1
|
Ding Y, Chen Y, Yang X, Xu P, Jing J, Miao Y, Mao M, Xu J, Wu X, Lu Z. An integrative analysis of the lncRNA-miRNA-mRNA competitive endogenous RNA network reveals potential mechanisms in the murine hair follicle cycle. Front Genet 2022; 13:931797. [DOI: 10.3389/fgene.2022.931797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Alopecia is a common progressive disorder associated with abnormalities of the hair follicle cycle. Hair follicles undergo cyclic phases of hair growth (anagen), regression (catagen), and rest (telogen), which are precisely regulated by various mechanisms. However, the specific mechanism associated with hair follicle cycling, which includes noncoding RNAs and regulation of competitive endogenous RNA (ceRNA) network, is still unclear. We obtained data from publicly available databases and performed real-time quantitative polymerase chain reaction validations. These analyses revealed an increase in the expression of miRNAs and a decrease in the expression of target mRNAs and lncRNAs from the anagen to telogen phase of the murine hair follicle cycle. Subsequently, we constructed the ceRNA networks and investigated their functions using enrichment analysis. Furthermore, the androgenetic alopecia (AGA) microarray data analysis revealed that several novel alopecia-related genes were identified in the ceRNA networks. Lastly, GSPT1 expression was detected using immunohistochemistry. Our analysis revealed 11 miRNAs (miR-148a-3p, miR-146a-5p, miR-200a-3p, miR-30e-5p, miR-30a-5p, miR-27a-3p, miR-143-3p, miR-27b-3p, miR-126a-3p, miR-378a-3p, and miR-22-3p), 9 target mRNAs (Atp6v1a, Cdkn1a, Gadd45a, Gspt1, Mafb, Mitf, Notch1, Plk2, and Slc7a5), and 2 target lncRNAs (Neat1 and Tug1) were differentially expressed in hair follicle cycling. The ceRNA networks were made of 12 interactive miRNA-mRNA pairs and 13 miRNA-lncRNA pairs. The functional enrichment analysis revealed the enrichment of hair growth–related signaling pathways. Additionally, GSPT1 was downregulated in androgenetic alopecia patients, possibly associated with alopecia progression. The ceRNA network identified by our analysis could be involved in regulating the hair follicle cycle.
Collapse
|
2
|
Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix. Eur J Cell Biol 2017; 96:632-641. [PMID: 28413121 DOI: 10.1016/j.ejcb.2017.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21CIP1, p27KIP1 and p57KIP2) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21CIP1, p27KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically relevant model system for cell cycle physiology research of human epithelial cells within their natural tissue habitat.
Collapse
|
3
|
Complex changes in the apoptotic and cell differentiation programs during initiation of the hair follicle response to chemotherapy. J Invest Dermatol 2014; 134:2873-2882. [PMID: 24999588 PMCID: PMC4227948 DOI: 10.1038/jid.2014.267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/28/2014] [Accepted: 03/07/2014] [Indexed: 12/23/2022]
Abstract
Chemotherapy has severe side-effects for normal rapidly proliferating organs, such as hair follicle, and causes massive apoptosis in hair matrix keratinocytes followed by hair loss. To define the molecular signature of hair follicle response to chemotherapy, human scalp hair follicles cultured ex vivo were treated with doxorubicin and global microarray analysis was performed 3 hours after treatment. Microarray data revealed changes in expression of 504 genes in doxorubicin-treated hair follicles versus the controls. Among these genes, upregulations of several tumor necrosis factor family of apoptotic receptors (FAS, TRAIL receptors 1/2), as well as of a large number of the keratin-associated protein genes were seen after doxorubicin treatment. Hair follicle apoptosis induced by doxorubicin was significantly inhibited by either TRAIL neutralizing antibody or caspase 8 inhibitor, thus suggesting a novel role for TRAIL receptor signaling in mediating doxorubicin-induced hair loss. These data demonstrate that the early phase of the hair follicle response to doxorubicin includes upregulation of apoptosis-associated markers, as well as substantial re-organization of the terminal differentiation programs in hair follicle keratinocytes. These data provide an important platform for further studies towards the design of novel approaches for management of chemotherapy-induced hair loss.
Collapse
|
4
|
Al-Nuaimi Y, Hardman JA, Bíró T, Haslam IS, Philpott MP, Tóth BI, Farjo N, Farjo B, Baier G, Watson REB, Grimaldi B, Kloepper JE, Paus R. A meeting of two chronobiological systems: circadian proteins Period1 and BMAL1 modulate the human hair cycle clock. J Invest Dermatol 2014; 134:610-619. [PMID: 24005054 DOI: 10.1038/jid.2013.366] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/01/2013] [Accepted: 08/18/2013] [Indexed: 12/28/2022]
Abstract
The hair follicle (HF) is a continuously remodeled mini organ that cycles between growth (anagen), regression (catagen), and relative quiescence (telogen). As the anagen-to-catagen transformation of microdissected human scalp HFs can be observed in organ culture, it permits the study of the unknown controls of autonomous, rhythmic tissue remodeling of the HF, which intersects developmental, chronobiological, and growth-regulatory mechanisms. The hypothesis that the peripheral clock system is involved in hair cycle control, i.e., the anagen-to-catagen transformation, was tested. Here we show that in the absence of central clock influences, isolated, organ-cultured human HFs show circadian changes in the gene and protein expression of core clock genes (CLOCK, BMAL1, and Period1) and clock-controlled genes (c-Myc, NR1D1, and CDKN1A), with Period1 expression being hair cycle dependent. Knockdown of either BMAL1 or Period1 in human anagen HFs significantly prolonged anagen. This provides evidence that peripheral core clock genes modulate human HF cycling and are an integral component of the human hair cycle clock. Specifically, our study identifies BMAL1 and Period1 as potential therapeutic targets for modulating human hair growth.
