1
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 398] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
2
|
New Perspectives on Unscheduled DNA Synthesis: Functional Assay for Global Genomic DNA Nucleotide Excision Repair. Methods Mol Biol 2020; 2102:483-507. [PMID: 31989573 DOI: 10.1007/978-1-0716-0223-2_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C (254 nm) irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results have been used to clinically diagnose human DNA repair deficiency disorders, and provide a basis for investigation of repair deficiency in human tissues or tumors. Genomic sequencing to establish the presence of specific mutations is also used now for clinical diagnosis of DNA repair deficiency syndromes. Few functional assays are available which directly measure the capacity to perform NER on the entire genome. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR). As discussed in Chap. 28 is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. Our laboratory also explored the fluorescent label-based Click-iT assay that uses EdU as the label, rather than 3H thymidine. Despite emerging studies in the literature finding this assay to be useful for other purposes, we found that the EdU-based UDS assay was not consistent or reproducible compared with the 3H thymidine-based assay.
Collapse
|
3
|
Quinet A, Lerner LK, Martins DJ, Menck CFM. Filling gaps in translesion DNA synthesis in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:127-142. [PMID: 30442338 DOI: 10.1016/j.mrgentox.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
During DNA replication, forks may encounter unrepaired lesions that hamper DNA synthesis. Cells have universal strategies to promote damage bypass allowing cells to survive. DNA damage tolerance can be performed upon template switch or by specialized DNA polymerases, known as translesion (TLS) polymerases. Human cells count on more than eleven TLS polymerases and this work reviews the functions of some of these enzymes: Rev1, Pol η, Pol ι, Pol κ, Pol θ and Pol ζ. The mechanisms of damage bypass vary according to the lesion, as well as to the TLS polymerases available, and may occur directly at the fork during replication. Alternatively, the lesion may be skipped, leaving a single-stranded DNA gap that will be replicated later. Details of the participation of these enzymes are revised for the replication of damaged template. TLS polymerases also have functions in other cellular processes. These include involvement in somatic hypermutation in immunoglobulin genes, direct participation in recombination and repair processes, and contributing to replicating noncanonical DNA structures. The importance of DNA damage replication to cell survival is supported by recent discoveries that certain genes encoding TLS polymerases are induced in response to DNA damaging agents, protecting cells from a subsequent challenge to DNA replication. We retrace the findings on these genotoxic (adaptive) responses of human cells and show the common aspects with the SOS responses in bacteria. Paradoxically, although TLS of DNA damage is normally an error prone mechanism, in general it protects from carcinogenesis, as evidenced by increased tumorigenesis in xeroderma pigmentosum variant patients, who are deficient in Pol η. As these TLS polymerases also promote cell survival, they constitute an important mechanism by which cancer cells acquire resistance to genotoxic chemotherapy. Therefore, the TLS polymerases are new potential targets for improving therapy against tumors.
Collapse
Affiliation(s)
- Annabel Quinet
- Saint Louis University School of Medicine, St. Louis, MO, United States.
| | - Leticia K Lerner
- MRC Laboratory of Molecular Biology,Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Davi J Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos F M Menck
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Enhancement of UVB-induced DNA damage repair after a chronic low-dose UVB pre-stimulation. DNA Repair (Amst) 2018; 63:56-62. [PMID: 29448173 DOI: 10.1016/j.dnarep.2018.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/27/2017] [Accepted: 01/19/2018] [Indexed: 01/13/2023]
Abstract
Absorption of solar ultraviolet (UV) radiation by DNA leads to the formation of the highly mutagenic cyclobutane pyrimidine dimer (CPD). The mutagenicity of CPD is caused, in part, by the fact that their recognition and repair by the nucleotide excision repair (NER) pathway is challenging and slow. It has been previously shown that a pre-stimulation with genotoxic agents improve NER efficiency of CPD, indicating a potential adaptive response of this repair pathway. We have pre-treated human dermal fibroblasts with repeated subletal low doses of UVB (chronic low-dose of UVB; CLUV) to determine whether it could enhance NER capacity to repair CPD. Our results show that CLUV pre-treatment greatly enhances CPD repair but have little effect on the repair of another UV-induced bypirimidine photoproduct, the pyrimidine (6-4) pyrimidone photoproducts (6-4 PP). We have determined that the CLUV treatment activates p53 and we found an increase of DDB2 and XPC gene expression. This is consistent with an increasing level of NER recognition proteins, DDB2 and XPC, we found concentrated at the chromatin. This study represents the first demonstration that chronic UVB exposure can stimulate NER pathway. Altogether, these results shed light on the potential adaptability of the NER by chronic UVB irradiation and the mechanisms involved.
Collapse
|
5
|
Drigeard Desgarnier MC, Fournier F, Droit A, Rochette PJ. Influence of a pre-stimulation with chronic low-dose UVB on stress response mechanisms in human skin fibroblasts. PLoS One 2017; 12:e0173740. [PMID: 28301513 PMCID: PMC5354420 DOI: 10.1371/journal.pone.0173740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Exposure to solar ultraviolet type B (UVB), through the induction of cyclobutane pyrimidine dimer (CPD), is the major risk factor for cutaneous cancer. Cells respond to UV-induced CPD by triggering the DNA damage response (DDR) responsible for signaling DNA repair, programmed cell death and cell cycle arrest. Underlying mechanisms implicated in the DDR have been extensively studied using single acute UVB irradiation. However, little is known concerning the consequences of chronic low-dose of UVB (CLUV) on the DDR. Thus, we have investigated the effect of a CLUV pre-stimulation on the different stress response pathways. We found that CLUV pre-stimulation enhances CPD repair capacity and leads to a cell cycle delay but leave residual unrepaired CPD. We further analyzed the consequence of the CLUV regimen on general gene and protein expression. We found that CLUV treatment influences biological processes related to the response to stress at the transcriptomic and proteomic levels. This overview study represents the first demonstration that human cells respond to chronic UV irradiation by modulating their genotoxic stress response mechanisms.
