1
|
Wang Q, Xu L, Chen P, Xu Z, Qiu J, Ge J, Yu K, Zhuang J. Brca1 Is Upregulated by 5-Aza-CdR and Promotes DNA Repair and Cell Survival, and Inhibits Neurite Outgrowth in Rat Retinal Neurons. Int J Mol Sci 2018; 19:ijms19041214. [PMID: 29673145 PMCID: PMC5979323 DOI: 10.3390/ijms19041214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023] Open
Abstract
Previous studies have reported that Brca1 acts as a “hinge” in the development of the central nervous system (CNS). However, the precise role of Brca1 in rat retinal neurons remains unclear. Here, we found that Brca1 is developmentally downregulated and silenced in adult retina. Brca1 was upregulated in rat primary retinal neurons by 5-Aza-2′-deoxycytidine (5-Aza-CdR) treatment. Moreover, the upregulation of Brca1 by both 5-Aza-CdR and transgenic Brca1 promoted genomic stability and improved cell viability following exposure to ionizing radiation (IR). Furthermore, transgenic Brca1 significantly inhibited neurite outgrowth of retinal neurons, which implicates that Brca1 silencing promotes cell differentiation and determines neuronal morphology. Taken together, our results reveal a biological function of Brca1 in retinal development.
Collapse
Affiliation(s)
- Qiyun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Lijun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Zhuojun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
2
|
Tomasevic G, Laurer HL, Mattiasson G, van Steeg H, Wieloch T, McIntosh TK. Delayed neuromotor recovery and increased memory acquisition dysfunction following experimental brain trauma in mice lacking the DNA repair gene XPA. J Neurosurg 2012; 116:1368-78. [PMID: 22462511 DOI: 10.3171/2012.2.jns11888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT This study investigates the outcome after traumatic brain injury (TBI) in mice lacking the essential DNA repair gene xeroderma pigmentosum group A (XPA). As damage to DNA has been implicated in neuronal cell death in various models, the authors sought to elucidate whether the absence of an essential DNA repair factor would affect the outcome of TBI in an experimental setting. METHODS Thirty-seven adult mice of either wild-type (n = 18) or XPA-deficient ("knock-out" [n = 19]) genotype were subjected to controlled cortical impact experimental brain trauma, which produced a focal brain injury. Sham-injured mice of both genotypes were used as controls (9 in each group). The mice were subjected to neurobehavoral tests evaluating learning/acquisition (Morris water maze) and motor dysfunction (Rotarod and composite neuroscore test), pre- and postinjury up to 4 weeks. The mice were killed after 1 or 4 weeks, and cortical lesion volume, as well as hippocampal and thalamic cell loss, was evaluated. Hippocampal staining with doublecortin antibody was used to evaluate neurogenesis after the insult. RESULTS Brain-injured XPA(-/-) mice exhibited delayed recovery from impairment in neurological motor function, as well as pronounced cognitive dysfunction in a spatial learning task (Morris water maze), compared with injured XPA(+/+) mice (p < 0.05). No differences in cortical lesion volume, hippocampal damage, or thalamic cell loss were detected between XPA(+/+) and XPA(-/-) mice after brain injury. Also, no difference in the number of cells stained with doublecortin in the hippocampus was detected. CONCLUSIONS The authors' results suggest that lack of the DNA repair factor XPA may delay neurobehavioral recovery after TBI, although they do not support the notion that this DNA repair deficiency results in increased cell or tissue death in the posttraumatic brain.
Collapse
Affiliation(s)
- Gregor Tomasevic
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
3
|
Yang SZ, Zhang YF, Zhang LM, Huang YL, Sun FY. Immunohistochemical Analysis of Nucleotide Excision Repair Factors XPA and XPB in Adult Rat Brain. Anat Rec (Hoboken) 2008; 291:775-80. [DOI: 10.1002/ar.20713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Perry JJP, Fan L, Tainer JA. Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair. Neuroscience 2006; 145:1280-99. [PMID: 17174478 PMCID: PMC1904427 DOI: 10.1016/j.neuroscience.2006.10.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/15/2006] [Accepted: 10/17/2006] [Indexed: 12/11/2022]
Abstract
This review is focused on proteins with key roles in pathways controlling either reactive oxygen species or DNA damage responses, both of which are essential for preserving the nervous system. An imbalance of reactive oxygen species or inappropriate DNA damage response likely causes mutational or cytotoxic outcomes, which may lead to cancer and/or aging phenotypes. Moreover, individuals with hereditary disorders in proteins of these cellular pathways have significant neurological abnormalities. Mutations in a superoxide dismutase, which removes oxygen free radicals, may cause the neurodegenerative disease amyotrophic lateral sclerosis. Additionally, DNA repair disorders that affect the brain to various extents include ataxia-telangiectasia-like disorder, Cockayne syndrome or Werner syndrome. Here, we highlight recent advances gained through structural biochemistry studies on enzymes linked to these disorders and other related enzymes acting within the same cellular pathways. We describe the current understanding of how these vital proteins coordinate chemical steps and integrate cellular signaling and response events. Significantly, these structural studies may provide a set of master keys to developing a unified understanding of the survival mechanisms utilized after insults by reactive oxygen species and genotoxic agents, and also provide a basis for developing an informed intervention in brain tumor and neurodegenerative disease progression.