Collapse
Affiliation(s)
- Yusur Al-Nuaimi
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jonathan A Hardman
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Doctoral Training Centre in Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Tamás Bíró
- DE-MTA ''Lendulet'' Cell Physiology Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Iain S Haslam
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Michael P Philpott
- Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Balázs I Tóth
- DE-MTA ''Lendulet'' Cell Physiology Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | | | | | - Gerold Baier
- Faculty of Life Sciences, Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, UK
| | - Rachel E B Watson
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | | | - Ralf Paus
- The Dermatology Centre, Salford Royal NHS Foundation Trust and the Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Department of Dermatology, University of Luebeck, Luebeck, Germany.
| |
Collapse
|
5
|
Tomková H, Kohoutek M, Zábojníková M, Pospísková M, Ostrízková L, Gharibyar M. Cetuximab-induced cutaneous toxicity. J Eur Acad Dermatol Venereol 2009; 24:692-6. [PMID: 19925598 DOI: 10.1111/j.1468-3083.2009.03490.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Epidermal growth factor receptor inhibitors are recently utilized by oncologists in advanced cases of certain malignancies. However, these agents are associated with numerous cutaneous adverse reactions. OBJECTIVE To systematically review the cutaneous toxicity of cetuximab-treated patients. METHODS An analysis of a series of 24 patients (20 men and 4 women) treated with cetuximab (12 patients with head and neck cancer and 12 patients with colorectal cancer) was performed with respect to relevant clinical characteristics. RESULTS A total of 22 patients (91.7%) developed pustular or maculopapular follicular eruption, often referred to as acneiform rash. One patient (4.2%) developed paronychia in the course of cetuximab therapy. All patients with head and neck cancer had a combination treatment with radiotherapy and experienced radiation dermatitis accompanied by skin xerosis. Anaphylactic reaction was observed in three patients (12.5%). CONCLUSIONS The most frequent cutaneous side effect reported in this series was acneiform eruption. The authors observed that all women with acneiform rash had only limited facial involvement, whereas all but one man experienced more widespread lesions of the face, the back and the chest. We found no association between the extent and severity of cutaneous eruptions (grade 1 vs. grade 2) and patients' response to therapy.
Collapse
Affiliation(s)
- H Tomková
- Department of Dermatology, T Bata's Regional Hospital, Zlin, Czech Republic.
| | | | | | | | | | | |
Collapse
|
6
|
Paus R, Arck P, Tiede S. (Neuro-)endocrinology of epithelial hair follicle stem cells. Mol Cell Endocrinol 2008; 288:38-51. [PMID: 18423849 DOI: 10.1016/j.mce.2008.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 12/17/2022]
Abstract
The hair follicle is a repository of different types of somatic stem cells. However, even though the hair follicle is both a prominent target organ and a potent, non-classical site of production and/or metabolism of numerous polypetide- and steroid hormones, neuropeptides, neurotransmitters and neurotrophins, the (neuro-)endocrine controls of hair follicle epithelial stem cell (HFeSC) biology remain to be systematically explored. Focussing on HFeSCs, we attempt here to offer a "roadmap through terra incognita" by listing key open questions, by exploring endocrinologically relevant HFeSC gene profiling and mouse genomics data, and by sketching several clinically relevant pathways via which systemic and/or locally generated (neuro-)endocrine signals might impact on HFeSC. Exemplarily, we discuss, e.g. the potential roles of glucocorticoid and vitamin D receptors, the hairless gene product, thymic hormones, bone morphogenic proteins (BMPs) and their antagonists, and Skg-3 in HFeSC biology. Furthermore, we elaborate on the potential role of nerve growth factor (NGF) and substance P-dependent neurogenic inflammation in HFeSC damage, and explore how neuroendocrine signals may influence the balance between maintenance and destruction of hair follicle immune privilege, which protects these stem cells and their progeny. These considerations call for a concerted research effort to dissect the (neuro-)endocrinology of HFeSCs much more systematically than before.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
7
|
Yang S, Leow CK, Tan TMC. Expression patterns of cytokine, growth factor and cell cycle-related genes after partial hepatectomy in rats with thioacetamide-induced cirrhosis. World J Gastroenterol 2006; 12:1063-70. [PMID: 16534847 PMCID: PMC4087898 DOI: 10.3748/wjg.v12.i7.1070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the differences in the responses of normal and cirrhotic livers to partial hepatectomy in relation to the factors influencing liver regeneration.
METHODS: Cirrhosis was induced in rats by admini-stration of thioacetamide. Untreated rats were used as controls. The control rats as well as the cirrhotic rats were subjected to 70% partial hepatectomy. At different time points after hepatectomy, the livers were collected and the levels of cytokines, growth factors and cell cycle proteins were analyzed.
RESULTS: After hepatectomy, the cirrhotic remnant expressed significantly lower levels of cyclin D1, its kinase partner, cdk4, and cyclin E as compared to the controls up to 72 h post hepatectomy. Significantly lower levels of cyclin A and cdk2 were also observed while the cdk inhibitor, p27 was significantly higher. In addition, the cirrhotic group had lower IL-6 levels than the control group at all time points up to 72 h following resection.
CONCLUSION: The data from our study shows that impaired liver regeneration in cirrhotic remnants is associated with low expression of cyclins and cdks. This might be the consequence of the low IL-6 levels in cirrhotic liver remnant which would in turn influence the actions of transcription factors that regulate genes involved in cell proliferation and metabolic homeostasis during the regeneration process.
Collapse
Affiliation(s)
- Shu Yang
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, MD7, 8 Medical Drive, S117597, Singapore
| | | | | |
Collapse
|