Collapse
Affiliation(s)
- Marie-Catherine Drigeard Desgarnier
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec – Université Laval, Hôpital du Saint-Sacrement, Québec, Quebec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Quebec, Canada
| | - Frédéric Fournier
- Centre de Protéomique, Centre de Recherche du CHU de Québec – Université Laval, Québec, Quebec, Canada
- Département de Médicine Moléculaire, Université Laval, Québec, Canada
| | - Arnaud Droit
- Centre de Protéomique, Centre de Recherche du CHU de Québec – Université Laval, Québec, Quebec, Canada
- Département de Médicine Moléculaire, Université Laval, Québec, Canada
| | - Patrick J. Rochette
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec – Université Laval, Hôpital du Saint-Sacrement, Québec, Quebec, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Université Laval, Québec, Quebec, Canada
- Département d’Ophtalmologie et ORL - Chirurgie Cervico-Faciale, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
6
|
Biological and predictive role of ERCC1 polymorphisms in cancer. Crit Rev Oncol Hematol 2017; 111:133-143. [PMID: 28259288 DOI: 10.1016/j.critrevonc.2017.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/14/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
Excision repair cross-complementation group 1 (ERCC1) is a key component in DNA repair mechanisms and may influence the tumor DNA-targeting effect of the chemotherapeutic agent oxaliplatin. Germline ERCC1 polymorphisms may alter the protein expression and published data on their predictive and prognostic value have so far been contradictory. In the present article we review available evidence on the clinical role and utility of ERCC1 polymorphisms and, in the absence of a 'perfect' trial, what we call the 'sliding doors' trial, we present the data of ERCC1 genotyping in our local patient population. We found a useful predictive value for oxaliplatin-induced risk of anemia.
Collapse
|
7
|
Ng CYP, Kong EY, Kobayashi A, Suya N, Uchihori Y, Cheng SH, Konishi T, Yu KN. Non-induction of radioadaptive response in zebrafish embryos by neutrons. JOURNAL OF RADIATION RESEARCH 2016; 57:210-219. [PMID: 26850927 PMCID: PMC4915534 DOI: 10.1093/jrr/rrv089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/13/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf.
Collapse
Affiliation(s)
- Candy Y P Ng
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong
| | - Eva Y Kong
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong
| | - Alisa Kobayashi
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Noriyoshi Suya
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Yukio Uchihori
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong
| | - Teruaki Konishi
- Research, Development and Support Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Ave., Kowloon Tong, Hong Kong
| |
Collapse
|
8
|
Vijayalaxmi, Cao Y, Scarfi MR. Adaptive response in mammalian cells exposed to non-ionizing radiofrequency fields: A review and gaps in knowledge. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00004-0. [PMID: 24548818 DOI: 10.1016/j.mrrev.2014.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 11/19/2022]
Abstract
Adaptive response is a phenomenon in which cells which were pre-exposed to extremely low and non-toxic doses of a genotoxic agent became resistant to the damage induced by subsequent exposure to a higher and toxic dose of the same, similar (in action) or another genotoxic agent. Such response has been well documented in scientific literature in cells exposed in vitro and in vivo to low doses of physical (especially, ionizing radiation) and chemical mutagens. The existence of similar phenomenon in mammalian cells exposed in vitro and in vivo to non-ionizing radiofrequency fields has been reported in several research publications. In in vitro studies, human blood lymphocytes exposed to radiofrequency fields and then treated with a genotoxic mutagen or subjected to ionizing radiation showed significantly decreased genetic damage. Similar studies in tumor cells showed significantly increased viability, decreased apoptosis, increased mitochondrial membrane potential, decreased intracellular free Ca2+ and, increased Ca2+-Mg2+-ATPase activity. In in vivo studies, exposure of rodents to radiofrequency fields and then to lethal/sub-lethal doses of γ-radiation showed survival advantage, significantly decreased damage in hematopoietic tissues, decreased genetic damage in blood leukocytes and bone marrow cells, increased numbers of colony forming units in bone marrow, increased levels of colony stimulating factor and interleukin-3 in the serum and increased expression of genes related to cell cycle. These observations suggested the ability of radiofrequency fields to induce adaptive response and also indicated some potential mechanisms for the induction of such response. Several gaps in knowledge that need to be investigated were discussed.
Collapse
|
9
|
Abstract
Solar ultraviolet (UV) radiation, mainly UV-B (280-315 nm), is one of the most potent genotoxic agents that adversely affects living organisms by altering their genomic stability. DNA through its nucleobases has absorption maxima in the UV region and is therefore the main target of the deleterious radiation. The main biological relevance of UV radiation lies in the formation of several cytotoxic and mutagenic DNA lesions such as cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers (DEWs), as well as DNA strand breaks. However, to counteract these DNA lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, excision repair, and mismatch repair (MMR). Photoreactivation involving the enzyme photolyase is the most frequently used repair mechanism in a number of organisms. Excision repair can be classified as base excision repair (BER) and nucleotide excision repair (NER) involving a number of glycosylases and polymerases, respectively. In addition to this, double-strand break repair, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms to ensure genomic stability. This review concentrates on the UV-induced DNA damage and the associated repair mechanisms as well as various damage detection methods.