Collapse
Affiliation(s)
- J J P Perry
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
5
|
Kondapi AK, Mulpuri N, Mandraju RK, Sasikaran B, Subba Rao K. Analysis of age dependent changes of Topoisomerase II α and β in rat brain. Int J Dev Neurosci 2004; 22:19-30. [PMID: 15013075 DOI: 10.1016/j.ijdevneu.2003.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 10/30/2003] [Accepted: 10/30/2003] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic Topoisomerase II (Topo II) is present in two isoforms alpha and beta. The alpha isoform is predominantly localized in proliferative tissue, while beta isoform is present in all tissues. In the present study we report the activity and protein levels of Topoisomerase II alpha and beta in rat brains of different age groups viz.: E11 (Embryo day 11), E18 (Embryo day 18), post-natal day 1, young (<10 days), adult (<6 months) and old (>2 years). Topoisomerase II beta isoform is found to be the predominant form in brain tissue but Topoisomerase II alpha is found in embryos up to post-natal day 1. The studies to examine the regional distribution of Topoisomerase II beta in brain showed highest activity in cerebellar region and that too only neuronal cell fraction. There was a significant age-dependent decline in this activity. Hence, Topoisomerase II beta may have some unknown function in cerebellum and the low levels of Topoisomerase II beta activity in ageing cerebellum may contribute to the genomic instability in cerebellar region of ageing brain.
Collapse
Affiliation(s)
- Anand K Kondapi
- Department of Biochemistry and Center for Research on Ageing and Brain, University of Hyderabad, Hyderabad 500046, India.
| | | | | | | | | |
Collapse
|
6
|
Hou ST, MacManus JP. Molecular mechanisms of cerebral ischemia-induced neuronal death. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:93-148. [PMID: 12455747 DOI: 10.1016/s0074-7696(02)21011-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mode of neuronal death caused by cerebral ischemia and reperfusion appears on the continuum between the poles of catastrophic necrosis and apoptosis: ischemic neurons exhibit many biochemical hallmarks of apoptosis but remain cytologically necrotic. The position on this continuum may be modulated by the severity of the ischemic insult. The ischemia-induced neuronal death is an active process (energy dependent) and is the result of activation of cascades of detrimental biochemical events that include perturbion of calcium homeostasis leading to increased excitotoxicity, malfunction of endoplasmic reticulum and mitochondria, elevation of oxidative stress causing DNA damage, alteration in proapoptotic gene expression, and activation of the effector cysteine proteases (caspases) and endonucleases leading to the final degradation of the genome. In spite of strong evidence showing that brain infarction can be reduced by inhibiting any one of the above biochemical events, such as targeting excitotoxicity, up-regulation of an antiapoptotic gene, or inhibition of a down-stream effector caspase, it is becoming clear that targeting a single gene or factor is not sufficient for stroke therapeutics. An effective neuroprotective therapy is likely to be a cocktail aimed at all of the above detrimental events evoked by cerebral ischemia and the success of such therapeutic intervention relies upon the complete elucidation of pathways and mechanisms of the cerebral ischemia-induced active neuronal death.
Collapse
Affiliation(s)
- Sheng T Hou
- Experimental Stroke Group, Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, KIA 0R6, Canada
| | | |
Collapse
|
7
|
Abstract
As one part of a distinguished scientific career, Dr. Bryn Bridges focused his attention on the issue of DNA damage and repair in stationary phase bacteria. His work in this area led to his interest in DNA repair and mutagenesis in another non-dividing cell population, the neurons in the mammalian nervous system. He has specifically taken an interest in the magnocellular neurons of the central nervous system, and the possibility that somatic mutations may be occurring in these neurons. As part of this special issue dedicated to Bryn Bridges upon his retirement, I will discuss the various DNA repair pathways known to be active in the nervous system. The importance of DNA repair to the nervous system is most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair. I will consider the mechanisms underlying the neurological abnormalities observed in patients with four of these diseases: xeroderma pigmentosum (XP), Cockayne's syndrome (CS), ataxia telangectasia (AT) and AT-like disorder (ATLD). I will also propose a mechanism for one of the observations indicating that somatic mutation can occur in the magnocellular neurons of the aging rat brain. Finally, as a parallel to Bridges inquiry into how much DNA synthesis is going on in stationary phase bacteria, I will address the question of how much DNA synthesis in going on in neurons, and the implications of the answer to this question for recent studies of neurogenesis in adult mammals.
