinical trials, which was also the case when nondepleting "coating" anti-CD4 monoclonal antibodies was used. In the past several years, experimental evidence supporting a major role of B cells in systemic autoimmune disease has grown. This includes the pathogenicity of certain autoantibodies, the potential of B cells to present antigen in the context of MHC Class II and to signal via costimulatory molecules, and to secrete proinflammatory cytokines. In some instances, engagement of the B cell receptor and other surface receptors is sufficient to stimulate B cells to produce antibodies. The depletion of B cells by targeting the surface marker CD20 has been shown to be effective in treating rheumatoid arthritis with a good side effect profile. Series of cases with other systemic autoimmune diseases indicate that this strategy may be effective in these conditions too. The clinical data add weight to the importance of B cells in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Paul Hasler
- Rheumaklinik, Kantonsspital Aarau, Tellstrasse, 5001 Aarau, Switzerland.
| |
Collapse
|
12
|
Abstract
Type 1A diabetes (T1D) is caused by autoimmune islet beta cell destruction precipitated by environmental triggers in genetically predisposed individuals. Islet beta cells produce insulin and are the primary target of this autoimmune disorder. Insulin, glutamic acid decarboxylase, and insulinoma associated-2 autoantibodies (IAA, GAD65, and IA-2) are the autoantibodies that have been associated most clearly with the development of T1D. Despite our current ability to predict T1D using genetic markers and detecting islet autoantibodies, we have yet to find a safe way to prevent the disease. However, there are more than 100 different therapies that prevent T1D in the nonobese diabetic (NOD) mouse model or the BioBreeding (BB) rats. This paper reviews a few select therapeutic approaches that have been or are being evaluated as possibilities for the prevention, amelioration, or cure of T1D.
Collapse
Affiliation(s)
- Theresa Aly
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | |
Collapse
|
13
|
Abstract
Type 1A diabetes mellitus is caused by specific and progressive autoimmune destruction of the beta cells in the islets of Langerhans whereas the other cell types in the islet (alpha, delta, and PP) are spared. The autoantigens of Type 1A diabetes may be divided into subgroups based on their tissue distributions: Beta-cell-specific antigens like insulin, insulin derivatives, and IGRP (Islet-specific Glucose-6-phosphatase catalytic subunit Related Peptide); neurendocrine antigens such as carboxypeptidase H, insulinoma-associated antigen (IA-2), glutamic acid decarboxylase (GAD65), and carboxypeptidase E; and those expressed ubiquitously like heat shock protein 60 (a putative autoantigen for type 1 diabetes). This review will focus specifically on insulin as a primary autoantigen, an essential target for disease, in type 1A diabetes mellitus. In particular, immunization with insulin peptide B:9-23 can be used to induce insulin autoantibodies and diabetes in animal models or used to prevent diabetes. Genetic manipulation of the insulin 1 and 2 genes reciprocally alters development of diabetes in the NOD mouse, and insulin gene polymorphisms are important determinants of childhood diabetes. We are pursuing the hypothesis that insulin is a primary autoantigen for type 1 diabetes, and thus the pathogenesis of the disease relates to specific recognition of one or more peptides.
Collapse
Affiliation(s)
- J M Jasinski
- Human Medical Genetics Program, Aurora, CO 80010, USA.
| | | |
Collapse
|
14
|
Abstract
Type 1A diabetes is a chronic autoimmune disease usually preceded by a long prodrome during which autoantibodies to islet autoantigens are present. These antibodies are directed to a variety of antigens, but the best characterized are glutamic acid decarboxylase-65, insulinoma-associated antigen-2, and insulin. We hypothesize that the natural history of type 1A diabetes can be represented by several stages, starting from genetic susceptibility and ending in complete beta-cell destruction and overt diabetes. Type 1A diabetes probably results from a balance between genetic susceptibility and environmental influences. In both humans and animal models, the major determinants of the disease are genes within the major histocompatibility complex. The next best-characterized susceptibility locus is the insulin gene, the variable nucleotide tandem repeat locus. This gene affects the expression of insulin in the thymus and thus may play a role in the modulation of tolerance to this molecule. In a subset of genetically susceptible individuals, the activation of autoimmunity may be triggered by environmental factors such as viruses and/or diet. However, no conclusive association has been established between type 1A diabetes and specific environmental triggers. In this review, we provide evidence that insulin has a fundamental role in anti-islet autoimmunity.
Collapse
Affiliation(s)
- Roberto Gianani
- The Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO, USA.
| | | |
Collapse
|
15
|
Sia C. Autoimmune diabetes: ongoing development of immunological intervention strategies targeted directly against autoreactive T cells. Rev Diabet Stud 2004; 1:9-17. [PMID: 17491660 PMCID: PMC1783534 DOI: 10.1900/rds.2004.1.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is well known that autoimmunity associated with the onset of insulin-dependent diabetes mellitus (IDDM) involves the generation of autoreactive T and B cells. The findings that diabetics mount humoral and cellular immune responses against islet cell antigens (ICAs) have led to the testing of ICAs and their analogs as candidates for therapeutic agents for better treatment of IDDM at its prediabetic and diabetic stages. Apart from this type of approach, various immunological intervention strategies aimed at direct targeting of the autoreactive T cells have also been investigated. The present review covers the ongoing aspects of these developments focusing on the preclinical findings made in NOD (nonobese diabetic) mice which have been commonly used as a disease model for human autoimmune diabetes. Other types of approaches involving the mobilization of regulatory T cells to indirectly control or modulate the pathological activity of autoreactive T cells will not be discussed within this scope.
Collapse
Affiliation(s)
- Charles Sia
- United Biomedical Inc., 25 Davids Drive, Hauppauge, New York 11788, USA.
| |
Collapse
|