Collapse
Affiliation(s)
- Richa
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | |
Collapse
|
10
|
Latimer JJ, Kelly CM. Unscheduled DNA synthesis: the clinical and functional assay for global genomic DNA nucleotide excision repair. Methods Mol Biol 2014; 1105:511-32. [PMID: 24623250 DOI: 10.1007/978-1-62703-739-6_36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results are used to clinically diagnose human DNA repair deficiency disorders and provide a basis for investigation of repair deficiency in human tissues or tumors. No other functional assay is available that directly measures the capacity to perform NER on the entire genome without the use of specific antibodies. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR), as discussed in Chapter 37, is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale-Davie, FL, 33314-7796, USA,
| | | |
Collapse
|
11
|
Choi JH, Gaddameedhi S, Kim SY, Hu J, Kemp MG, Sancar A. Highly specific and sensitive method for measuring nucleotide excision repair kinetics of ultraviolet photoproducts in human cells. Nucleic Acids Res 2013; 42:e29. [PMID: 24271390 PMCID: PMC3936724 DOI: 10.1093/nar/gkt1179] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide excision repair pathway removes ultraviolet (UV) photoproducts from the human genome in the form of short oligonucleotides ∼30 nt in length. Because there are limitations to many of the currently available methods for investigating UV photoproduct repair in vivo, we developed a convenient non-radioisotopic method to directly detect DNA excision repair events in human cells. The approach involves extraction of oligonucleotides from UV-irradiated cells, DNA end-labeling with biotin and streptavidin-mediated chemiluminescent detection of the excised UV photoproduct-containing oligonucleotides that are released from the genome during excision repair. Our novel approach is robust, with essentially no signal in the absence of UV or a functional excision repair system. Furthermore, our non-radioisotopic methodology allows for the sensitive detection of excision products within minutes following UV irradiation and does not require additional enrichment steps such as immunoprecipitation. Finally, this technique allows for quantitative measurements of excision repair in human cells. We suggest that the new techniques presented here will be a useful and powerful approach for studying the mechanism of human nucleotide excision repair in vivo.
Collapse
Affiliation(s)
- Jun-Hyuk Choi
- Department of Metrology for Quality of Life, Center for Bioanalysis, Korea Research Institute of Standards and Sciences, Daejeon 305-340, South Korea and Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
12
|
Christmann M, Kaina B. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 2013; 41:8403-20. [PMID: 23892398 PMCID: PMC3794595 DOI: 10.1093/nar/gkt635] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA repair is the first barrier in the defense against genotoxic stress. In recent years, mechanisms that recognize DNA damage and activate DNA repair functions through transcriptional upregulation and post-translational modification were the focus of intensive research. Most DNA repair pathways are complex, involving many proteins working in discrete consecutive steps. Therefore, their balanced expression is important for avoiding erroneous repair that might result from excessive base removal and DNA cleavage. Amelioration of DNA repair requires both a fine-tuned system of lesion recognition and transcription factors that regulate repair genes in a balanced way. Transcriptional upregulation of DNA repair genes by genotoxic stress is counteracted by DNA damage that blocks transcription. Therefore, induction of DNA repair resulting in an adaptive response is only visible through a narrow window of dose. Here, we review transcriptional regulation of DNA repair genes in normal and cancer cells and describe mechanisms of promoter activation following genotoxic exposures through environmental carcinogens and anticancer drugs. The data available to date indicate that 25 DNA repair genes are subject to regulation following genotoxic stress in rodent and human cells, but for only a few of them, the data are solid as to the mechanism, homeostatic regulation and involvement in an adaptive response to genotoxic stress.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
13
|
Cramers P, Filon AR, Pines A, Kleinjans JC, Mullenders LHF, van Zeeland AA. Enhanced nucleotide excision repair in human fibroblasts pre-exposed to ionizing radiation. Photochem Photobiol 2011; 88:147-53. [PMID: 22017241 DOI: 10.1111/j.1751-1097.2011.01019.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular protection against deleterious effects of DNA damaging agents requires an intricate network of defense mechanisms known as the DNA damage response (DDR). Ionizing radiation (IR) mediated activation of the DDR induces a transcriptional upregulation of genes that are also involved in nucleotide excision repair (NER). This suggests that pre-exposure to X-rays might stimulate NER in human cells. Here, we demonstrate in normal human fibroblasts that UV-induced NER is augmented by pre-exposure to IR and that this increased repair is accompanied by elevated mRNA and protein levels of the NER factors XPC and DDB2. Furthermore, when IR exposure precedes local UV irradiation, the presence of XPC and DDB2 at the sites of local UV damages is increased. This increase might be p53 dependent, but the mechanism of X-ray specific stabilization of p53 is unclear as both X-rays and UV stabilize p53.
Collapse
Affiliation(s)
- Patricia Cramers
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Wang LE, Yin M, Dong Q, Stewart DJ, Merriman KW, Amos CI, Spitz MR, Wei Q. DNA repair capacity in peripheral lymphocytes predicts survival of patients with non-small-cell lung cancer treated with first-line platinum-based chemotherapy. J Clin Oncol 2011; 29:4121-8. [PMID: 21947825 DOI: 10.1200/jco.2010.34.3616] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Platinum-based regimens are the standard chemotherapy for patients with advanced non-small-cell lung cancer (NSCLC). DNA repair capacity (DRC) in tumor cells plays an important role in resistance to platinum-based drugs. We have previously reported that efficient DRC, as assessed by an in vitro lymphocyte-based assay, was a determinant of poor survival in patients with NSCLC in a relatively small data set. In this larger independent study of 591 patients with NSCLC, we further evaluated whether DRC in peripheral lymphocytes predicts survival of patients with NSCLC who receive platinum-based chemotherapy. PATIENTS AND METHODS All patients were recruited at The University of Texas MD Anderson Cancer Center and donated blood samples before the start of any chemotherapy. We measured DRC in cultured T lymphocytes by using the host-cell reactivation assay, and we assessed associations between DRC in peripheral lymphocytes and survival of patients with NSCLC who were treated with first-line platinum-based chemotherapy. RESULTS We found an inverse association between DRC in peripheral lymphocytes and patient survival. Compared with patients in the low tertile of DRC, patients with NSCLC in the high tertile of DRC had significantly worse overall and 3-year survival (adjusted hazard ratio [HR], 1.33; 95% CI, 1.04 to 1.71; P = .023; and HR, 1.35; 95% CI, 1.04 to 1.76; P = .025, respectively). This trend was more pronounced in patients with early-stage tumors, adenocarcinoma, or squamous cell carcinoma. CONCLUSION We confirmed that DRC in peripheral lymphocytes is an independent predictor of survival for patients with NSCLC treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Li-E Wang
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yin M, Yan J, Voutsina A, Tibaldi C, Christiani DC, Heist RS, Rosell R, Booton R, Wei Q. No evidence of an association of ERCC1 and ERCC2 polymorphisms with clinical outcomes of platinum-based chemotherapies in non-small cell lung cancer: a meta-analysis. Lung Cancer 2010; 72:370-7. [PMID: 21075476 DOI: 10.1016/j.lungcan.2010.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/08/2010] [Accepted: 10/18/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND The nucleotide excision repair (NER) pathway modulates platinum-based chemotherapeutic efficacy by removing drug-induced DNA damage. METHODS To summarize published data on the association between NER genes and responses to platinum-based chemotherapies in non-small cell lung cancer (NSCLC), we performed a meta-analysis of 17 published studies of ERCC1 C118T/C8092A and ERCC2 Lys751Gln/Asp312Asn polymorphisms, including 2097 cancer patients. Primary outcomes included objective response (TR) (i.e., complete response+partial response vs. stable disease+progressive disease), progression-free survival (PFS) and overall survival (OS). We calculated odds ratio (OR) or hazard ratio (HR) with 95% confidence interval (CI) to estimate the risk or hazard. RESULTS We found that none of the ERCC1 C118T/C8092A and ERCC2 Lys751Gln/Asp312Asn polymorphisms alone was statistically significantly associated with objective response, PFS and OS in NSCLC patients. CONCLUSION There is no evidence to support the use of NER ERCC1 C118T/C8092A and ERCC2 Lys751Gln/Asp312Asn polymorphisms as prognostic predictors of platinum-based chemotherapies in NSCLC.