Collapse
Affiliation(s)
- P J Brooks
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 12420 Parklawn Drive, MSC 8110, Bethesda, MD 20892-8110, USA.
| |
Collapse
|
8
|
Abstract
Human hepatocytes are particularly exposed to genotoxins, and nucleotide excision repair (NER) in these cells is essential for the maintenance of genome integrity. To characterize NER under conditions that closely resemble the pathway in vivo, we report the preparation and use of primary human fetal liver extracts to define the repair of a 1,3-intrastrand d(GpTpG)-cisplatin DNA lesion. Endonucleolytic cleavage at unique sites on either side of the adduct occurs at similar positions to the dominant NER incisions that have been reported for HeLa extracts. However, incisions effected by primary hepatocyte extracts are more precise as no secondary cleavage sites are detected 5' and 3' to the cisplatin lesion.
Collapse
Affiliation(s)
- Alexio Capovilla
- Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, 7 York Road, 2193, Parktown, South Africa
| | | |
Collapse
|
9
|
Willett KL, Lienesch LA, Di Giulio RT. No detectable DNA excision repair in UV-exposed hepatocytes from two catfish species. Comp Biochem Physiol C Toxicol Pharmacol 2001; 128:349-58. [PMID: 11255108 DOI: 10.1016/s1532-0456(00)00206-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
DNA repair is a critical process in protecting cellular genetic information from mutation. Nucleotide excision repair (NER) is a mechanism by which cells correct DNA damage caused by agents that form bulky covalent adducts and UV photoproducts such as thymine dimers and 6-4 photoproduct. NER, sometimes called dark repair, is generally accepted as being low in fish compared to mammals. This study was designed to quantitate NER in two related catfish species that have known differential sensitivities to liver carcinomas. The original hypothesis was that the more cancer resistant species, channel catfish (Ictalurus punctatus), would have more efficient DNA repair compared to the more sensitive brown bullhead (Ameriurus nebulosus). In order to measure NER, primary cultured hepatocytes of both species were exposed to UV light (10-40 J/m2) and collected at 0, 24, 48 and 72 h after exposure. Total DNA was extracted from the cells and incubated with T4 endonuclease V. Using alkaline gel electrophoresis, endonuclease sensitive sites (ESS) were quantified. Results from the ESS assay indicated there was a UV dose-response increase in thymine dimers from 0 to 40 J/m2. However, no repair (decrease in number of ESS) occurred in either fish species over a 72-h time period. When cells were exposed to photoreactivating fluorescent light, repair was detected. These studies highlight the difficulty of measuring NER in fish and are consistent with the low levels of NER reported by other researchers in fish.
Collapse
Affiliation(s)
- K L Willett
- Ecotoxicology Laboratory, Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA.
| | | | | |
Collapse
|
10
|
Abstract
Many human pathological conditions with genetic defects in DNA damage responses are also characterized by neurological deficits. These neurological deficits can manifest themselves during many stages of development, suggesting an important role for DNA repair or processing during the development and maintenance of the nervous system. Although the molecular neuropathology associated with such deficits is largely unknown, many of the responsible gene defects have been identified. The current rapid progress in elucidation of molecular details following gene identification should provide further insight into the importance of DNA processing in nervous system function.
Collapse
Affiliation(s)
- R L Rolig
- Dept of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
11
|
Brooks PJ, Wise DS, Berry DA, Kosmoski JV, Smerdon MJ, Somers RL, Mackie H, Spoonde AY, Ackerman EJ, Coleman K, Tarone RE, Robbins JH. The oxidative DNA lesion 8,5'-(S)-cyclo-2'-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 2000; 275:22355-62. [PMID: 10801836 DOI: 10.1074/jbc.m002259200] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Xeroderma pigmentosum (XP) patients with inherited defects in nucleotide excision repair (NER) are unable to excise from their DNA bulky photoproducts induced by UV radiation and therefore develop accelerated actinic damage, including cancer, on sun-exposed tissue. Some XP patients also develop a characteristic neurodegeneration believed to result from their inability to repair neuronal DNA damaged by endogenous metabolites since the harmful UV radiation in sunlight does not reach neurons. Free radicals, which are abundant in neurons, induce DNA lesions that, if unrepaired, might cause the XP neurodegeneration. Searching for such a lesion, we developed a synthesis for 8,5'-(S)-cyclo-2'-deoxyadenosine (cyclo-dA), a free radical-induced bulky lesion, and incorporated it into DNA to test its repair in mammalian cell extracts and living cells. Using extracts of normal and mutant Chinese hamster ovary (CHO) cells to test for NER and adult rat brain extracts to test for base excision repair, we found that cyclo-dA is repaired by NER and not by base excision repair. We measured host cell reactivation, which reflects a cell's capacity for NER, by transfecting CHO and XP cells with DNA constructs containing a single cyclo-dA or a cyclobutane thymine dimer at a specific site on the transcribed strand of a luciferase reporter gene. We found that, like the cyclobutane thymine dimer, cyclo-dA is a strong block to gene expression in CHO and human cells. Cyclo-dA was repaired extremely poorly in NER-deficient CHO cells and in cells from patients in XP complementation group A with neurodegeneration. Based on these findings, we propose that cyclo-dA is a candidate for an endogenous DNA lesion that might contribute to neurodegeneration in XP.