Collapse
Affiliation(s)
- Ming Yin
- Department of Epidemiology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luijsterburg MS, von Bornstaedt G, Gourdin AM, Politi AZ, Moné MJ, Warmerdam DO, Goedhart J, Vermeulen W, van Driel R, Höfer T. Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair. ACTA ACUST UNITED AC 2010; 189:445-63. [PMID: 20439997 PMCID: PMC2867314 DOI: 10.1083/jcb.200909175] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computational modeling and quantitative analysis show that although accumulation of repair complexes can take hours, the individual components rapidly exchange between the nucleoplasm and DNA damage sites. To understand how multiprotein complexes assemble and function on chromatin, we combined quantitative analysis of the mammalian nucleotide excision DNA repair (NER) machinery in living cells with computational modeling. We found that individual NER components exchange within tens of seconds between the bound state in repair complexes and the diffusive state in the nucleoplasm, whereas their net accumulation at repair sites evolves over several hours. Based on these in vivo data, we developed a predictive kinetic model for the assembly and function of repair complexes. DNA repair is orchestrated by the interplay of reversible protein-binding events and progressive enzymatic modifications of the chromatin substrate. We demonstrate that faithful recognition of DNA lesions is time consuming, whereas subsequently, repair complexes form rapidly through random and reversible assembly of NER proteins. Our kinetic analysis of the NER system reveals a fundamental conflict between specificity and efficiency of chromatin-associated protein machineries and shows how a trade off is negotiated through reversibility of protein binding.
Collapse
|
17
|
Jean S, De Méo M, Sabatier AS, Laget M, Hubaud JC, Verrando P, Duménil G. Evaluation of Sunscreen Protection in Human Melanocytes Exposed to UVA or UVB Irradiation Using the Alkaline Comet Assay¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740417eospih2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Greinert R, Boguhn O, Harder D, Wilhelm Breitbart E, Mitchell DL, Volkmer B. The Dose Dependence of Cyclobutane Dimer Induction and Repair in UVB-irradiated Human Keratinocytes¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720701tddocd2.0.co2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Schöllnberger H, Stewart RD, Mitchel REJ. Low-LET-induced radioprotective mechanisms within a stochastic two-stage cancer model. Dose Response 2006; 3:508-18. [PMID: 18648628 PMCID: PMC2477198 DOI: 10.2203/dose-response.003.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A stochastic two-stage cancer model with clonal expansion was used to investigate the potential impact on human lung cancer incidence of some aspects of the hormesis mechanisms suggested by Feinendegen (Health Phys. 52 663-669, 1987). The model was applied to low doses of low-LET radiation delivered at low dose rates. Non-linear responses arise in the model because radiologically induced adaptations in radical scavenging and DNA repair may reduce the biological consequences of DNA damage formed by endogenous processes and ionizing radiation. Sensitivity studies were conducted to identify critical model inputs and to help define the changes in cellular defense mechanisms necessary to produce a lifetime probability for lung cancer that deviates from a linear no-threshold (LNT) type of response. Our studies suggest that lung cancer risk predictions may be very sensitive to the induction of DNA damage by endogenous processes. For doses comparable to background radiation levels, endogenous DNA damage may account for as much as 50 to 80% of the predicted lung cancers. For an additional lifetime dose of 1 Gy from low-LET radiation, endogenous processes may still account for as much as 20% of the predicted cancers (Fig. 2). When both repair and scavengers are considered as inducible, radiation must enhance DNA repair and radical scavenging in excess of 30 to 40% of the baseline values to produce lifetime probabilities for lung cancer outside the range expected for endogenous processes and background radiation.
Collapse
Affiliation(s)
- H Schöllnberger
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | |
Collapse
|
20
|
Lai YS, Chiue LF, Hsu T. Low-molecular-weight vitellogenin 1-like proteins are components of a UV-damaged-DNA binding activity highly expressed in zebrafish (Danio rerio) embryos. ACTA ACUST UNITED AC 2006; 305:215-24. [PMID: 16432884 DOI: 10.1002/jez.a.222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A strong UV-damaged-DNA binding activity had been detected in the extracts of zebrafish embryos at 12 hr after fertilization by gel shift assay (Hsu et al. 2002. Fish Physiol Biochem 25:41-51). We attempted to study the components of this binding activity and their importance in DNA damage recognition. Among the proteins extracted from gel retardation complexes, a 30- and a 35-kDa polypeptide binding preferentially to 6-4photoproducts (6-4PPs) generated by UV irradiation were identified by peptide mass fingerprinting (PMF) as homologs of zebrafish vitellogenin I (zfVg1), a 150-kDa metalloprotein known as the precursor of yolk proteins in embryos. zfVg1-like polypeptides ranging from 25 to 105 kDa were detected in 12- and 96-hr-old zebrafish extracts by immunoblot analysis. Immunoblot analysis of affinity-captured proteins confirmed the preferential binding of the 30-35-kDa polypeptides to the 6-4PP probe, while 96-hr-old larval extracts containing very low levels of these two factors failed to recognize 6-4PPs. The presence of zfVg1-like factors was important in maintaining the embryonic UV-binding activity, as inclusion of a monoclonal anti-zfVg1 antibody in reaction mixtures caused a concentration-dependent reduction in 6-4PP-specific binding. In contrast, DNA damage recognition was not disturbed at all by an anti-HSP 70 antibody. The formation of 6-4PP-binding complexes was abolished after the addition of the metal chelating agent 1,10-phenanthroline (OP) to zebrafish extracts and the loss of UV-binding capacity correlated with the disappearance of the 35-kDa factor in OP-treated extracts. Our results demonstrated the ability of low-molecular-weight zfVg1-like proteins in zebrafish embryos to bind UV-damaged DNA and the expression of this embryonic UV-binding activity was metal dependent. Whether zfVg1-like UV-binding proteins are involved in repairing damaged DNA in embryos or in processing helical structures similar to UV-distorted DNA needs further investigation.
Collapse
Affiliation(s)
- Yi-Show Lai
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China
| | | | | |
Collapse
|
21
|
Cramers P, Atanasova P, Vrolijk H, Darroudi F, van Zeeland AA, Huiskamp R, Mullenders LHF, Kleinjans JCS. Pre-exposure to Low Doses: Modulation of X-Ray-Induced DNA Damage and Repair? Radiat Res 2005; 164:383-90. [PMID: 16187740 DOI: 10.1667/rr3430.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The adaptive response to ionizing radiation may be mediated by the induction of antioxidant defense mechanisms, accelerated repair or altered cell cycle progression after the conditioning dose. To gain new insight into the mechanism of the adaptive response, nondividing lymphocytes and fibroblasts were used to eliminate possible contributions of cell cycle effects. The effect of conditioning doses of 0.05 or 0.1 Gy followed by challenging doses up to 8 Gy (with a 4-h interval between exposures) on induction and repair of DNA damage was determined by single-cell gel electrophoresis (comet assay), premature chromosome condensation, and immunofluorescence labeling for gamma-H2AX. The conditioning dose reduced the induction of DNA strand breaks, but the kinetics of strand break rejoining was not influenced by the conditioning dose in nondividing cells of either cell type. We conclude that adaptation in nondividing cells is not mediated by enhanced strand break rejoining and that protection against the induction of DNA damage is rather small. Therefore, the adaptive response is most likely a reflection of perturbation of cell cycle progression.
Collapse
Affiliation(s)
- Patricia Cramers
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pitsikas P, Francis MA, Rainbow AJ. Enhanced host cell reactivation of a UV-damaged reporter gene in pre-UV-treated cells is delayed in Cockayne syndrome cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 81:89-97. [PMID: 16125967 DOI: 10.1016/j.jphotobiol.2005.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 05/31/2005] [Accepted: 06/07/2005] [Indexed: 12/15/2022]
Abstract
We have used a non-replicating recombinant adenovirus, Ad5HCMVlacZ, which expresses the beta-galactosidase (beta-gal) reporter gene, to examine the time course of UV-inducible repair of UV-damaged DNA in human fibroblasts. Host cell reactivation (HCR) of beta-gal activity for UV-irradiated Ad5HCMVlacZ was examined in non-irradiated and UV-irradiated nucleotide excision repair (NER) proficient normal human fibroblasts, xeroderma pigmentosum (XP) group C fibroblasts which are defective in the global genomic repair (GGR) pathway of NER and Cockayne syndrome (CS) fibroblasts which are defective in the transcription coupled repair (TCR) pathway of NER. HCR was deficient in untreated XP-C and CS cells indicating that both TCR and GGR are involved in removal of photolesions from the transcribed strand of the reporter gene in unirradiated human cells as reported previously. Prior UV-irradiation of cells with low UV fluences resulted in a transient enhancement of HCR in normal and XP-C fibroblasts that reached a maximum when cells were infected at 25-35 h after UV. In contrast, UV-enhanced HCR was delayed in CS-B cells, reaching levels similar to that in normal cells only when cells were infected between 40 and 60 h after UV exposure. These results are consistent with a UV-induced up-regulation of GGR through a TCR dependent pathway in CS cells.
Collapse
Affiliation(s)
- Photini Pitsikas
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ont., Canada L8S 4K1
| | | | | |
Collapse
|
23
|
Kelly CM, Latimer JJ. Unscheduled DNA synthesis: a functional assay for global genomic nucleotide excision repair. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2005; 291:303-20. [PMID: 15502232 PMCID: PMC4751077 DOI: 10.1385/1-59259-840-4:303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The unscheduled DNA synthesis (UDS) assay measures a cell's ability to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique in living cells by creating 6-4 photoproducts and pyrimidine dimers using UVC irradiation, then allowing for their repair. Repair is quantified by the amount of radioactive thymidine incorporated after this insult, and the length of time allowed for this incorporation is specific for repair of particular lesions. Radioactivity is evaluated by grain counting after autoradiography. The results are used to diagnosis repair-deficient disorders clinically and provide a basis for investigation of repair deficiency in human tissues or tumors. At the present time, no other functional assay is available that directly measures the capacity to perform NER on the entire genome without the use of specific antibodies. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation, as discussed in Chapter 28, is not an equivalent technique, as it specifically measures transcription-coupled repair at active genes, a subset of total NER.