Collapse
Affiliation(s)
- P J Brooks
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
DNA methylation is important for controlling the profile of gene expression and is catalyzed by DNA methyltransferase (MTase), an enzyme that is abundant in brain. Because significant DNA damage and alterations in gene expression develop as a consequence of cerebral ischemia, we measured MTase activity in vitro and DNA methylation in vivo after mild focal brain ischemia. After 30 min middle cerebral artery occlusion (MCAo) and reperfusion, MTase catalytic activity and the 190 kDa band on immunoblot did not change over time. However, [(3)H]methyl-group incorporation into DNA increased significantly in wild-type mice after reperfusion, but not in mutant mice heterozygous for a DNA methyltransferase gene deletion (Dnmt(S/+)). Dnmt(S/+) mice were resistant to mild ischemic damage, suggesting that increased DNA methylation is associated with augmented brain injury after MCA occlusion. Consistent with this formulation, treatment with the MTase inhibitor 5-aza-2'-deoxycytidine and the deacetylation inhibitor trichostatin A conferred stroke protection in wild-type mice. In contrast to mild stroke, however, DNA methylation was not enhanced, and reduced dnmt gene expression was not protective in an ischemia model of excitotoxic/necrotic cell death. In conclusion, our results demonstrate that MTase activity contributes to poor tissue outcome after mild ischemic brain injury.
Collapse
|
13
|
Ide F, Iida N, Nakatsuru Y, Oda H, Nikaido O, Ishikawa T. In vivo detection of ultraviolet photoproducts and their repair in purkinje cells. J Transl Med 2000; 80:465-70. [PMID: 10780663 DOI: 10.1038/labinvest.3780052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We previously developed a highly sensitive method to assess in situ repair kinetics of ultraviolet (UV)-induced DNA photoproducts in epidermal cells using monoclonal antibodies specific for cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (64PPs) by immunohistochemistry. In order to determine whether nucleotide excision repair capacity is operative in postmitotic mature neurons, brain surfaces of adult mice were exposed to UVB, and induction and removal of CPDs and 64PPs in Purkinje cell DNA were assessed immunohistochemically. UVB penetrated brain tissue to a depth sufficient to allow quantitative study. CPDs but not 64PPs were clearly detectable in the nuclei of Purkinje cells at doses >500 J/m2, in a dose-dependent manner. A time course experiment showed a statistically significant decrease of CPDs with time after irradiation. Although there was no apparent removal on Day 1, about half of CPDs were removed within 5 days, and the repair was essentially completed by Day 10. We conclude that non-dividing cerebellar neuronal cells can indeed repair UV-induced DNA damage, but with relatively low efficiency as compared with dividing epidermal cells.
Collapse
Affiliation(s)
- F Ide
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Cardozo-Pelaez F, Brooks PJ, Stedeford T, Song S, Sanchez-Ramos J. DNA damage, repair, and antioxidant systems in brain regions: a correlative study. Free Radic Biol Med 2000; 28:779-85. [PMID: 10754274 DOI: 10.1016/s0891-5849(00)00172-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
8-Hydroxy-2'-deoxyguanosine (oxo(8)dG) has been used as a marker of free radical damage to DNA and has been shown to accumulate during aging. Oxidative stress affects some brain regions more than others as demonstrated by regional differences in steady state oxo(8)dG levels in mouse brain. In our study, we have shown that regions such as the midbrain, caudate putamen, and hippocampus show high levels of oxo(8)dG in total DNA, although regions such as the cerebellum, cortex, and pons and medulla have lower levels. These regional differences in basal levels of DNA damage inversely correlate with the regional capacity to remove oxo(8)dG from DNA. Additionally, the activities of antioxidant enzymes (Cu/Zn superoxide dismutase, mitochondrial superoxide dismutase, and glutathione peroxidase) and the levels of the endogenous antioxidant glutathione are not predictors of the degree of free radical induced damage to DNA in different brain regions. Although each brain region has significant differences in antioxidant defenses, the capacity to excise the oxidized base from DNA seems to be the major determinant of the steady state levels of oxo(8)dG in each brain region.
Collapse
|