Collapse
Affiliation(s)
- Crystal M Kelly
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
24
|
Reardon JT, Sancar A. Nucleotide Excision Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:183-235. [PMID: 16096029 DOI: 10.1016/s0079-6603(04)79004-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
25
|
Schöllnberger H, Stewart RD, Mitchel REJ, Hofmann W. An examination of radiation hormesis mechanisms using a multistage carcinogenesis model. NONLINEARITY IN BIOLOGY, TOXICOLOGY, MEDICINE 2004; 2:317-52. [PMID: 19330150 PMCID: PMC2657508 DOI: 10.1080/15401420490900263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A multistage cancer model that describes the putative rate-limiting steps in carcinogenesis is developed and used to investigate the potential impact on cumulative lung cancer incidence of the hormesis mechanisms suggested by Feinendegen and Pollycove. In the model, radiation and endogenous processes damage the DNA of target cells in the lung. Some fraction of the misrepaired or unrepaired DNA damage induces genomic instability and, ultimately, leads to the accumulation of malignant cells. The model explicitly accounts for cell birth and death processes, the clonal expansion of initiated cells, malignant conversion, and a lag period for tumor formation. Radioprotective mechanisms are incorporated into the model by postulating dose and dose-rate-dependent radical scavenging. The accuracy of DNA damage repair also depends on dose and dose rate. As currently formulated, the model is most applicable to low-linear-energy-transfer (LET) radiation delivered at low dose rates. Sensitivity studies are conducted to identify critical model inputs and to help define the shapes of the cumulative lung cancer incidence curves that may arise when dose and dose-rate-dependent cellular defense mechanisms are incorporated into a multistage cancer model. For lung cancer, both linear no-threshold (LNT-), and non-LNT-shaped responses can be obtained. If experiments demonstrate that the effects of DNA damage repair and radical scavenging are enhanced at least three-fold under low-dose conditions, our studies would support the existence of U-shaped responses. The overall fidelity of the DNA damage repair process may have a large impact on the cumulative incidence of lung cancer. The reported studies also highlight the need to know whether or not (or to what extent) multiply damaged DNA sites are formed by endogenous processes. Model inputs that give rise to U-shaped responses are consistent with an effective cumulative lung cancer incidence threshold that may be as high as 300 mGy (4 mGy per year for 75 years) for low-LET radiation.
Collapse
Affiliation(s)
- H Schöllnberger
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | |
Collapse
|
26
|
Hara R, Sancar A. Effect of damage type on stimulation of human excision nuclease by SWI/SNF chromatin remodeling factor. Mol Cell Biol 2003; 23:4121-5. [PMID: 12773556 PMCID: PMC156126 DOI: 10.1128/mcb.23.12.4121-4125.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the repair of different types of DNA lesions in chromatin, we prepared mononucleosomes containing an acetylaminofluorene-guanine adduct (AAF-G), a (6-4) photoproduct, or a cyclobutane pyrimidine dimer (CPD) and measured the repair of these lesions by reconstituted 6-factor human excision nuclease. We find that incorporation into nucleosomes inhibits the repair of CPD more severely than repair of the AAF-G adduct and the (6-4) photoproduct. Equally important, we find that SWI/SNF stimulates the removal of AAF-G and (6-4) photoproduct but not of CPD from nucleosomal DNA. These results shed new light on the low rate of repair of CPDs in human cells in vivo.
Collapse
Affiliation(s)
- Ryujiro Hara
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
27
|
Abstract
During transcription, prokaryotic and eukaryotic RNA polymerases bypass and misread (transcriptional mutagenesis) several classes of DNA lesions. For example, misreading of 8-OH-dG generates mRNAs containing G to T transversions. After translation, if the mutant protein briefly allowed the cell a growth-DNA replication advantage, then precocious DNA replication would bypass that unrepaired 8-OH-dG and misinsert dA opposite the directing DNA lesion with a higher probability than would be experienced for 8-OH-G lesions at other positions in otherwise identical neighboring cells. Such retromutations would have been tested for their imparted growth advantage as mRNA before they became heritable DNA mutations. The logical properties of a mode of evolution that utilizes directed-retromutagenesis were compared one by one with those of the standard neo-Darwinian mode. The retromutagenesis mode, while minimizing mutational load, is cell-selfish; fitness is for an immediate growth advantage rather than future reproductive potential. In prokaryotes, an evolutionary mode that involves standard Darwinian fitness testing of novel alleles in the genetic background of origin followed by clonal expansion also favors cell-selfish allele combinations when linkage disequilibrium is practiced. For metazoa and plants to have evolved organized tissues, cell-selfish modes of evolution represent systems-poisons that must be totally suppressed. The feedback loops that allow evolution to be cell-serving in prokaryotes are actively blocked in eukaryotes by traits that restrict fitness to future reproductive potential. These traits include (i) delay of fitness testing until after the mutation is made permanently heritable, (ii) diploidy to further delay fitness testing, (iii) segregation of somatic lines from germ lines, (iv) testing of novel alleles against randomized allele combinations constructed by obligate sex, and (v) obligate genetic death to insure that that the most basic systems unit of selfish allele combinatorial uniqueness is the species instead of the cell. The analyses indicate that modes of evolution in addition to our neo-Darwinian one could have existed utilizing known molecular mechanisms. The evolution of multicellularity was as much the discarding of old cell-selfish habits as the acquisition of new altruistic ones.
Collapse
Affiliation(s)
- Gerald P Holmquist
- Biology Department, Beckman Research Institute of the City of Hope, 1455 E Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
28
|
Rodin SN, Rodin AS, Juhasz A, Holmquist GP. Cancerous hyper-mutagenesis in p53 genes is possibly associated with transcriptional bypass of DNA lesions. Mutat Res 2002; 510:153-68. [PMID: 12459451 DOI: 10.1016/s0027-5107(02)00260-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The database of tumor-associated p53 base substitutions includes about 5% of tumors with two or more base substitutions. These multiplet base substitutions in one tumor are evidence for hyper-mutagenesis. Our retrospective analysis of this database indicates that most multiplets arise from a single transient hyper-mutagenic event in one cell that subsequently proliferated into a clonal tumor. The hyper-mutagenesis, 1.8 x 10(-4) substitutions per base pair, is detected as multiple mutations in p53 genes of tumors. It requires one strongly tumorigenic p53 substitution, usually missense, called the driver mutation. The occurrence frequencies of ancillary base substitutions, those that hitch-hike along with the driver mutation, are independent of their amino acid coding properties. In this respect, they act like neutral mutations. In support of this neutrality, we find that the frequency distribution of hitch-hiking CpG transitions along the p53 exons, their mutational spectrum, approximates the spontaneous pre-selection mutational spectrum of most human tissues and is correlated with the mutational spectrum of p53 pseudogenes in mammalian germ cells. The driver substitutions of multiplets predominantly originate along the transcribed strand while the ancillary substitutions tend to originate along the non-transcribed strand. This data is consistent with a model of time-dependent mutagenesis in non-dividing stem cells for generating multiple strand-asymmetric p53 mutations in tumors. By transcriptional bypass of DNA lesions with concomitant misincorporation, transcriptional mutagenesis generates a transient mutant p53 mRNA. The associated mutant p53 protein could allow the host cell a growth advantage, release from G1-arrest. Then, during subsequent DNA replication and misreading of the same lesion, the damaged base along the transcribed DNA strand would serve as the origin of the p53 base substitution that drives the hyper-mutagenic event leading to tumors with multiple p53 mutations.
Collapse
Affiliation(s)
- S N Rodin
- Biology Department, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | | | | | | |
Collapse
|
29
|
Vincent F, Ceraline J, Goldblum S, Klein-Soyer C, Bergerat JP. A new flow cytometric method to follow DNA gap filling during nucleotide excision repair of UVc-induced damage. CYTOMETRY 2001; 45:96-101. [PMID: 11590621 DOI: 10.1002/1097-0320(20011001)45:2<96::aid-cyto1151>3.0.co;2-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Several methods have been developed for studying the kinetics of DNA repair after exposure of cells to ultraviolet (UV) light, such as conventional assays measuring unscheduled DNA synthesis (UDS). In this study, we have developed an accurate and rapid method to follow DNA gap filling during nucleotide excision repair (NER) in normal human fibroblasts (NHFs) in response to UV-induced damage. METHODS After UVc irradiation, aphidicolin was added to the culture to hold repair patches open. This allowed an efficient incorporation of biotin-21-dUTP during an endogenous DNA repair synthesis that was detected by flow cytometry. RESULTS We showed that the DNA gap filling after UVc irradiation in NHFs increased with time up to 10 h after irradiation and that no repair synthesis activity could be detected in XP-A fibroblasts. Furthermore, this activity was UVc dose dependent up to 20 J/m2. These results correlated well with those of the UDS assay. Interestingly, addition of aphidicolin at different time points after UVc irradiation, thus allowing endogenous repair synthesis in the absence of biotin-21-dUTP, demonstrated that the response of the NER system occurred extremely rapidly after irradiation. CONCLUSIONS This method may be a reliable and simple alternative to other techniques measuring UDS. Practical advantages include the rapidity of the method, no need for radioactivity, and the possibility to use a second and/even a third flow marker to analyse cell cycle and heterogeneous cell populations concomitantly.
Collapse
Affiliation(s)
- F Vincent
- Laboratoire de Cancérologie Expérimentale et de Radiobiologie, Institut de Recherche contre les Cancers de l'Appareil Digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | | | | | | | | |
Collapse
|
30
|
Jean S, De Méo M, Sabatier AS, Laget M, Hubaud JC, Verrando P, Duménil G. Evaluation of sunscreen protection in human melanocytes exposed to UVA or UVB irradiation using the alkaline comet assay. Photochem Photobiol 2001; 74:417-23. [PMID: 11594055 DOI: 10.1562/0031-8655(2001)074<0417:eospih>2.0.co;2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The in vivo assessment of sunscreen protection does not include the photogenotoxicity of UVA or UVB solar radiation. Using the comet assay we have developed a simple and rapid technique to quantify sunscreen efficacy against DNA damage induced by UV light. Cutaneous human melanocytes from primary cultures were embedded in low-melting point (LPM) agarose and exposed to UVA (0.8 J/cm2) or to UVB (0.06 J/cm2) through a quartz slide covered with 10 microL volumes of sunscreens. DNA single-strand breaks induced directly by UVA at 4 degrees C and indirectly through nucleotide excision repair by UVB following a 35 min incubation period at 37 degrees C were quantified using the comet assay. Tail moments (TM) (tail length x %tail DNA) of 100 cells/sample were determined by image analysis. DNA damage was evaluated with a nonlinear regression analysis on the normalized distribution frequencies of TM using a chi 2 function. The coefficients of genomic protection (CGP) were defined as the percentage of inhibition of DNA lesions caused by the sunscreens. Twenty-one sunscreens were evaluated, and the calculated CGP were compared with the in vivo sun protective factor (SPF) and with the protection factor UVA (PFA). Nonlinear relationships were found between SPF and CGPUVB and between PFA and CGPUVA.
Collapse
Affiliation(s)
- S Jean
- Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale (EA1784), Faculté de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Branum ME, Reardon JT, Sancar A. DNA repair excision nuclease attacks undamaged DNA. A potential source of spontaneous mutations. J Biol Chem 2001; 276:25421-6. [PMID: 11353769 DOI: 10.1074/jbc.m101032200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide excision repair is a general repair system that eliminates many dissimilar lesions from DNA. In an effort to understand substrate determinants of this repair system, we tested DNAs with minor backbone modifications using the ultrasensitive excision assay. We found that a phosphorothioate and a methylphosphonate were excised with low efficiency. Surprisingly, we also found that fragments of 23-28 nucleotides and of 12-13 nucleotides characteristic of human and Escherichia coli excision repair, respectively, were removed from undamaged DNA at a significant rate. Considering the relative abundance of undamaged DNA in comparison to damaged DNA in the course of the life of an organism, we conclude that, in general, excision from and resynthesis of undamaged DNA may exceed the excision and resynthesis caused by DNA damage. As resynthesis is invariably associated with mutations, we propose that gratuitous repair may be an important source of spontaneous mutations.
Collapse
Affiliation(s)
- M E Branum
- Department of Biochemistry and Biophysics, Mary Ellen Jones Bldg., University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
32
|
Gajendiran N, Tanaka K, Kumaravel TS, Kamada N. Neutron-induced adaptive response studied in go human lymphocytes using the comet assay. JOURNAL OF RADIATION RESEARCH 2001; 42:91-101. [PMID: 11393893 DOI: 10.1269/jrr.42.91] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study demonstrates that cells adapted to ionizing radiation developed reduced initial DNA damage when compared to non-adapted cells. The results were obtained by subjecting in vitro irradiated whole blood from 10 healthy volunteers (including 2 A-bomb survivors carrying 1.5-2 Gy in vivo exposure) in an unstimulated condition (G0) using the comet assay. The intensity of DNA damage was assessed by computing the 'tail moment'. Adaptive response (AR) was noticed in only donor 3, as indicated by reduced tail moment when the blood samples received priming + challenging doses over a 4 h interval. The priming dose was either 0.01 Gy 137Cs gamma-rays or 0.0025 Gy 252Cf neutrons. The delivered challenging dose was either 1 Gy 60Co g-rays or 0.25 Gy 252Cf neutrons. The irradiation was conducted using the HIRRAC facility. A prior exposure to 0.0025 Gy 252Cf neutrons nullified the excess tail moment caused by 0.25 Gy neutrons given during a 4 h gap. In a similar way, 0.01 Gy 137Cs gamma-rays offered a cross-adaptive response to the neutron challenging dose. The tail moment of A-bomb survivors after in vitro irradiation was less than that of the age-matched control and, at the same time, was not influenced by the priming dose. An altered subset and the immunological status of blood after A-bomb exposure were cited as possible factors. Because AR can affect the outcome of RBE, its individual variability only emphasizes the need to have individual biodosimetry for better risk assessment, especially in planning for a long space voyage.
Collapse
Affiliation(s)
- N Gajendiran
- Department of Cancer Cytogenetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan.
| | | | | | | |
Collapse
|
33
|
Cohen L, Marshall GD, Cheng L, Agarwal SK, Wei Q. DNA repair capacity in healthy medical students during and after exam stress. J Behav Med 2000; 23:531-44. [PMID: 11199086 DOI: 10.1023/a:1005503502992] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There has been extensive research into the effects of stress on immune function but little on the effects of stress on DNA repair capacity (DRC), a process central to maintaining a normal cell cycle. Defective DRC is one of the factors responsible for carcinogenesis. In the present study we assessed DRC in healthy medical students during times of high and low stress. Sixteen medical students were evaluated during the third day of a 5-day exam period and then again 3 weeks later, after vacation. At both time points, participants underwent a brief physical examination, had venous blood drawn, and completed questionnaires to identify subjective stress levels. The DRC was assessed by the host-cell reaction assay, which measures nucleotide excision repair capacity. Participants reported significantly higher levels of subjective stress during the exam period than after vacation. DRC was also significantly higher during the exam period than after vacation, suggesting a positive association between subject stress levels and DRC. The results are discussed in relation to previous findings and implications for cancer research.
Collapse
Affiliation(s)
- L Cohen
- Department of Behavioral Science, University of Texas M. D. Anderson Cancer Center, USA
| | | | | | | | | |
Collapse
|
34
|
Greinert R, Boguhn O, Harder D, Breitbart EW, Mitchell DL, Volkmer B. The dose dependence of cyclobutane dimer induction and repair in UVB-irradiated human keratinocytes. Photochem Photobiol 2000; 72:701-8. [PMID: 11107858 DOI: 10.1562/0031-8655(2000)072<0701:tddocd>2.0.co;2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UVB and UVA components of the solar spectrum or from artificial UV-sources might be important etiological factors for the induction and development of skin cancer. In particular, deficiencies in the capacity to repair UV-induced DNA-lesions have been linked to this phenomenon. However, until now only limited data are available on the biological and physical parameters governing repair capacity. We have, therefore, developed a flowcytometric assay using fluorescence-labeled monoclonal antibodies to study the dose-dependence of induction and repair of UVB-induced cyclobutane pyrimidine dimers in a spontaneously immortalized keratinocytic cell line (HaCaT). Our results show that the kinetics of recognition and incision of UVB-induced DNA lesions slows down by a factor of about 3 in a dose range of 100-800 J m-2. Furthermore, a thorough analysis of repair kinetics indicates that this reduction in repair capacity might not be dependent on saturation of enzymatic repair capacity (Michaelis-Menten) but may be caused by a UV-induced impairment of enzymes involved in DNA repair. Because this effect is evident in vitro at doses comparable to the minimal erythemal dose in vivo, our results might have significant impact on risk assessment for UV-induced carcinogenesis.
Collapse
Affiliation(s)
- R Greinert
- Dermatologisches Zentrum Buxtehude, Krankenhaus Buxtehude, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Lambert MW, Yang L. Xeroderma pigmentosum complementation group A protein acts as a processivity factor. Biochem Biophys Res Commun 2000; 271:782-7. [PMID: 10814539 DOI: 10.1006/bbrc.2000.2714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that endonucleases present in a protein complex, which has specificity for cyclobutane pyrimidine dimers, locate sites of damage in DNA by a processive mechanism of action in normal human lymphoblastoid cells. In contrast, the endonucleases present in this complex from xeroderma pigmentosum complementation group A (XPA) cells locate damage sites by a distributive or significantly less processive mechanism. Since the XPA protein has been shown to be responsible for the DNA repair defect in XPA cells, this protein was examined for involvement in the mechanism of target site location of these endonucleases. A recombinant XPA protein, produced by expression of the normal XPA cDNA in E. coli, was isolated and purified. The results show that the recombinant XPA protein was able to correct the defect in ability of the XPA endonucleases to act by a processive mechanism of action on UVC irradiated DNA. These studies indicate that the XPA protein, in addition to a role in damage recognition or damage verification, may function as a processivity factor.
Collapse
Affiliation(s)
- M W Lambert
- Department of Pathology, Laboratory Medicine, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, USA.
| | | |
Collapse
|